Kontakt

 

Leitung

Prof. Dr. Carsten F. Dormann

Telefon: +49 761 203-3749
Telefax: +49 761 203-3751
eMail: carsten.dormann@biom.uni-freiburg.de 

 

Sekretariat:

 

Frau Eva Meier

Telefon: +49 761 203-3749 
Telefax: +49 761 203-3751 
eMail: eva.meier@biom.uni-freiburg.de 

 

Anschrift:

 

Biometrie und Umweltsystemanalyse

Albert-Ludwigs-Universität Freiburg

Tennenbacher Straße 4 
79106 Freiburg i. Br.

 

Uni-Logo
You are here: Home Lehre / Teaching Themen für Abschlussarbeiten / Offers for bachelor or master projects Ecological topics that includes field/lab component
Document Actions

Ecological topics that includes field/lab component

Insect biodiversity and species interactions: pollinators, herbivores or computer-simulated networks 

Topics: Most species on earth are insects. They are thus the most obvious group for studying the importance of species diversity. Insects are involved in many complex networks of relevant interactions (that often form the basis for ecosystem services), e.g. between plants and pollinators, or between plants, herbivores and their natural enemies. If you are interested in this general topic and enthusiastic about species identification and/or working with R (analysis or modeling), please contact me!

     aphid_on_birchbee on crepis

Possible thesis topics include (but are not limited to):

§  Testing or developing network models (mutualistic and antagonistic interactions); e.g. how are network analysis methods and metrics affected by non-independent counts (data analysis and modelling; e.g. see topic below under eco-statistical topics)?

§  Herbivore assessments in the IDENT tree diversity experiment in Freiburg or in Canada; do herbivores prefer native trees? how do bark beetles spread in a mixed forest plantation? how does neighbor tree diversity influence herbivory? are insect communities more dependent on tree species or stand age? (field work in Freiburg, possibly in Canada, or literature work with data analysis)

§  Temporal dynamics of plant-pollinator interactions, flowering partitioning and the influence of pollinators on flower opening and closing times (experimental field work, or analysis of existing data)
 

Time: to be determined; field work topics have to start in spring / early summer, with sufficient time for analysis and writing afterwards

Requirements: I am looking for highly motivated students interested in biodiversity and plant-insect interactions. Experience with data analysis in R or with insect research is advantageous.

Contact: Dr. Jochen Fründ, jochen.fruend@biom.uni-freiburg.de, 0761/203-3747 

 

                                                                                                            >> Back to top

 

Soya growing area of the future - model-based prediction of the suitability for cultivation of soybeans in Climate Change

The cultivation of soybeans in Germany reached an all-time high of around 33,000 ha in 2020 Acreage. According to data from the Deutsches Sojaförderring e.V.1, this corresponds to only about 2% of the annual demand in soybean in Germany. On a national as well as European level, climatic changes are expected to increase cover by around 50% through domestic production in the medium term (Roßberg and Recknagel 2017; Guilpart et al. 2020).

soyabean1An increase in the soya cultivation area has in addition to numerous positive ecological aspects (e.g. Nemecek et al. 2008) direct political relevance (see e.g. the European soya Explanation2). For long-term use of the cultivation potential is it is necessary to identify future favoured areas in advance and to establish appropriate agricultural structures. In the course of climate change, the opposite effects can appear. While an elevated temperature in the growing season lead to a significant increase in cultivability (Guilpart et al. 2020), at the same time there is an increased risk of summer drought (Spinoni et al. 2017; Spinoni et al. 2018). In particular drought stress from the time of flowering significantly reduces the yield (Meckel et al. 1984; Frederick et al. 2001). This effect can be seen already at the regional level in the contract farming data from Taifun-Tofu GmbH. Despite this conflict, current models lack critical parameters such as precipitation or water retention capacity of soils (Guilpart et al. 2020).

The advertised thesis is intended to close this gap:

- Evaluation of the map of the current suitability for cultivation of soybean in Germany (figure above) under the requirements of the ability to predict climate change

- Modelling the shift in cultivation suitability under different climate projections on the basis the map of suitability for cultivation of soyabeans

- Analysis of the effects of increased summer drought on regional cultivation worthiness

The Deutsche version and full literature list for this advert can be found here.

Suitable as: BSc or MSc thesis project

Contact: Stefan Paul < s.paul@taifun-tofu.de>

Reference:

1https://www.sojafoerderring.de/

2https://www.donausoja.org/fileadmin/user_upload/Activity/Media/European_Soya_signed_declaration.pdf

Literature:

Frederick, James R.; Camp, Carl R.; Bauer, Philip J. (2001): DroughtStress Effects on Branch and Mainstem Seed Yield and Yield Components of Determinate Soybean. In: Crop Sci. 41 (3), S. 759–763. DOI: 10.2135/cropsci2001.413759x.

Guilpart, Nicolas; Toshichika, Iizumi; David, Makowski (2020): Data-driven yield projections suggest large opportunities to improve Europe’s soybean self-sufficiency under climate change. In: bioRxiv, 2020.10.08.331496. DOI: 10.1101/2020.10.08.331496.

 

                                                                                                           >> Back to top

 

 

Extension of the map of suitability for cultivation of soya beans

soyabean2Despite political declarations of intent (e.g. by the European Soya Declaration1), the European Union is strongly dependent on international soya imports (Fig. 1, Kezeya et al. 2020).

On the way to a meaningful nutritional provisioning at national, as well as at the European level, in the medium term around 50% of the demand could be covered from domestic production (Roßberg and Recknagel 2017; Guilpart et al. 2020). In addition to plant cultivation, an increase in the soya cultivation area also has numerous positive ecological aspects (e.g. Nemecek et al. 2008).

soyabean3

For an expansion of the soya cultivation it is important to identify cultivation suitability of undeveloped areas in advance. For this purpose, region-specific field tests, as well as location factors-based ex-ante evaluations (Rossiter 1996) are used. Newer models are also used for predictions under different climate scenarios (e.g. Daccache et al. 2012) or to consider economic approaches in the modelling of cultivation suitability (Marraccini et al. 2020).

In Germany, the "map of growing suitability of soyabeans” has established as a useful tool for cultivation advice (Fig. 2, Roßberg and Recknagel 2017).  Cultivation suitability for soybeans is determined by means of readily available data such as mean land value figures, total precipitation, global radiation, as well as the CHU heat sums are calculated. Despite the simple concept the map shows a high overlap with the data of the contract cultivation of the Taifun-Tofu GmbH. However, the limitation to the area of the Federal Republic of Germany is very restrictive. European approaches are developed but often remain limited to specific regions (Marraccini et al. 2020) or a small set of climatic parameters (Guilpart et al. 2020).

The advertised work starts at this point and includes the following subject areas:

  - Analysis of existing data for Central and Western Europe

 - If necessary, adapt the model of the "map of Germany on the suitability of soybeans to be cultivated", depending on data availability and quality

  - Calculation of cultivation suitability for available regions / countries

 - Comparison of the model-based cultivation suitability with current cultivation areas

The Deutsche version and full literature list for this advert can be found here.

Suitable as: BSc or MSc thesis project

Contact: Stefan Paul < s.paul@taifun-tofu.de>

Reference:

1https://www.donausoja.org/fileadmin/user_upload/Activity/Media/European_Soya_signed_declaration.pdf

Literature:

Daccache, Andre; KEAY, C.; Jones, Robert J. A.; WEATHERHEAD, E. K.; STALHAM, M. A.; Knox, Jerry W. (2012): Climate change and land suitability for potato production in England and Wales: impacts and adaptation. In: J. Agric. Sci. 150 (2), S. 161–177.

Guilpart, Nicolas; Toshichika, Iizumi; David, Makowski (2020): Data-driven yield projections suggest large opportunities to improve Europe’s soybean self-sufficiency under climate change. In: bioRxiv, 2020.10.08.331496. DOI: 10.1101/2020.10.08.331496.

 

                                                                                                           >> Back to top

Personal tools