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An essential part of any disease containment and eradication policy is the implementation of restricted zones, but determining the
appropriate size of these zones can be challenging for managers. We designed a new method, based on animal movement, to help
assess how large restricted zones should be after a spontaneous outbreak to successfully control infectious diseases in wildlife. Our
approach uses first-passage time (FPT) analysis and Cox proportional hazard (CPH) models to calculate and compare the risk of an
animal leaving different-sized areas. We illustrate our approach using the example of the African swine fever (ASF) virus and its
wild pig reservoir host species, the wild boar (Sus scrofa), and we investigate the feasibility of applying this method to other systems.
Using GPS data from 57 wild boar living in the Hainich National Park, Germany, we calculate the time spent by each individual in
areas of different sizes using FPT analysis. We apply CPH models on the derived data to compare the risk of leaving areas of
different sizes and to assess the effects of season and the sex of the wild boar on the risk of leaving. We conduct survival analyses to
estimate the risk of leaving an area over time. Our results indicate that the risk of leaving an area decreases exponentially by 10% for
each 100m increase in radius size so that the differences were more pronounced for small sizes. Furthermore, the probability of
leaving increases exponentially with time. Wild boar had a similar risk of leaving an area of a given size throughout the year, except
in spring and winter, when females had a much lower risk of leaving. Our findings are in agreement with the literature on wild boar
movement, further validating our method, and repeated analyses with location data resampled at different rates gave similar
results. Our results may be applicable only to our study area, but they demonstrate the applicability of the proposed method to any
ecosystem where wild boar populations are likely to be infected with ASF and where restricted zones should be established
accordingly. The outlined approach relies solely on the analysis of movement data and provides a useful tool to determine the
optimal size of restricted zones. It can also be applied to future outbreaks of other diseases.
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1. Introduction

Wildlife diseases may cause substantial suffering and losses
in the affected animal species, in addition to becoming a
serious threat if the pathogens are transmitted from wildlife
to livestock [1] or, in the case of zoonoses, to humans [2].
They can also endanger the conservation of biodiversity [3].
Increasing and expanding human populations and the asso-
ciated land-use changes (habitat fragmentation), together
with climate change, have exacerbated the risk of disease
transmission between and within wild and domestic animal
populations [4, 5]. The prevention and control of infectious
diseases in wildlife populations have thus become challeng-
ing tasks for ecologists, wildlife managers, and veterinary
authorities since they are connected to broader issues related
to human health, livestock economics, animal welfare, and
food safety.

An important part of many wildlife disease control poli-
cies is establishing “restricted zones” (as defined by the
Commission Delegated Regulation (EU) 2020/687, i.e., the
“Animal Health Law”) for disease control or surveillance
immediately after the first disease case has been detected in
a new territory; for example, to control and monitor bovine
tuberculosis and chronic wasting disease in wild deer ([6, 7],
respectively), bovine tuberculosis in possums [8], African
swine fever (ASF) in wild boar [9] and rabies in raccoons
[10]. This approach aims to reduce the disease prevalence
in affected areas and to avoid spatial spread by implementing
a combination of measures and restrictions in each zone.
Measures include, but are not limited to, the building of fences
to delineate the affected area, prevent animal movement
between affected and disease-free areas, help to reduce the
contact rates among individuals and groups by creating a
habitat fragmentation effect, and establish the epidemiologi-
cal situation of the population in that area (e.g., the number of
animals testing positive or negative for virus genes or anti-
bodies against the virus); vaccination, if available; carcass
removal; and reduction of population size [10–12]; hunting,
agriculture, and tourism may also be limited to avoid animal
disturbance and human-mediated spread of the disease.
Restricted zones are usually designed by assuming that most
host animal movements are contained therein, while taking
into account the human, logistical and financial resources
available. The size of these zones is therefore critical. A zone
that is too large will compromise the effectiveness of the miti-
gation measures (i.e., animal removal may become too labor-
intensive for a sufficient number of infected animals to be
eliminated) and adversely impact stakeholders, such as farm-
ers, foresters, and hunters. Conversely, a zone that is too small
will increase the risk that infected animals leave or have
already left the area and spread the disease elsewhere. There
is no formal consensus on the appropriate size, or even shape,
of such zones, but these characteristics must be based on the
movement and space-use patterns of the disease-spreading
species, which can be highly variable depending on habitat
type, landscape structure and configuration. This may result
in a fixed radius to be applied around the locations where
positive disease cases have been detected [7, 10, 13].

Knowledge of host species movement patterns is therefore
essential and requires detailed data on animal move-
ments [12].

During the last decades, our knowledge on the move-
ment patterns of free-ranging animals has greatly improved
following advances in telemetry [14] and the development of
the corresponding statistical methods [15]. One such method
is the first-passage time (FPT), defined as the time required
for an animal to cross a circle of a given radius around its
present location [16]. The FPT has been used extensively in
foraging ecology and habitat-use studies to determine where
animals concentrate their search efforts along movement
paths [16–18]. Recent developments in the FPT framework
have further expanded the scope of its use. For example, FPT
has been combined with segmentation processes to describe
and detect changes in migration movements [19] and with
survival models in studies of habitat selection [20, 21]. To
infer habitat selection, Freitas et al. [21] proposed an objec-
tive method to estimate the risk of an animal leaving an area
of a given radius by treating FPTs as survival data.

Here, we adapt the approach of Freitas et al. [21] to
develop a new, powerful movement ecology-based tool to
aid in the control of infectious diseases in wildlife. Using
location data, our method quantifies the risk of an animal
leaving areas of different sizes to guide the establishment of
appropriately sized restricted zones, in particular, the buffer
around the outbreak site, with animal movements as a key
risk factor for disease spread. We illustrate the applicability
and strength of this approach using a case study of ASF virus
and its wild pig reservoir host species, the wild boar
(Sus scrofa) and we investigate the potential suitability of
this method for broad application. ASF has become a top-
priority animal disease in the European Union. Since the
introduction of genotype II into Georgia in 2007, it spread
across Europe and was transmitted to China and reached
several Asian countries. It has also been recently detected in
the Dominican Republic and Haiti, thus threatening the
Americas [9]. In wild boar populations in Eastern and Central
Europe, the disease has become established in self-sustaining
infection cycles [22]. Infections of wild boar and domestic
pigs (S. scrofa domesticus) with the highly virulent variants
of genotype II cause high case/fatality ratios of almost 100%.
After an incubation period of 3–5 days, infected wild boar
develop clinical signs, such as high fever, anorexia and
reduced mobility, and usually die within ∼2 weeks postinfec-
tion [23–26]. Recent reports suggested that virus strains with
reduced virulence or attenuation and lower mortality rates
might also circulate in Europe [27–30]. The main route of
disease transmission between wild boar is direct contact
with infected individuals or to carcasses of wild boar that
succumbed to ASF, but the ASF virus can remain infectious
in the environment (e.g., soil or water) for several weeks or
months, and indirect transmission through fomites and con-
taminated meat may play an important role, in particular in
transmitting ASF over long distances [22, 31, 32]. Outbreaks
may cause significant economic losses to the pig industry due
to trade restrictions, or culling, if the disease is transmitted to
domestic pigs.
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According to recommendations of theWorld Organisation
for Animal Health (WOAH, formerly known as OIE),
restricted zones should be established as follows in the case
of a focal introduction of ASF into a wild boar population: A
fenced “infected zone,”where the virus is actively circulating, is
surrounded by a “buffer zone” where disturbance of wild boar
should be kept minimal, for example, by feeding and hunting
bans, but where restrictions for wild boar, pigs and products
derived from these animals are high. In the infected and buffer
zones, the search for carcasses of infected animals, their
removal and safe disposal must be intensified. In the periphery,
“control zones” should be established, in which wild boar den-
sities should be reduced as much as possible using different
measures (intensive hunting, culling, or trapping), but still with
minimal disturbance [9, 13, 33, 34]. The infected zone is
defined as the area including all reported ASF cases in wild
boar and a buffer area (thereafter called “buffer”) of a certain
distance around the cases, where infected individuals are
already expected to be found due to their movement. During
the ASF epidemic in the Czech Republic in 2017, the infected
zone and fence placement have been determined based on the
average annual home range of a wild boar and the expected
speed of the epidemic wave [34], but, in general, strategies to
adequately quantify wild boar movement and precise recom-
mendations are missing. Quantifying the risk of leaving an area
of a given radius allows evaluating how far an individual that
has been in contact with the carcass of an ASF-infected wild
boar could have moved in a certain time window, and thus
implementing the infected zone accordingly and possible bar-
rier placement. By quantifying this risk, it is possible to estimate
the benefits (e.g., economically) of reducing restricted zones
against the costs of the disease spreading faster and further.

In addition, it can provide conservative estimates of the size of
the area that a dead ASF-infected wild boar might have used a
few days before its death while it was transmitting the virus.

2. Materials and Methods

2.1. Study Area. The study was conducted in Hainich
National Park (HNP) and its surroundings in Thuringia,
Central Germany (∼25,000 ha, 51° 06′N, 10° 52′ E, Figure 1)
from October 1, 2016 through December 31, 2019. The study
area (HNP and surrounding areas) consisted of 54.6% agri-
cultural lands (crops, arable lands, and pastures), 34.8% for-
ests, 7.3% open lands (natural grasslands and transitional
woodland shrubs), 3.2% anthropogenic areas (urban fabric,
industrial, commercial and transport units) and 0.4% water
bodies (based on Corine Land Cover database, European
Environment Agency, http://www.eea.europa.eu/). The alti-
tude of the study area ranges between 180 and 350m a.s.l.
The HNP is about 75 km2 large in size, and part of the HNP
(approximately 20%) is within the boundaries of a UNESCO
World Heritage Site (“Ancient and Primeval Beech Forests of
the Carpathians and Other Regions of Europe”), where any
form of hunting is strictly prohibited. Over the years, this
zone has increased due to advancing succession and the
associated restrictions on hunting activities; in addition, a
partial area cannot be hunted due to the presence of old
military sites. The total area of this “no-hunting zone” is
about 33 km2. During the project period, wild boar hunting
was allowed in the rest of the park from the beginning of
September to mid-January. Hunting on the remaining areas
in the study area is based on the hunting seasons of the state
of Thuringia. In 2018, the population density of wild boar in
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FIGURE 1: Location of the study area, in Thuringia, Germany, was calculated as the MCP95 of all wild boar locations considering districts
(black line in the inset). The GPS-tracked wild boar occupied the Hainich National Park and its surroundings. The trajectories of three
individuals (orange: juvenile female, blue: subadult male, gray: adult male) are shown as an example.
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the HNP was estimated to be 11.7 (8.7–15.7) animals/km2

[35]. In addition to wild boar, the most common herbivore
species are roe deer (Capreolus capreolus), fallow deer (Dama
dama), and red deer (Cervus elaphus).

2.2. Movement Data. We used GPS data of 57 ASF-free wild
boar collected as part of a space-use study [35]. We excluded
six individuals from the original study due to the short track-
ing period (<10 days). The handling procedure was approved
by the regional Veterinary Authority (Free State of Thuringia)
and fulfilled the requirements of animal welfare (permit no.
15-109.16). Wild boar were captured at four different loca-
tions in the HNP, each in the close proximity of the no-
hunting zone. Wild boar were trapped in wood-clad corral
traps of ∼30m2 equipped with live cameras for monitoring
and with remote-controlled gates. We drove a caught wild
boar into a net tunnel, and two or three people held it on
the ground with its eyes covered with a cloth. Each boar was
fitted with a Vectronic Aerospace GPS-GSM Vertex Lite col-
lar. The weight of the collared animals was 30–80 kg. When
several individuals were simultaneously caught in the trap, we
marked as many wild boar as possible with GPS collars, if the
size of the individuals allowed doing so. The collaring opera-
tion took 3–5min per animal, after which the animal was
released at the capture site. Further details on GPS deploy-
ment and monitoring can be found in Klamm et al. [35].

The animals were classified according to age and sex at
collaring by experienced wildlife biologists and managers
based on size and coat color. Animals were considered juve-
niles at an age between 6 and 12 months, yearlings at an age
between 1 and 2 years, and adults at >2 years. GPS collars
were deployed on 3 juvenile females, 19 yearling females,
7 adult females, 5 juvenile males, 21 yearling males, and
2 adult males. Of these, 45 individuals belonged to 16 different
groups. The number of collared individuals in the same group
varied between two and seven. The remaining 12 individuals
were either solitary or members of unmarked groups [35].

GPS loggers were programed to record a location every
30min (48 times a day). We omitted locations recorded
during the first week of postcapture monitoring and collaring
to remove potential bias introduced by the initial capture and
handling [36, 37]. The resulting duration of tracking varied
between 10 days and 437 days (mean= 142 days, med-
ian= 109 days). We projected the coordinates of locations
into the WGS84/UTM zone 32N.

2.3. FPT Analysis. The time spent by a wild boar in areas of
different sizes was calculated by FPT analysis [16]. As the
FPT method is most effective when the data are collected at
regular time intervals [16], we removed possible gaps in the
location data of each individual by dividing the path into
several segments when the time between successive locations
was >3 hr (i.e., all successive locations with an interval >3 hr
were excluded from the analyses). We provide a quantitative
assessment of the effects of acquisition rate and the cutoff
value for separating the paths on the further analyses in the
Supporting Information (Supplementary 1) to assess the
generality of our approach. Because the accuracy of FPT
analysis depends on the tracking duration [18], tracking

records that did not include at least 25 consecutive locations
(>12 hr in duration) were removed from the analyses.

For each segment of an individual’s path, we calculated
the time spent in circles centered around each location of that
individual.When the first and/or last crossing of the circle was
unknown, we used the first and/or last known location in the
circle to calculate the minimum time spent in the circle
instead. This typically occurred at the beginning or end of a
track of a boar that never moved outside the circle. We calcu-
lated the time/minimum time spent by an individual in circles
with radii ranging from r= 1 to 20 km, at 1 km increments
from 1 to 10 and 5 km increments thereafter. We chose r
following the Commission Delegated Regulation (EU) 2020/
687 for ASF outbreaks in domestic pigs, which requires the
establishment of a protection zone (PZ) and a surveillance
zone (SZ) with r> 3 and r> 10 km, respectively, around the
presumed starting point of the infection, i.e., the geographic
position of the first detected (index) case.

2.4. Statistical Analysis. We fit Cox proportional hazard
(CPH) models according to Freitas et al. [21] to (1) test
the influence of the radius size on the period spent by a
collared wild boar inside the circle and (2) to calculate the
instantaneous probability (risk) that a boar would leave a
circle with a given radius, using survival functions. The
time spent in the circles, representing the time to the event
(leaving a circle of radius r), was treated as survival time
(the response variable in CPH models). When we calculated a
minimum time spent in the circle (when the positions entering
and leaving the circle were unknown), we treated these times as
right-censored survival times (i.e., less weighting) since the dura-
tion was smaller than expected compared to a situation where
the positions entering and leaving the circle are known. To
investigate whether the risk of leaving varied across seasons,
we split the data into seasons. Seasons were defined as winter
(December–February), spring (March–May), summer
(June–August), and autumn (September–November) to reflect
changes in climate, vegetation, and the life cycle of wild boar.
Since previous studies reported differences in the spatial behav-
ior of males and females [38], we also tested whether the risk of
leaving differs by sex. We included the following fixed effects in
the CPH model: season and sex (categorical) and r (numerical).
We considered all possible two-way interactions between explan-
atory variables. To account for repeated, nonindependent obser-
vations from the same individual, we ran one CPH model with
individual identity as a randomeffect, using the “coxme”package
(Therneau 2020). Survival functions S(t) that use random-effects
CPHmodels to predict the probability of an animal staying in an
area longer than a time t have not yet been implemented in the
available software. Instead, a fixed-effects CPH model (i.e., no
random effects) was additionally fitted using the R package “sur-
vival” [39]. An alternative CPH model with equally weighted
individuals, i.e., the weights of individuals with k events were
reduced by assigning them a weight of 1/k for each data point, is
shown in Supplementary Information. The different approaches
give slightly different quantitative results, but the magnitude is
small, and it is unlikely to change the qualitative conclusions of
our study (Supplementary 1).
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The hazard function for the ith individual in the jth
season and the rth radius size, that is, the risk that an animal
leaves an area of radius r at time t during season j, is defined
as follows:

hi tð Þ ¼ exp βrradiusþ βisexi þ βjseasonj þ βirsexiradius
!

þβjrseasonjradiusþ βijsexiseasonj þ bi
"
h0 tð Þ;

ð1Þ

where radius is the radius size of the circle (in meters), sexi is
the sex of the animal in the i category, seasonj is the season of
the year in the j category, bi is the per-individual random
effect and h0 tð Þ is the baseline hazard function at time t (the
risk of leaving an area where all explanatory variables are
equal to zero or to the reference level).

We calculated hazard ratios (HRs) from the exponential
of each coefficient to quantify the effects of the radius r of
an area, the season, and sex on the risk of leaving an area
[21, 40]. An HR >1 indicates an increased risk of leaving,
while an HR <1 indicates a lower risk of leaving. Thus, for r,
which is a continuous variable, an HR equal to 1.4, for exam-
ple, indicated that the risk of leaving increased by 1.4 times
(40%) for each 1m increase in r, and an HR less than one is
interpreted in the opposite way. In the same way, for sex and
season, which are categorical variables with ≥2 levels, the
first level (male and autumn) was considered the reference
level; for any other level, an HR equal to 0.8, for example,
indicated that the risk of leaving decreased by 0.8 times
(20% less) compared to the reference level. We do not use
p-values as they could be misleading given our large sample
size [41]. Survival functions calculated from the fixed-effects
CPH model were used to derive the risk of leaving an area
over time for each sex, season, and r. All analyses were per-
formed in the R statistical computing environment [42].

3. Results

We used trajectories from 57 wild boar representing 375,729
locations and 842 days of tracking data. Due to data selection
and processing (see Section 2), we excluded ∼7% of the total
records of our initial GPS data. Although only 14 individuals
provided data for analysis throughout the year (i.e., all four
seasons), we had data of 11 and 18 individuals for three and
two seasons, respectively. In total, for each season, we had
data from at least 28 individuals (max= 40). Mean (%SD)
interval between successive locations was 32.4% 27.2min,
and the mean and median duration of tracking records
were 209.9 and 41.0 hr, respectively.

Based on the estimated HRs (Table 1), the risk of leav-
ing an area decreased with r in all seasons and for both
males and females. For each 1m increase in radius size,
the risk of leaving decreased exponentially by about 0.999
times (i.e., at a rate of 10% 100m−1, Figure 2). The effect of
sex on the risk of leaving was dependent upon the season
and vice versa. In general, females had a lower risk of leav-
ing an area of any radius size than males (0.5–0.8 times
lower), indicating that females were more likely to remain
in the same area for a given amount of time compared to
males. However, in autumn, the risk of leaving an area was
similar for females and males (only ∼1.1 times higher for
females than for males, Table 1 and Figure 3). There were
few differences in the risk of leaving an area of any radius
size for males between seasons (∼0.9–1.1 times the risk of
leaving in autumn, Table 1 and Figure 3). In contrast, for
females, the risk of leaving was considerably lower in winter
and spring compared to autumn (∼0.5 times lower than the
risk in autumn). In general, there was good consistency
between β coefficients from the fixed- and random-effects
CPH models (Table 1). The biggest difference between the
model types concerned the effect of season, where the dif-
ference in HRs can be much as 0.2 (Table 1). Predictions of

TABLE 1: Estimated coefficients (β) and their standard errors (SE), hazard ratios (eβ), and 95% confidence intervals (CI (eβ)) of the Cox
proportional hazard models (with and without random effects) for the covariates.

Random-effects included No random-effects included

Variable β% SE HR (eβ) CI (eβ) β% SE HR (eβ) CI (eβ)

Radius −0.001%NA 0.999 NA −0.001% 0 0.999 0.999–0.999
Sex (female) 0.127%NA 1.136 NA 0.037% 0.006 1.038 1.026–1.049
Season (spring) −0.144% 0.008 0.866 0.853–0.879 −0.002% 0.007 0.998 0.984–1.012
Season (summer) 0.030% 0.007 1.030 1.017–1.044 −0.147% 0.006 1.158 1.144–1.173
Season (winter) 0.179% 0.007 1.197 1.180–1.214 −0.054% 0.007 0.947 0.935–0.960
Radius× sex (female) 0% 0 1 1.000–1.000 0% 0 1 1.000–1.000
Radius× season (spring) 0% 0 1 1.000–1.000 0% 0 1 1.000–1.000
Radius× season (summer) 0% 0 1 1.000–1.000 0% 0 1 1.000–1.000
Radius× season (winter) 0% 0 1 1.000–1.000 0% 0 1 1.000–1.000
Sex (female): season (spring) −0.533% 0.008 0.587 0.578–0.596 −0.566% 0.007 0.568 0.560–0.576
Sex (female): season (summer) −0.191% 0.006 0.826 0.816–0.837 −0.149% 0.006 0.862 0.852–871
Sex (female): season (winter) −0.731% 0.007 0.481 0.475–0.488 −0.605% 0.006 0.546 0.539–0.553
Variance/SD of individual variability 1.047/1.023

The variance component attributed to individual variability and the standard deviation of the per-individual random effects are also given. Model abbrevia-
tions: radius refers to the radius of the circle (in meters); sex is sex of the animal (two categories: male and female); and season is season of the year (four
categories: winter, spring, summer and autumn). Male and autumn were considered as reference levels.
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the risk of leaving an area at different times and the time
when the risk of leaving reaches specific values for each
radius size, sex, and season are provided in the Supplemen-
tary Information (Supplementary 1).

The risk of leaving increased exponentially with time,
independent of season, and sex (Figure 3). Although the
risk of leaving an area decreased with r, the differences in
the risk of leaving were more pronounced for r< 6 km as
time goes (Figures 2 and 3). In general, for r≥ 6 km, the
risk of leaving for a given period of time decreased only
slightly with increasing r.

The average risk of leaving refers to a male wild boar in
autumn for an average radius size (r= 7.5 km). The variance
component attributed to individual variability (b in the haz-
ard function above) was 1.047. The standard deviation of the
per-individual random effect (one standard deviation above
the mean) was, therefore,

ffiffiffiffiffiffiffiffiffiffiffi
1:047

p
¼ 1:023 (Table 1), indicat-

ing that the average spread of the relative risk of leaving was
e1.023 ≈2.78 among individuals. In other words, the per-
individual risk of leaving was, on average, 2.20 times higher
or lower than the average risk of leaving. However, an
inspection of the random effect coefficients per individual
showed that the individual effect ranged from 0.1 to more
than 6.5 times the average risk but was less than 2 for 44
individuals (77% of the individuals in our study). This means
that some individuals were very different in their movements
compared to others, which increased the individual variabil-
ity considerably.

Varying the resampling rate or the cutoff values for sep-
arating paths had little effect on the estimated HRs, as well as
the predicted risk of leaving (Supplementary 1), suggesting a
robust estimation of the risk of leaving.

4. Discussion

We designed a new method, based on animal movements, in
order to help evaluate how big restricted zones should be to
successfully control infectious diseases in wildlife. Our ana-
lytical framework is relatively simple to implement and inter-
pret and combines two existing and validated methods
implemented in R that do not require restrictive assump-
tions, extensive parametrizations, or visual interpretation.
Coupled with the fact that it solely relies on the movement
patterns of the host species, our method can be easily applied
to many wildlife-infectious disease systems, if movement
data for the target animals are available; for example, to
support the establishment of an oral vaccination zone in
raccoon rabies management [10, 43] or a control buffer
around bovine tuberculosis affected area in possums [8]. A
good understanding of the epidemiology of the disease and
transmission mechanisms is, however, recommended.

Although the FPT analysis is easily implemented in R
(see adehabitatLT package), our approach requires a slight
adaption of the function in order to be able to calculate the
minimum time spent in a circle when the positions entering
and leaving the circle are unknown. Ignoring these times
would lead to a loss of information and to an underestima-
tion of the times, and thus an overestimation of the risk of
leaving. Using field data of wild boar, we found that model-
ing FPT-derived data (times spent in circles) with CPHmod-
els is robust to low sampling rates (interval up to 4 hr,
Supplementary 1); a minimum of six relocations per day
might be sufficient to model the risk of leaving restricted
zones accordingly, a resolution often achieved by studies
monitoring terrestrial mammals to get seasonal and/or mul-
tiannual patterns of habitat use. This robustness facilitated
the comparison of results between studies, even if location
acquisition rates vary. In the wild boar example, the results of
the different CPH models were qualitatively similar, which
allowed us to use the fixed-effects CPH models for approxi-
mate predictions of the individual’s risk of leaving an area
and to demonstrate the strength of our results. We applied a
weighted model to deal with proportional hazard violation
and to account for unbalanced sample sizes between indivi-
duals [44, 45], but this model ran very slowly (∼24 hr vs. a
few minutes for the other two CPH models). Therefore, it
may be even less suitable if more data or covariates are
included in the model. Finally, the results on wild boar
were in agreement with (1) previous findings on the spatial
strategies of wild boar [46] and (2) the buffer used between
areas of viral circulation and the implementation of barriers
during previous ASF epidemics (see below). These results
validate the reliability of our approach for determining
restricted zones for disease management.

The size and shape of restricted zones are often deter-
mined on the basis of (i) the ecology of the host species, such
as average annual home range size or distance traveled; or (ii)
the expected speed of the epidemic wave [13, 43, 47].
Compared to these methods, our approach has the advantage
that it does not require location data over long periods and
thus allows the use of datasets that do not incorporate full
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annual coverage (for example, due to battery failure or loss of
the tracking device). Data from a few months, spread over
the year if seasonal effects need to be addressed, may be
sufficient to estimate the risk of an individual leaving an
area and the restricted zones accordingly. This is particularly
relevant for hunted species, such as wild boar, for which
monitoring may be shortened due to hunting (as in our
study). Estimating daily distance traveled requires high-
resolution data, which is not the case with our approach.
Determining restricted zones based on the expected speed
of the epidemic wave demands real epidemic data and a good
knowledge of the epidemiology of the infection, which are
often not available. Furthermore, the wave velocity will
depend on many factors, such as the population density of
the host species, the time of virus introduction, the continu-
ity of the suitable habitat for the host species, and the types of
management measures deployed [13].

Our approach is based on location data from healthy
animals, but this has two advantages: (1) it allows for a
conservative estimate of the zone size. Diseased animals gen-
erally show reduced movement rates compared to healthy
animals, for example, wild boar and domestic pigs infected
with ASF [48–50] and swans infected with avian influenza A
[51]. Using data from healthy animals may, therefore, over-
estimate the size of restricted zones required to limit the
movement of infected animals, but it increases the chances
of containing all infected animals. (2) It makes our method
more readily applicable, as collecting location data from
infected animals in wild populations is almost impossible.
For example, most wild boar infected with the highly viru-
lent strain of ASF die within 7–13 days after infection
[23, 24, 52].

Individual movements are an important determinant of
disease persistence and spread, and a valuable input for eval-
uating the effectiveness of various control strategies, such as
the width of restricted zones, as shown in our study. How
individuals share space and interact with each other is
another major factor in explaining the spread of many infec-
tious diseases [53–57] and ultimately affecting restricted
zones, a characteristic not taken into account in our method.
Restricted zones are also likely to depend on other factors,
such as human infrastructures (e.g., settlements, highways,
roads) and disturbances (e.g., hunting, recreational activi-
ties), the viability and characteristics of the pathogen (e.g.,
mode of transmission, infectiousness, host diversity), the
speed of disease detection compared to the current location
of the outbreak, and the type of restrictions and measures
(e.g., fences for animal movement restriction) used to control
the disease. Continuous surveillance is required to make the
appropriate modifications as the epidemiological context
changes.

The application of our method to wild boar location data
enabled us to make inferences about the size of the buffer to
be used to define the infected zone and potential fence
imposed during the ASF outbreak. Our results indicate that
the risk of leaving an area decreases with increasing radius,
but not substantially when the area radius is ≥6 km. Based on
this result, a buffer size can be determined that is both

effective in controlling the disease and limits conflicts with
stakeholders in any future ASF outbreak in our study area.
For our wild boar population, we suggest that an initial
buffer of 6 km around the outbreak site (∼8,000 ha) might
be sufficient to determine the infected zone and contain
the disease. As the ASF virus spreads about 0.5–5 km per
month depending on wild boar density and human activities
[13, 58], the buffer might be increased by 0.5–5 km for each
month of delay in detection relative to the current outbreak.
A larger initial buffer, e.g., 10 km, would increase the chances
of controlling the disease, especially as the probability of
virus transmission at such distance is possible but low [56].
However, it would also considerably increase the area where
restrictions apply, without much reducing the risk that an
infected wild boar had already left the area when the measure
was implemented (difference varying from 0.01 to 0.10 over
time compared to a distance of 6 km, Supplementary 1). We
acknowledge that these results are based on population-level
averages and should be treated with caution when applied to
management measures. As the individual variability in the
risk of leaving an area is large, the few individuals that leave
the infected zone (and carry the virus) could make control
efforts ineffective. However, infected individuals generally
move less than healthy individuals do, thus minimizing
this risk. This 6 km distance supports the size of the buffer
used in the past to determine the fenced infected zone estab-
lished to control the ASF epidemic in wild boar in the Czech
Republic in 2017 and in Belgium in 2018 [59–63]. In both
countries, the ASF epidemic only affected wild boar popula-
tions and was successfully controlled [61, 64]. In contrast, a
20 km wide buffer was not sufficient to stop the spread of
ASF in Bulgaria, but it should be noted that ASF has been
present in both wild boar populations and domestic pig
farms [59, 65]. Comparisons of success in ASF control
between areas should be made cautiously unless landscape,
density, and social and movement behavior of wild boar and
measure protocols are similar between areas. In the future, it
would be worth developing our approach in an area that is or
has been affected by an ASF epidemic to quantitatively assess
how the application of this method can help to control the
disease.

The risk of leaving an area is dependent upon wild boar
sex and season. In general, wild boar had a similar risk of
leaving an area of a given size throughout the year, except in
spring and winter, when females had a much lower risk of
leaving. Previous research has shown seasonal variations in
the spatial behavior of female wild boar in the same direction
as our results [46]. Spatial and temporal changes in resource
availability [35, 66–68] or in hunting pressure [35, 69, 70],
as well as reproductive needs [35, 71, 72], could partly
explain the observed patterns, but it is beyond the scope of
our investigation to provide a comprehensive review of these
factors. These results may challenge the current recommen-
dations for controlling wild boar populations and containing
the disease of culling mainly females (European Commission
[33]), as we found that males are more likely than females to
leave an area of a certain size, but only in winter and spring.
We acknowledge that the age of individuals likely has a
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greater influence on the risk of leaving an area [73, 74], but
the small sample sizes for the different age-sex classes (in
particular, adult males) did not allow this effect to be
explored.

Although the landscape in our study area is typical of
central Europe, the presented results for wild boar may not
be generalizable to any other environment inhabited by wild
boar for two main reasons. Our study area is composed
largely of croplands, continuous forests, open land, and areas
of succession (partly in a National Park), which provide an
optimal habitat for wild boar because resources (especially
food and resting/sheltering sites) are evenly distributed and
readily available. Furthermore, while hunting affects the spa-
tial behavior of wild boar directly by inducing variation in
home range size or temporary departures from resting sites
[75–77] or indirectly by modifying the population structure
through harvesting in favor of a certain age and sex class, in
our study area, the hunting pressure is very limited. Both
factors may have minimized the movements of wild boar
in our study area [78]. The predicted risk of leaving the
infected zone in our study population might be lower than
in other populations, especially those with a high hunting
pressure, such as in France [79]. Nevertheless, our results
demonstrate the applicability of the proposed method to
any ecosystem where wild boar populations are susceptible
to ASF infection and where zonation must be accordingly
established. Future work could usefully adapt our method to
other wild boar populations under different environmental
conditions.

5. Conclusions

We outlined a relatively simple and practical method to
guide the process of establishing restricted zones of appro-
priate sizes to contain infectious diseases in wildlife based
on the movement data of the host species. Using field data
for wild boar, we demonstrated that our new approach is
reliable in determining restricted zones, is suitable for large,
high-resolution, and irregular location data, and avoids
restrictive assumptions, complex parameterizations, and
visual interpretation. This work is an example of how to
integrate an ecological approach to infection control mea-
sures in wildlife, and the method we describe could be
broadly applicable for future outbreaks of many diseases.
In the future, our approach could be improved by investi-
gating the effect of environmental context on the risk of
leaving zones of different sizes [21, 80]. This would help
to create or update restricted zones adapted to the environ-
ment (e.g., depending on landscape characteristics and host
animals densities) rather than using an arbitrary buffer size.
In the case of introduction of the ASF virus (our case study)
in our study area, our results suggest using a 6 km buffer
distance around the area containing all ASF cases to delin-
eate the infected zone and the potential fence. Wherever
possible, ASF control by culling should not leave out males,
as they have a higher probability of leaving any area in
winter and spring and thus spreading the disease.
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