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Abstract
• Keymessage Biomass functions are relevant for an easy and quick estimation of tree biomass. Nevertheless, additive
biomass functions for different species and different components have not been published for the area of Germany,
yet. Now, we present a set of additive biomass functions for estimating component and total mass for eight species
and up to nine components.

•Context Biomass functions are relevant for an easy and quick estimation of tree biomass, e.g. for carbon budget calculation.
Component-specific functions offer even more detail and can be used to answer questions about, e.g., biomass allocation
to different components, (nutrient) element stock and flows or the amount and re-distribution of harvested biomass and its
consequences.

• Aims Since there exists no published additive biomass functions in the context of Germany, we aimed at providing such
equations for different species and different components using a comprehensive data set from different sources.

• Methods We collected several data sets for eight relevant tree species (Norway spruce, n = 1150 trees; Silver fir, n = 31;
Douglas fir, n = 161; Scots pine, n = 460; European beech, n = 918; Oak, n = 313; Sycamore, n = 28 and European ash,
n = 37) in Germany and adjacent countries, homogenised the component information, imputed missing values and applied
nonlinear seemingly unrelated regression to eight (for deciduous trees species) respectively nine (for conifereous species)
components simultaneously.

• Results The collected data set contains trees from 7 cm diameter in breast height to around 80 cm. From this broad data
basis, we established two sets of additive biomass functions: a simple model using the predictors diameter in breast height
and tree height as well as a more elaborate model using up to six predictors.

• Conclusion Finally, we can present additive models for the eight relevant tree species in Germany. Models for Silver fir,
European ash and Sycamore are rather limited in their model range due to their input data; the other models are based on a
broad range of predictors and are considered to be broadly applicable.

Keywords Biomass allocation · Component mass ·Multiple imputation · SUR regression · Norway spruce–Scots
pine–Douglas fir–European beech–Oak

Handling Editor: Aaron R. Weiskittel

Contributions of the co-authors CV collected, processed and
analysed the data and wrote the paper.

GK initiated and supported the work by acquiring funding,
assisting data analysis and co-editing of the paper.

CFD assisted in data analysis and co-edited the paper.

! Christian Vonderach
Christian.Vonderach@forst.bwl.de

1 Introduction

Information about volume or biomass of trees can easily
be derived through allometric equations, as it is done
for example for greenhouse gas reporting (IPPC 2003;

1 Forest Research Institute Baden-Württemberg,
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Oehmichen et al. 2011; de Miguel et al. 2014), for analysis
of national forest inventories data (e.g. Riedel and Kaendler
2017) and since many decades in ecological studies (e.g.
Marklund 1987). Further applications of biomass functions
include research on stem increment, gas-exchange, nutrient
and energy flow, forest growth and biomass allocation models
(seeWirth et al. 2004; Zianis et al. 2005). Newer applications
include the estimation of nutrient export, the amount of
available wood for bioenergy and tools for controlling
sustainability (Pretzsch et al. 2012; VonWilpert et al. 2015).

Extensive literature on biomass functions exists (e.g. see
Ter-Mikaelian and Korzukhin 1997; Zianis et al 2005),
both on total tree or stem biomass (Joosten et al. 2004;
Riedel and Kaendler 2017) as well as on component
biomass (Pellinen 1986; Marklund 1987; Heinsdorf and
Krauß 1990), Cienciala et al. 2005, 2006, 2008, Parresol
2001; Wirth et al. 2004; Muukkonen 2007; Wutzler et al.
2008; Krauß and Heinsdorf 2008; Pretzsch et al. 2012;
Skovsgaard and Nord-Larsen 2012; de Miguel et al. 2014;
Zhao et al. 2015). A wide variety of methods has been
applied, both on the natural or logarithmic scale of the
data, i.e. nonlinear or linear regression. These include fixed-
effects models (e.g. Joosten et al 2004; Riedel and Kaendler
2017), random effects models (e.g. Wirth et al 2004;
Wutzler et al 2008) and generalised allometric equations
(e.g. Muukkonen 2007; de Miguel et al. 2014). Most
studies applied these methods to each biomass component
separately, although a desirable trait of component functions
is additivity, i.e. that estimates of the component masses
sum up to the estimate of the total mass.

Methods which ensure additivity include simple com-
ponent summation (separately fitted component functions
which are additively linked, while variances are summed
up and additionally include the covariances between the
components, see Parresol 2001), expansion of total or stem
estimates using predefined or modelled factors such as spe-
cific gravities and proportions (e.g. Forest Inventory and
Analysis component ratio method: FIA-CRM, in Poudel
and Temesgen 2015; Zell 2008) or biomass expansion fac-
tors (BEF, e.g. Lehtonen et al 2004), linear and nonlinear
seemingly unrelated regression (Parresol 2001), error-in-
variable modelling (Dong et al. 2015) and compositional
data analysis (Poudel and Temesgen 2015).

Following Dong et al. (2015), these methods can be
divided into aggregative and disaggregative approaches.
While most of the procedures work on aggregated data,
i.e. the methods start from component functions, where
total (or subtotal) mass functions are represented by the
sum of the components, compositional data analysis builds
on disaggregation, splitting total mass into the respective
components via estimated proportions.

In a very recent article of Affleck and Diéguez-
Aranda (2016), both approaches have been presented

within the maximum-likelihood framework aiming at
‘valid probabilistic models’. By pointing out the additivity
property (total mass adds no further information as it is
the sum of the components), they argue that in this context
the inclusion of total mass leads to invalid probabilistic
models and consequently to singularities during estimation.
They use the data of and compare results to the aggregative
approach of Parresol (2001), showing that they differ only
slightly—indeed Parresol achieved slightly smaller standard
errors.

To our knowledge, no best method for additive biomass
functions has yet emerged, although it could be shown
that multivariate methods incorporating intrinsic correlation
between components improve on univariate methods
(Parresol 2001; Poudel and Temesgen 2015). Comparisons
between ‘seemingly unrelated regression’ (SUR) and
compositional data analysis (Poudel and Temesgen 2015) or
error-in-variable models (Dong et al. 2015) could not show
one method being clearly superior to another. Although
Poudel and Temesgen (2015) showed that in most of their
examples, compositional data analysis led to the lowest
RMSE, followed closely by SUR, they did not include the
estimation error of the total tree biomass when calculating
RMSE for their compositional data models.

The objective of this study is to develop and present a con-
sistent set of additive biomass functions for the most important
tree species in Germany, incorporating the correlation between
the different components and taking into account the hetero-
geneity and potential missingness within different compo-
nents of the different data sources. The ultimate aim of the
superior project is to estimate nutrient export during (sim-
ulated) harvest to assess sustainability of harvesting opera-
tions. Hence, we do not solely focus on statistical aspects,
but also provide insights on more practical considerations.

In the following sections, we describe data collection
(Section 2.1.1), data harmonisation (Section 2.1.2) and impu-
tation of missing component information (Section 2.1.3). The
fitting of component-specific biomass functions is shown in
Section 2.2.1, based on which the random effects are esti-
mated and a data adjustment is conducted (Section 2.2.2).
Finally, the nonlinear seemingly unrelated regression is
described (Section 2.2.3). The results are given in Section 3
also including a comparison to formerly estimated spruce
functions (Wirth et al. 2004) and showing the relation
between different components. These results are discussed
in Section 4, while conclusions are drawn in Section 5.

2Material andmethods

Data preparation and analysis from the raw input data to
the final NSUR parameter estimates is described in the
following sections and displayed in Fig. 1.
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Fig. 1 Flow chart for data preparation and analysis. Different data
sources (data 1 . . . n) are consolidated, multiply imputed and fitted
by univariate and multivariate procedures. Intermediate steps involve
removing grouping structure and deriving regression weights and
correlations among components. The final results are formed by
pooling the NSUR parameter estimates from each of m = 10 imputed
datasets

2.1 Data preparation

2.1.1 Data acquisition

The goal of our study was to develop broadly applicable,
additive component biomass functions, and hence, the aim
of data acquisition was to gather data from a broad range of
environmental conditions. Data were included if the species
were of interest and if the geographic extent was suitable
(i.e. ‘central Europe’). We could include 17 studies with data
mainly from within Germany, but also from neighbouring
countries (see Fig. 2 for spruce and Appendix A for all
other species). Studies varied in sample size and intention,
and also data from other meta-studies were included (e.g.
Wirth et al. 2004; Wutzler et al. 2008. Species include
Norway spruce (Picea abies (L.) Karst.), Silver fir (Abies
alba Mill.), Douglas fir (Pseudotsuga menziesii (Mirb.)
Franco) and Scots pine (Pinus sylvestris L.) as well as oak
(Quercus robur L. and Q. petraea Liebl.), European beech
(Fagus sylvatica L.), European ash (Fraxinus excelsior
L.) and Sycamore (Acer pseudoplatanus L.). Although
very different component definitions exist, we decided
upon a set of additive components commonly recognised
in Germany. Firstly, we separated trunk wood and bark.
Secondly, coarse wood (i.e. merchantable wood) and bark
were split from small wood at 7 cm diameter. For coniferous
trees, needles were a separate component. For the final
additive biomass models, total aboveground biomass and
the summary components ‘trunk including bark’ and ‘coarse
wood including bark’ were also included into the models.
Abbreviations to these components are given in Table 1. An
overview of the collected data is available in Tables 2 and 3.

Fig. 2 Geographic distribution of referenced sample data for Norway
spruce. The size of the symbols indicate the number of sample
trees and scales from 1 to 80. For circles, the sample location is
known, whereas squares indicate unknown coordinates which could be
approximated by location names

Table 1 Predictor and component abbreviations as used thoughout the
text

Abbr. Description

Predictors dbh∗ Diameter in breast height (1.3m)

h∗ Tree height

upd Upper diameter in 30% of tree height

a Tree age

hsl Height above sea level

cl Crown length

dh Product between dbh and h

sth∗ Stump height

Components stw Stump wood

stb Bark of stump wood

stwb Stump wood incl. bark

cww Coarse wood (≥ 7 cm in diameter)

cwb Bark of coarse wood (≥ 7 cm in diameter)

cwwb Coarse wood (≥ 7 cm in diameter) incl. bark

sw Small wood (< 7 cm in diameter) incl. bark

nd Needles

agb Total aboveground biomass

Only asterisk predictors are used in the simple models, while sth
is only used to model stump components and cl only for crown
components
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Table 2 Summary of acquired and preprocessed data

Species Data sources Trees Components

stw stb stwb cww cwb cwwb sw nd agb

Norway spruce 8–12, 16 1150 612 610 630 911 910 982 971 1074 976
Silver fir 11, 16 31 28 28 28 31 31 31 31 31 31
Douglas fir 10–12 161 161 161 161 161 161 161 153 153 153
Scots pine 3, 6, 10–13, 16 460 310 310 328 351 351 366 381 431 416
European beech 1, 4, 7, 8, 10–12, 14–17 918 634 634 634 810 810 828 837 903
Oak 2, 5, 10–12 313 253 253 253 253 253 263 263 313
European ash 10 37 37 37 37 37 37 37 37 37
Sycamore 10, 16 28 25 25 25 28 28 28 28 28

For each species and component, the number of observations is given. Only the components finally used are shown, but the intermediate step of
imputation and merging is based on the full list of available components. The referenced studies are 1 = Cienciala et al. (2005), 2 = Cienciala
et al. (2008), 3 = Cienciala et al. (2006), 4 = Joosten et al. (2004), 5 = Schröder (2014), 6 = Heinsdorf and Krauß (1990), 7 = Krauß and Heinsdorf
(2008), 8 = Weis and Göttlein (2012), 9 = Wirth et al. (2004), 10 = Rumpf et al. (2011), 11 = Riedel and Kaendler (2017), 12 = Pretzsch et al.
(2012), 13 = data collection of C. Wirth, 14 = Pellinen (1986), 15 = Westermann (2014), 16 = data collection of W. Weis, 17 = Ellenberg et al.
(1986). For component definitions see Table 1

2.1.2 Data consolidation

The collected data originate from heterogeneous sources
with respect to species, sampling methodology, and
component selection and definition (e.g. see Wutzler et al.
2008, for different sampling schemes of deciduous tree
species). Consolidation of the different studies with respect
to component definitions led to a comprehensive list of
different components. For example, some studies sampled
their trees by separating into main axis and branches, while
others sampled according to a threshold diameter of 7 cm,
irrespective of branching. While for most studies, the raw
data of the sampling were not available or could not be
used to calculate further components beside those already
given, this was possible with the data from studies 8, 10,
11, 12 and 17 (see Table 2 for references), which made
up most of the trees collected. These studies sampled
their data either according to the Randomized Branch

Sampling (RBS) (Saborowski and Gaffrey 1999; Good et al.
2001) procedure or as full main axis measurement with
sampled branches. Consequently, we computed the mass of
as many components from the comprehensive component
list as possible to remove missingness in the original
data. These enhanced raw data, including all available
component masses, served as base for the subsequently
applied imputation.

2.1.3 Multiple imputation

Missing data is often handled by complete-case analysis
(e.g. Wirth et al 2004) or single imputation of conditional or
unconditional means; these are methods which potentially
exhibit bias or do not take into account the uncertainty of the
imputation (Rubin 1987). In contrast, multiple imputation,
developed by Rubin (1987), has been shown to treat the
deficiencies of these methods while the only ‘extra work’

Table 3 Ranges of dbh, h, a, hsl, upd , cl and agb based on the raw data of the different species

Species dbh h a hsl upd cl agb
cm m years m cm m kg

Norway spruce 7–81 5–43 15–200 5–1300 7–61 3–29 6–3415
Silver fir 13–84 13–42 25–270 239–1080 11–63 6–22 45–4670
Douglas fir 7–86 10–45 20–100 115–765 6–68 5–24 15–5333
Scots pine 7–70 5–39 14–212 10–1080 7–58 2–18 9–2751
European beech 7–85 8–42 10–200 30–1100 6–63 2–32 10–7803
Oak 8–95 7–38 15–220 40–610 7–79 2–24 14–6517
European ash 9–76 14–38 34–153 270–400 8–60 5–28 33–5824
Sycamore 12–56 15–32 33–185 270–1080 10–42 5–19 50–2162

The predictor dbh rarely exceeds 85 cm. For the abbreviations of the predictors, see Table 1
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is to perform the analysis ‘m times instead of once’ (Little
and Rubin 2002, p. 86). This is achieved by producing
several complete data sets from draws of a predictive
distribution, which are subsequently analysed by the desired
methods. The results of these methods are finally pooled,
e.g. averaged in case of point estimates (see Little and Rubin
2002, for more details).

Missing data methods should be particularly applied
when missing data depend on observed variables (con-
fusingly called ‘missing at random’, MAR) or even
unobserved, i.e. missing values (‘missing not at random’,
MNAR). In contrast, data ‘missing completely at random’
(MCAR) do not lead to biases during estimation. For a more
detailed definition, see Little and Rubin (e.g. 2002, p. 11f).
At the level of our set of collected data, missingness within
each study and components is assumed to be completely at
random, but missing components at study level are assumed
to be missing by design. This is because at study level it
was never intended to record these components. Accord-
ing to Schafer (1997), data missing by design tends to be
missing at random and hence should be treated by multiple
imputation.

For data preparation and analysis, we used the open
source software R (R Core Team 2014). To implement
multiple imputation, the mice-package (multivariate impu-
tation by chained equations, van Buuren and Groothuis-
Oudshoorn 2011) was used. Imputed values were based on
dichotomous component ratios instead of absolute compo-
nent mass to preserve additivity of all components. Because
ratios are bounded within the unit interval, the technique
of predictive mean matching (pmm) was chosen, being
a ‘general purpose semi-parametric imputation method’
(van Buuren and Groothuis-Oudshoorn 2011, p. 18) which
draws new values from the observed values only. Actual
component mass was computed by multiplying the respec-
tive parent component by the imputed ratio. Additionally,
missing predictors were also imputed given the other tree
characteristics, but dbh and h were fully observed.

For each tree species, we imputed each missing value
ten times (m = 10 chains) and used 30 iterations for the
default Gibbs-sampler to obtain the multivariate posterior
distribution of our data. Convergence was visually assessed
by inspecting the development of the chains, densities of the
conditional distributions and the distribution of the imputed
values.

The result of the imputation is a set of ten complete
data sets. Previously missing observations, which made up
0 to 24% (up to 47% in stump components, see further
in Table 2 and in Section 3), are now replaced by imputed
values, from which the uncertainty of the imputation can be
computed at a later stage.

Although the complete set of available components
was used during imputation, only the selected set of

components—stated in Table 2—were used during model
building. Here, multiple imputation not only served the
replacement of missing values but also homogenised studies
with different sampling scheme.

The effect of the imputation can be measured by
the indicator λ, which gives the proportion of variation
attributable to the missing data, i.e. the between-imputation
variability divided by the total variability of the parameter
estimate. The between-imputation variability is the variance
across the m parameter estimates, while the total variability
is the sum of the mean of the within-imputation variance
(which is usually reported in regression analysis as standard
error) and the between-imputation variance. The measure
λ is given in the results, jointly with the final parameter
estimates and corresponding standard errors.

2.2 Data analysis

The method of seemingly unrelated regression (SUR) was
invented by Zellner (1962). Parresol explicitly introduced
this methodology for nonlinear forest biomass studies
using generalised nonlinear least-squares (GNLS) (Parresol
2001). Technically, the multivariate SUR is a system
of stacked univariate equations, allowing for different
predictors in each equation (block diagonal design matrix)
and correlations among the errors of the different responses.
To fit nonlinear SUR (NSUR) models, we used code of
the systemfit-package (Henningsen and Hamann 2007),
extended to allow for regression weights to account for
heteroscedasticity. With these extended systemfit-package
functions (available on request from the first author), we
could reproduce the parameter estimates of the data and
models, which are exemplarily given in Parresol (2001) to
introduce the NSUR methodology.

2.2.1 Component-specific biomass functions

The NSUR system (Eq. 4 in Section 2.2.3) requires
prior knowledge on correlation among components and
heteroscedasticity of each component. Hence, we fit-
ted component-specific biomass functions to model het-
eroscedasticity, to estimate the variance-covariance matrix
among the errors of different components, but also to spec-
ify model equations and to identify significant predictors.
These steps were accomplished using the nlme-package
(Pinheiro and Bates 2000).

For each species and component, we fit an allometric
model of the form

y = α + β0x1β1x2β2 . . . xnβn (1)

to find the best-fitting model given a set of predictors.
Evaluation criteria were AIC (Akaike 1974) and visual
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inspection of model diagnostics: Q-Q-plots, residual plots
and plots comparing fitted and observed values.

Two sets of predictors were considered: firstly, using dbh
and h only (further called ‘simple model’) and, secondly,
allowing all significant predictors from the set of dbh, h, a,
hsl, upd and cl (henceforth called ‘full model’). Variable
cl was considered only for crown components (small wood
and needles). For models of stump components, we used
sth instead of h as predictor, but included h into the full
models additionally if necessary. The product of dbh and
h—called dh—was tested if the individual predictors were
not sufficient.

Initial tests showed that it is reasonable to model
residual variance by a power function to account for the
heteroscedastic errors ϵ:

V ar(ϵ) = σ 2|ν|δ (2)

where ν is a variance covariate and δ is the variance
parameter. In all cases, dbh was used as variance covariate,
while some models required a group-specific modelling of
the variance to improve on the normality assumption.

Additionally, to account for the factor ‘study’, random
effects were tested for all species with a relevant number
of groups and trees (excluding Silver Fir, European Ash
and Sycamore). The random effects were assumed to be
independent of one another. No correlation of errors was
assumed at this stage.

2.2.2 Data adjustment

Previous steps of data preparation aimed at unifying
components definition and imputing missing values. Still,
as the collected data originated from different sources, it
is inherently grouped by the factor ‘study’. The method
of choice for such data would be to use mixed effects
modelling (Pinheiro and Bates 2000, p. 4ff), as we did
when modelling the component-specific biomass functions.
But as shown in Affleck and Diéguez-Aranda (2016) and
further discussed in Section 4, the use of random effects and
summary components within a Maximum Likelihood (ML)
setting is mutually exclusive.

To account for the grouping, we adjusted the data
by removing the estimated ‘study’-effects caused by
differences in methodological and technical aspects of
data acquisition. From each observation, we subtracted the
amount of the prediction, which is attributed to the random
effect:

yadj = yobs − ŷfixed+random + ŷfixed
= yobs − f (Aβ + Bb, ν)︸ ︷︷ ︸

fixed+random effects

+ f (Aβ, ν)︸ ︷︷ ︸
fixed effects

(3)

The resulting data, yadj, can be considered to contain
only the fixed effects of the raw data. We have checked the

difference between the adjusting mixed model on the origi-
nal data and a structurally identical fixed effect model on the
adjusted data by several measures (RMSE = 0.55, MAE =
0.26, BIAS = 0.04, CV = 0.0083, averaged over all models,
see Eqs. 5 to 8), and found very small differences only.

2.2.3 Nonlinear seemingly unrelated regression

Seemingly unrelated regression (Zellner 1962) describes a
system of regressions, in our case one for each biomass
component, whose errors are correlated. Hence, the—in
principle independent—regressions become related through
their errors’ variance-covariance matrix, making them only
‘seemingly’ unrelated.

Using GNLS, Parresol (2001) showed that in NSUR

S(β) = ϵ′#′($−1 ⊗ I )#ϵ

= [Y − f (X,β)]′#′($−1 ⊗ I )#[Y − f (X,β)]
(4)

minimises the residual sum of squares with respect to the
parameter vector β, where ϵ are stacked residuals of each
equation (ϵ = Y − f (X,β), with Y being yadj from
Eq. 3), # is a transformed diagonal weights matrix, $ is
the weighted variance-covariance matrix, incorporating the
correlation between different components and I is the unit
matrix of dimension n, being the number of observations.

From a theoretical point of view, the advantage of
the seemingly unrelated regression is that by using $

a system with correlated errors is transformed into one
with uncorrelated errors (Zellner 1962; Rossi et al. 2005),
allowing the transformed model to be estimated by Least
Squares (LS). In case of heteroscedastic errors, the diagonal
matrix # weights each observation, so that more precise
observations get more weight during parameter fitting.

The matrix # is the result of an ‘elementwise square root
operation on the inverse of the diagonal weights matrix’
(# =

√
%−1, c.f. Parresol 2001, p. 871), which contains the

weights of the fitted component functions. Weights for total
and subtotal mass were derived by summing the residuals
of the respective components and equivalently modelled by
the variance functions of Eq. 2.

The variance-covariance matrix $ was estimated accord-
ing to Parresol (2001) from the weighted residuals of the
univariate component models. Again, the total and subto-
tal component was obtained by analysing the sum of the
residuals of the respective components.

The same model equations as in the component models
were used in the multivariate NSUR case. Respective
component equations were additively linked to form the
model equation for the subtotal (stump wood incl. bark
and coarse wood incl. bark) and total aboveground mass. If
parameters were insignificant within NSUR and subsequent
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pooling, they respective predictors were removed from the
system of equations, except the scaling parameters and
intercepts (if they were necessary for the inclusion of
important predictors or proper convergence).

Parameter estimates were obtained by minimising Eq. 4
by means of an optimisation algorithm. Proper convergence
was assured by assessing the convergence indicator of
the minimisation function (function nlm in stats-package),
graphical output of observed and fitted values and of the
residuals.

We averaged the results of the ten imputation runs for
all of the imputed data sets to receive the final parameter
estimates, significance tests and approximate p values
according to the pooling rules of Little and Rubin (2002).

2.2.4 Fit statistics

Several fit statistics were calculated for each species and
component, subtotal and total mass as the mean of each
analysed imputation. These are root mean squared error
(RMSE, kg), mean error (BIAS, kg), mean absolute error
(MAE, kg) and the coefficient of variation of the RMSE
(CV , unitless). These quantities were calculated for each
imputed data set and subsequently averaged:

RMSE =

√∑n
i=1(Yi − Ŷi )2

n
(5)

BIAS =
∑n

i=1(Yi − Ŷi )

n
(6)

MAE =
∑n

i=1 |Yi − Ŷi |
n

(7)

CV = RMSE

Ȳ
(8)

where n is the number of observations, Yi is the ith
observation, Ŷi is the ith fitted value and Ȳ is the mean of
the observed values.

3 Results

3.1 Additive biomass functions

We included a large number of sample trees for Norway
spruce (n = 1150), Douglas fir (n = 161), Scots pine
(n = 460), European beech (n = 918) and Oak (n = 313),
while the remaining three species had a more limited
number of sample trees (Silver fir: n = 31, European ash:
n = 37 and Sycamore: n = 28). Our data collection exhibited
missingness besides full observations in variable extend,
depending on species and component (see Table 2). Highest
missingness occured in stump components ranging from 10

to 47%. Missingness was lowest in aboveground biomass (2
to 15%). Coarse wood components (10 to 24%) and crown
components (5 to 17%) showed intermediate values.

The overall minimum dbh of 7 cm reflects the minimum
diameter of merchantable wood in Germany. Maximum dbh

is at around 80 cm for all species, except for Sycamore with
56 cm and Oak with 95 cm. All but Silver fir, Sycamore and
European ash distribute nicely inside a wide range interval
for all given variables. For the last three, predictor range and
geographical extent are rather limited.

Data adjustment (Section 2.2.2) was conducted for 42
of the 56 univariate mixed effects biomass component
models (5 species, 5/6 components, 2 model types). Biggest
changes occurred in stump (n = 15), bark (n = 8) and in
crown components (n = 9). The adjustment in coarse wood
was very small. Notably, Douglas fir exhibited only three
adjusted components, all of which were stump components.

The final parameter estimates together with standard
error and p-value are given in Table 4 for Norway spruce
and in Appendix B for all other species. The corresponding
equations are given in Tables 5 and 6 for all species. Addi-
tionally, in Table 4, the amount of variability due to mis-
singness is indicated by λ. For Norway spruce, λ is high for
stump components, as the rate of missingness is high (c. f.
Table 2). For the other components, λ often is rather low in
the simple models and slightly higher for the full models,
especially for crown components. This is because dbh and h
are fully observed and with additional incomplete predictors
the variability of the parameter estimates increases.

The variability measured by λ is not only dependent
on the predictor and response variables of the respective
component, but also on the other components and their
predictors and responses because all components are
connected through the variance-covariance-matrix of the
errors. An example for this behaviour is the Douglas fir data
(Table 10 in Appendix B), where missingness exists only in
small wood and needle components, but λ is different from
zero for all components.

The estimated correlation between different components
is high for stem parts and total aboveground biomass as
well as for components and their (sub)total aggregates (see
Table 7 for Norway spruce, upper triangular matrix). Mod-
erate correlations were found between crown components
and between crown and total aboveground biomass. Similar
pattern can be seen for all species, with highest correla-
tions between aboveground biomass and total coarse wood.
These correlations are accounted for by seemingly unrelated
regression. In Appendix C, results for the other tree species
are shown.

The full models generally improve over the simple
models in terms of RMSE, CV and MAE for all species
and components (Tables 5 and 6). BIAS is usually small
compared to the RMSE and Ȳ (=RMSE/CV ), with some
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Table 4 Parameter estimates for Norway spruce

Type comp. pred est se p λ

Simple stw slope 0.0220 0.0027 0.0000 0.8627

dbh 2.1212 0.0542 0.0000 0.9587

sth 0.6056 0.0583 0.0000 0.9816

stb intcp − 0.0128 0.0042 0.0074 0.7055

slope 0.0067 0.0007 0.0000 0.6419

dbh 1.7268 0.0550 0.0000 0.9248

sth 0.5947 0.0676 0.0000 0.9784

cww slope 0.0142 0.0005 0.0000 0.4360

dbh 1.7414 0.0125 0.0000 0.4632

h 1.2401 0.0174 0.0000 0.3596

cwb slope 0.0038 0.0001 0.0000 0.2236

dbh 1.6076 0.0103 0.0000 0.1058

h 1.0528 0.0181 0.0000 0.1756

sw intcp 1.8472 0.2097 0.0000 0.4647

slope 0.0243 0.0028 0.0000 0.3630

dbh 2.9671 0.0426 0.0000 0.2935

h − 0.8183 0.0446 0.0000 0.1973

nd intcp − 1.6847 0.2762 0.0000 0.1763

slope 0.2850 0.0302 0.0000 0.1315

dbh 2.1173 0.0529 0.0000 0.2751

h − 0.8334 0.0419 0.0000 0.2923

Full stw slope 0.0166 0.0021 0.0000 0.8240

dbh 2.0011 0.0573 0.0000 0.9474

sth 0.6441 0.0920 0.0001 0.9924

a 0.1736 0.0141 0.0000 0.4364

stb slope 0.0070 0.0008 0.0000 0.7036

dbh 1.6769 0.0869 0.0000 0.3082

sth 0.5405 0.0881 0.0002 0.9857

upd 0.2185 0.0943 0.0227 0.3134

hsl − 0.1088 0.0307 0.0064 0.9822

cww intcp − 0.7624 0.2420 0.0042 0.6035

slope 0.0123 0.0005 0.0000 0.4899

dbh 0.7693 0.0585 0.0000 0.6469

h 1.0984 0.0176 0.0000 0.3395

upd 1.0365 0.0671 0.0000 0.6851

a 0.1432 0.0071 0.0000 0.3758

cwb slope 0.0034 0.0001 0.0000 0.1299

dbh 0.4310 0.0359 0.0000 0.1244

h 1.0555 0.0134 0.0000 0.0836

upd 1.2898 0.0380 0.0000 0.1171

sw slope 0.0439 0.0033 0.0000 0.4533

dbh 1.5689 0.1963 0.0000 0.6792

h − 0.8835 0.0609 0.0000 0.6452

upd 1.0863 0.2274 0.0002 0.7169

cl 0.4006 0.0411 0.0000 0.6027

nd intcp − 1.7874 0.2721 0.0000 0.4703

slope 0.3045 0.0325 0.0000 0.4905

dbh 1.2705 0.1839 0.0000 0.6926

h − 0.8664 0.0443 0.0000 0.4760

Table 4 (continued)

Type comp pred est se p λ

upd 0.8402 0.2108 0.0009 0.7121

a − 0.1391 0.0166 0.0000 0.2229

cl 0.3485 0.0374 0.0000 0.6316

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6

exceptions in stump and crown components. This is more
pronounced in deciduous than in conifer species, especially
for stump components of European beech and oak. The
relative measure CV indicates, that RMSE is smaller than
the mean observation Ȳ . Only in one case (simple model of
needle component for Scots pine) it reaches a value of 1.00.
The components cww, cwb and agb exhibit the smallest
values (0.1–0.3), while the more variable stump and crown
components tend to reach values between 0.3 and 0.7 (in
some cases up to 0.9). The pooled variance parameter δ (see
Eq. 2) and the model equations are also included in Tables 5
and 6.

Plotting standardised residuals against the fitted values
indicates homoscedasticity and no trend in the residuals
(for the full model of Norway spruce see Fig. 3). For bark
and stump components (e.g. stw, stb, stwb and cwwb), we
encountered some deviations from the normality assump-
tion, finding slightly more positive than negative residuals.

The model equations of the simple models rarely
changed in the NSUR setting compared to the initial
setup from the component-specific functions. Due to their
relevance, dbh and h were usually included into the model.
In one case—coarse wood bark of ash—the model was
constrained on the product of dbh and h (=dh). In the
case of Silver fir, European ash and Sycamore, only dbh

was used in crown components. Intercepts were necessary
in 11 of 44 cases to improve on normality assumptions.
Sometimes, estimated values of intercepts were negative, so
care has to be taken in applications.

The full models extended the simple models. For all
species but Silver fir, cl was a significant predictor for the
crown components. For all conifer species but Silver fir,
upd was included for stem and crown components. Upd
even replaced dbh for some species and components.

The predictors hsl and a were less important and jointly
included only four times, with no instance in deciduous
species. Also, both predictors could not be linked to specific
components or species, besides that Sycamore included
neither, and in contrast, Silver fir and Douglas fir functions
each included four instances of hsl and two of a.
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Table 5 Summary of the resulting additive biomass functions for coniferous species giving the equation for each species, model type and
component, as well as the pooled variance parameter δ and the fit statistics (in kg, unitless for CV)

Species Type Comp. Equation δ RMSE BIAS MAE CV

Norway spruce Simple stw 0.022 · dbh2.1212 · sth0.6056 5.33 7.41 0.28 3.49 0.56

stb − 0.0128+ 0.0067 · dbh1.7268 · sth0.5947 4.46 0.59 0.05 0.28 0.55

stwb stw + stb 5.30 7.81 0.34 3.71 0.55

cww 0.0142 · dbh1.7414 · h1.2401 4.64 60.33 2.81 33.20 0.18

cwb 0.0038 · dbh1.6076 · h1.0528 4.21 6.47 0.19 3.66 0.19

cwwb cww + cwb 4.46 63.78 3.00 35.23 0.17

sw 1.8472 + 0.0243 · dbh2.9671 · h−0.8183 3.96 21.70 0.32 12.03 0.41

nd − 1.6847 + 0.285 · dbh2.1173 · h−0.8334 3.41 10.92 0.41 6.69 0.42

agb Sum of all components 4.41 82.95 4.07 46.70 0.18

Full stw 0.0166 · dbh2.0011 · sth0.6441 · a0.1736 5.32 7.52 0.25 3.49 0.57

stb 0.007 · dbh1.6769 · sth0.5405 · upd0.2185 · hsl−0.1088 4.41 0.58 0.04 0.28 0.54

stwb stw + stb 5.23 7.89 0.30 3.71 0.55

cww − 0.7624 + 0.0123 · dbh0.7693 · h1.0984 · upd1.0365 · a0.1432 4.70 52.58 0.29 28.10 0.16

cwb 0.0034 · dbh0.431 · h1.0555 · upd1.2898 3.99 5.59 0.14 2.92 0.17

cwwb cww + cwb 3.72 54.20 0.43 29.17 0.15

sw 0.0439 · dbh1.5689 · h−0.8835 · upd1.0863 · cl0.4006 3.57 20.40 0.20 11.37 0.38

nd − 1.7874+ 0.3045 · dbh1.2705 · h−0.8664 · upd0.8402 · a−0.1391 · cl0.3485 3.35 9.36 − 0.22 5.63 0.36

agb Sum of all components 3.65 71.07 0.71 40.02 0.15

Silver fir Simple stw 0.0121 · dbh2.2645 · sth0.7596 3.30 2.85 0.07 1.82 0.16

stb 0.0036 · dbh2.1225 · sth0.7856 3.61 0.39 − 0.03 0.26 0.13

stwb stw + stb 3.27 3.39 0.04 2.07 0.16

cww 0.0046 · dbh1.1917 · h2.2103 3.24 95.74 17.07 60.48 0.12

cwb 0.0019 · dbh1.4458 · h1.678 4.50 19.77 1.76 11.75 0.13

cwwb cww + cwb 2.23 118.12 18.83 71.31 0.12

sw 0.0273 · dbh2.2573 5.11 78.24 1.69 44.20 0.47

nd 0.1071 · dbh1.6952 4.11 26.76 − 4.20 17.64 0.43

agb Sum of all components 2.52 204.65 16.36 86.61 0.17

Full stw 0.0635 · dbh2.5304 · sth0.8015 · hsl−0.4205 3.44 2.64 0.07 1.61 0.14

stb 0.0091 · dbh2.2383 · sth0.8168 · hsl−0.2111 3.88 0.39 − 0.00 0.24 0.12

stwb stw + stb 3.43 3.24 0.07 1.83 0.15

cww 0.0542 · dbh0.2327 · h1.0799 · upd1.7805 · a0.3421 · hsl−0.4926 3.98 70.09 1.49 42.17 0.09

cwb 0.005 · h0.9923 · upd1.851 · a0.162 · hsl−0.0949 4.70 9.70 0.22 5.48 0.07

cwwb cww + cwb 3.90 87.07 1.71 46.59 0.09

sw 0.0254 · dbh2.272 5.52 78.53 3.55 44.45 0.47

nd 0.1214 · dbh1.6556 4.11 25.76 − 1.68 17.15 0.41

agb Sum of all components 3.85 183.78 3.66 50.87 0.15

Douglas fir Simple stw 0.0186 · dbh2.185 · sth0.7723 5.21 8.25 0.06 3.48 0.42

stb 0.0032 · dbh2.0357 · sth0.7621 3.62 0.85 − 0.02 0.38 0.51

stwb stw + stb 5.04 8.69 0.04 3.62 0.40

cww 0.0131 · dbh1.9299 · h1.0715 5.77 131.64 3.70 67.46 0.20

cwb 0.0018 · dbh1.9099 · h1.0306 4.95 23.04 − 2.54 11.74 0.33

cwwb cww + cwb 5.16 143.35 1.16 72.78 0.19

sw 0.2784 · dbh3.1276 · h−1.7984 3.70 37.67 4.82 21.94 0.52

nd − 1.8821 + 0.2749 · dbh2.4833 · h−1.3051 4.39 14.39 2.57 8.47 0.47

agb Sum of all components 4.54 190.26 8.58 90.96 0.22

Full stw 0.022 · dbh2.1597 · sth0.8318 5.47 8.44 0.23 3.49 0.43

stb 0.0106 · dbh1.838 · sth0.8417 · h0.4136 · hsl−0.3138 4.87 0.63 − 0.03 0.31 0.38

stwb stw + stb 5.20 8.91 0.20 3.64 0.42
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Table 5 (continued)

Species Type Comp. Equation δ RMSE BIAS MAE CV

cww 0.0084 · dbh0.363 · h1.1578 · upd1.5364 · a0.1669 5.27 93.45 − 2.87 47.37 0.14

cwb 0.002 · h1.4131 · upd1.7165 · a0.1509 · hsl−0.1548 5.02 15.61 1.35 8.36 0.22

cwwb cww + cwb 4.91 97.48 − 1.52 48.61 0.13

sw 5.3595+ 0.0446 · h−1.6949 · upd3.2448 · hsl−0.3084 · cl1.3312 4.34 30.99 2.08 15.93 0.43

nd 0.1708 · h−1.2492 · upd2.5884 · hsl−0.2632 · cl0.7698 4.31 10.97 1.12 6.14 0.36

agb Sum of all components 4.35 132.20 1.87 61.15 0.15

Scots pine Simple stw 0.0624 · dbh1.9322 · sth1.0414 4.74 3.18 0.31 1.55 0.34

stb 0.0077 · dbh1.8127 · sth0.8732 4.36 0.33 0.01 0.16 0.37

stwb stw + stb 4.11 3.35 0.31 1.62 0.33

cww 0.0173 · dbh2.0072 · h0.914 4.42 71.22 2.71 36.80 0.20

cwb 0.0055 · dbh2.0108 · h0.5374 4.33 8.27 0.00 4.97 0.25

cwwb cww + cwb 3.94 74.77 2.72 38.49 0.19

sw 0.1316 · dbh2.444 · h−0.949 3.09 21.14 0.45 11.85 0.67

nd 0.1484 · dbh2.332 · h−1.2026 3.66 12.31 1.42 4.87 1.00

agb Sum of all components 3.90 82.87 4.89 43.04 0.19

Full stw 0.039 · dbh1.7956 · sth0.9353 · a0.1836 4.87 2.77 0.06 1.38 0.30

stb 0.0078 · dbh1.8129 · sth0.8788 4.36 0.33 0.02 0.16 0.37

stwb stw + stb 4.81 2.95 0.08 1.45 0.29

cww 0.0159 · dbh1.1909 · h0.9266 · upd0.765 · a0.1172 · hsl−0.02 4.35 55.35 − 3.39 29.95 0.16

cwb 0.004 · dbh0.8083 · h0.7155 · upd1.1511 · a0.0674 4.18 6.87 − 0.03 3.88 0.21

cwwb cww + cwb 3.99 57.09 − 3.41 30.88 0.15

sw 0.2146 · h−0.8896 · upd2.0322 · cl0.6288 3.36 20.35 0.06 10.46 0.64

nd 0.2135 · h−1.4766 · upd2.2923 · cl0.6001 4.06 10.43 0.78 4.34 0.84

agb Sum of all components 3.93 62.79 − 2.51 34.86 0.14

See Table 1 for abbreviations

Table 6 Summary of the resulting additive biomass functions for deciduous species giving the equation for each species, model type and
component, as well as the pooled variance parameter δ and the fit statistics (in kg, unitless for CV)

Species Type Comp. Equation δ RMSE BIAS MAE CV

European beech Simple stw 0.0315 · dbh2.1447 · sth0.798 5.06 20.04 2.51 6.62 0.83
stb 0.004 · dbh1.9184 · sth0.8076 4.39 0.97 0.11 0.29 0.77
stwb stw + stb 5.07 20.86 2.62 6.88 0.82
cww − 4.6332 + 0.019 · dbh2.0861 · h0.9502 4.69 179.48 6.01 79.74 0.22
cwb 0.0013 · dbh1.9596 · h1.099 4.45 16.14 0.60 7.66 0.27

cwwb cww + cwb 3.29 192.78 6.60 84.76 0.22

sw 0.4006 · dbh2.3211 · h−0.7636 3.58 85.61 1.20 42.11 0.60

agb Sum of all components 3.59 232.42 10.42 102.74 0.22

Full stw 0.0305 · dbh2.1514 · sth0.7955 5.07 20.03 2.53 6.62 0.82

stb 0.0039 · dbh1.9242 · sth0.8081 4.35 0.97 0.11 0.29 0.77

stwb stw + stb 5.07 20.84 2.64 6.87 0.82

cww − 4.779 + 0.021 · dbh1.458 · h0.9495 · upd0.6351 4.69 168.93 5.09 75.30 0.21

cwb 0.0014 · dbh1.2652 · h1.0303 · upd0.6633 · a0.087 4.40 14.98 0.63 7.28 0.25

cwwb cww + cwb 4.40 181.29 5.71 80.04 0.21

sw 0.8474 · dbh1.6256 · h−0.9965 · upd0.5037 · hsl−0.1014 · cl0.5173 3.58 84.32 1.14 40.16 0.59

agb Sum of all components 4.46 216.52 9.49 96.00 0.21

Oak Simple stw 0.0363 · dbh2.0657 · sth0.7721 4.90 11.57 2.92 5.09 0.52

stb 0.0158 · dbh1.791 · sth0.9032 4.58 0.91 0.07 0.48 0.35
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Table 6 (continued)

Species Type Comp. Equation δ RMSE BIAS MAE CV

stwb stw + stb 4.71 11.99 3.00 5.38 0.48

cww − 3.9731 + 0.0223 · dbh2.1012 · h0.8647 4.74 175.26 − 8.70 79.49 0.25

cwb 0.0043 · dbh1.9437 · h0.9576 4.93 33.84 0.82 15.01 0.29

cwwb cww + cwb 3.73 200.28 − 7.89 87.62 0.25

sw 0.3028 · dbh2.1945 · h−0.6882 3.70 61.62 − 5.77 28.08 0.81

agb Sum of all components 3.88 226.77 − 10.66 103.60 0.25

Full stw 0.0251 · dbh2.077 · sth0.7821 · hsl0.0623 4.96 11.03 2.82 4.96 0.49

stb 0.0152 · dbh1.8045 · sth0.9121 4.58 0.91 0.08 0.48 0.35

stwb stw + stb 4.66 11.45 2.90 5.28 0.46

cww 0.0125 · dbh2.0818 · h1.0629 4.96 170.29 − 5.48 74.96 0.24

cwb 0.0046 · dbh1.922 · h0.9592 4.93 33.66 2.60 14.86 0.29

cwwb cww + cwb 3.83 191.92 − 2.88 81.61 0.24

sw 0.2854 · dbh2.3016 · h−0.4922 · a−0.4054 · cl0.3846 3.60 59.66 − 8.46 26.26 0.78

agb Sum of all components 3.82 211.70 − 8.44 93.89 0.23

European ash Simple stw 1.1307 + 0.0054 · dbh2.668 · sth0.9223 4.05 8.77 − 0.45 4.66 0.23

stb 0.0434 · dbh1.4611 · sth0.9111 2.80 1.22 0.06 0.60 0.45

stwb stw + stb 2.38 9.36 − 0.39 4.89 0.23

cww 0.0171 · dbh2.0198 · h1.0356 6.21 121.88 7.06 65.43 0.13

cwb 0.0005 · dh1.7454 4.24 20.08 1.09 10.82 0.18

cwwb cww + cwb 5.19 139.27 8.15 71.30 0.14

sw 0.1024 · dbh1.9711 4.52 78.92 − 12.16 39.44 0.68

agb Sum of all components 4.06 200.61 − 4.39 88.62 0.17

Full stw 0.8108+ 0.0152 · dbh2.9503 · sth1.0152 · a−0.4314 4.28 8.32 − 1.10 4.03 0.22

stb − 0.5254 + dbh1.7942 · sth0.544 · h−1.3638 2.17 0.77 −0.02 0.46 0.29

stwb stw + stb 3.10 8.75 − 1.12 4.14 0.21

cww 0.0159 · dbh2.0348 · h1.0374 6.21 121.76 9.16 65.00 0.13

cwb − 1.3879 + dh0.3694 · upd2.0205 · hsl−0.84 6.20 33.14 2.99 16.30 0.30

cwwb cww + cwb 4.99 134.44 12.15 63.15 0.13

sw 0.1394 · dbh1.1973 · cl0.9249 4.81 83.54 − 9.89 40.03 0.72

agb Sum of all components 5.38 187.73 1.14 78.38 0.16

Sycamore Simple stw − 0.9368 + 0.0529 · dbh1.9653 · sth0.664 3.91 3.86 − 0.07 2.18 0.26

stb − 0.1469 + 0.012 · dbh1.7668 · sth0.6883 2.53 0.35 − 0.01 0.21 0.23

stwb stw + stb 4.19 4.50 − 0.07 2.39 0.27

cww 0.0171 · dbh2.0527 · h0.9476 5.61 38.03 1.19 23.79 0.10

cwb 0.0039 · dbh2.0204 · h0.7584 4.08 4.27 0.19 2.87 0.10

cwwb cww + cwb 5.50 44.84 1.38 26.53 0.11

sw 0.0416 · dbh2.1138 5.76 32.18 3.34 18.93 0.55

agb sum of all components 4.80 86.06 4.65 36.88 0.17

full stw − 0.9538 + 0.0682 · dbh1.9084 · sth0.7021 3.91 3.63 − 0.11 2.09 0.24

stb − 0.1313 + 0.0135 · dbh1.7369 · sth0.7228 2.53 0.34 − 0.01 0.21 0.22

stwb stw + stb 4.19 4.24 − 0.12 2.29 0.26

cww 0.0162 · dbh1.5708 · h0.9362 · upd0.5447 6.08 36.52 − 5.07 21.83 0.10

cwb 0.0039 · dbh2.0034 · h0.7828 4.08 4.30 − 0.33 2.88 0.10

cwwb cww + cwb 4.07 43.50 − 5.41 24.62 0.10

sw 7.8222 + 0.0003 · dbh1.6299 · cl2.5383 6.09 33.62 − 2.48 20.22 0.57

agb sum of all components 4.98 73.80 − 8.00 28.71 0.15

See Table 1 for abbreviations
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Fig. 3 Residual plot of the Norway spruce first imputed data set. The
graph plots the the standardised residuals against fitted values for
each component. The model fits the data well and the variance model
leads to homoscedastic residuals. Slightly more residuals are positive,

because negative residuals are bounded to the difference between the
mean response and zero—a fact which is also visible, e.g. in Zhao et al.
(2015)

In summary, additional predictors were more important
for coniferous species, which included 1.2 to 1.6 additional
predictors (averaged per species over all components) in
comparison to the simple model, while deciduous species
added only 0.4 to 1.2 additional predictors.

The pooled residual variance σNSUR (sum of squared
errors divided by degrees of freedom) of each system of
equations is smaller for the full models compared to the
simple models, except for Douglas fir (see Table 8). The
highest values of σNSUR are found for Sycamore, European
ash and Silver fir, being double to sixfold increased. This
indicates that more observations included to the models lead
to less residual variance.

In the case of Douglas fir, the small increase in σNSUR

can be attributed to the moderate decrease in the sum of the
squared errors with respect to ten added parameters to the
system of equations.

3.2 Biomass allocation

For all species, biomass allocation changes dramatically
between components until 20–30 cm dbh (Fig. 4). Small
trees (dbh > 7 cm) exhibit almost equal proportions of
coarse wood and small wood. Two exceptions are Sycamore
and Silver fir (but both with few empirical data), the first
having a coarse wood proportion of about 70% already
for small trees, the latter having only about 30%. Larger
trees, i.e. above 30 cm dbh, are rather constant in their
proportions, although species-specific differences exist.

Most tree species keep increasing their proportion of
coarse wood also beyond 30 cm dbh, mainly drawing from
shares of small wood and needles. Sycamore exhibits a
rather constant pattern, while European ash keeps changing
its proportion with a stronger gradient even for larger trees.
In general, coarse wood (including stump mass of about 3–
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Table 7 Variance-covariance matrix of the errors for Norway spruce (full model)

stw stb stwb cww cwb cwwb sw nd agb

stw 5e−04 0.7948 0.9896 0.3048 0.1789 0.3017 0.1187 0.1283 0.362

stb 7.5e−08 2e−04 0.8233 0.1095 0.3271 0.1399 0.0814 0.0775 0.2002

stwb 2.84e−07 9.4e−08 6e−04 0.2963 0.1949 0.2921 0.117 0.1267 0.3527

cww 1.77e−06 2.54e−07 2.09e−06 0.012 0.4053 0.9531 0.2715 0.3031 0.8534

cwb 3.51e−07 2.55e−07 4.63e−07 1.95e−05 0.004 0.4909 0.1977 0.193 0.4607

cwwb 9.86e−06 1.82e−06 1.16e−05 7.65e−04 1.33e−04 0.0671 0.2779 0.3006 0.8941

sw 1.73e−06 4.72e−07 2.07e−06 9.73e−05 2.38e−05 5.59e−04 0.03 0.7171 0.6224

nd 1.43e−06 3.43e−07 1.71e−06 8.28e−05 1.77e−05 4.61e−04 4.91e−04 0.0229 0.6072

agb 1.77e−05 3.89e−06 2.09e−05 1.02e−03 1.86e−04 6.02e−03 1.87e−03 1.39e−03 0.1003

Values are averaged from each of ten imputation based analyses including the within imputation variance and the between imputation variance.
On the diagonal (italics), standard deviations of the errors are given; the lower triangular matrix gives the covariances of the errors between the
different components and the upper triangular matrix shows the corresponding correlations

5%) claims about 80% of aboveground biomass for trees
with dbh > 30 cm. Interestingly, Silver fir reaches the least
amount of coarse wood with about 70%, while Norway
spruce is slightly reducing its coarse wood proportion for
large trees. In contrast, small wood of Norway spruce tends
to increase its proportions for large trees again, while coarse
wood bark and needles reduce their relative amount. In
other words, the increase in mass given dbh is steeper
for small wood than for the other components. This is
rather unexpected and one explanation could be that some

branches, which as a whole are considered as belonging
to small wood, surpassing the 7 cm limit and artificially
increasing this component. This might be incorrect with
respect to the components size limit, but not for the actual
possible stem harvesting mass. The same effect occurs using
the models of Wirth et al. (2004). Usually, bark makes up
about 10% of total mass, slightly more in case of Silver fir
and Oak, slightly less for Norway spruce and Scots pine.
A noticeable exception is European beech, with a very low
proportion of bark.

Table 8 Pooled residual variance of the NSUR system of equations for simple and full models of each species

Species Type σNSUR N k

Norway spruce Simple 0.9823 1150 21

Full 0.9710 1150 31

Silver fir Simple 1.8074 31 16

Full 1.7616 31 23

Douglas fir Simple 0.8727 161 19

Full 0.9359 161 29

Scots pine Simple 0.9636 460 18

Full 0.9541 460 26

European beech Simple 0.9301 918 16

Full 0.9256 918 22

Oak Simple 0.9669 313 16

Full 0.9449 313 18

European ash Simple 3.4007 37 13

Full 1.8932 37 18

Sycamore Simple 5.7875 28 14

Full 1.5619 28 17

Additionally, sample size (N) and number of estimated parameters (k) are given
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Fig. 4 Biomass allocation to components expressed as proportions
of total aboveground biomass for each species based on the simple
models. Tree height was assumed to follow a Pettersen model (h =
1.3 +

(
a + b

dbh

)−3
) and fitted by generalised nonlinear regression to

the collected observations of each species and stump height was set

to be 1% of tree height. We predicted height for each dbh from 7 to
80 cm, calculated stump height and applied our simple model (the full
models would have required more input variables). Results for decid-
uous trees are given in the top row, for coniferous tree species in the
bottom row

Biomass allocation is relevant when considering energy
wood removal during harvest. Nutrient element concentra-
tions differ between components and are regularly higher in
crown and bark than in wood (e.g. Weis et al. 2009). As the
harvesting of wood is the main interest in forestry, the addi-
tional export of nutrients through the inherently connected
components should carefully be weighed against the pro-
ductivity of the respective soils. With these additive biomass
functions and in conjunction with nutrient element concen-
tration very detailed harvesting scenarios and optimisations
are possible.

3.3 Comparison to other functions

Wirth et al. (2004) developed univariate biomass component
functions for Norway spruce in Central Europe. Their raw
data were kindly supplied to be included into the presented
study (listed as study 9 in Table 1). Figure 5 plots all data
from our study, also indicating the data from Wirth et al

(2004, black squares) for the three common components
coarse wood incl. bark, small wood (branches) and needles.
The fitted values of the full model of this study and of the
best DHA+C-model (using diameter in breast height, tree
height, tree age and crown predictors) of Wirth et al. (2004)
are given in the form of a solid and dashed line, respectively,
to see differences between both models.

For coarse wood incl. bark, the models seem to be
approximately equivalent for dbh < 70 cm, while above
the line is strongly influenced by only five scattered
observations. Additionally, these values lie outside the range
of Wirth et al. (2004). The models for small wood and
needles exhibit stronger deviations already for small to
medium trees and the conditional mean response of the
model from Wirth et al. (2004) lies above the conditional
mean response of our full models. It seems that the data
of Wirth et al. (2004) indicates slightly higher component
masses for small wood, especially for medium sized trees,
compared to our data. Note that Fig. 5 contains our raw
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Fig. 5 Comparison of our results against the models of Wirth et al.
(2004). They fitted their models to trees with no restrictions on dbh,
while our data only consists of trees above 7 cm dbh. The solid line
represents a smoothing curve based on predictions of the presented

NSUR full model, while the dashed smoothing curve is based on the
respective best DHA+C-model of Wirth et al (2004, tab. 4, with pub-
lished correction factors applied). Predictions are based on our data
collection

data, with no imputation or adjustment applied, so that data
manipulations can be excluded from being the cause of
differences.

Predictions for the crown components using the newly
fitted functions should be slightly lower and thus more
conservative with respect to expected harvest output.

4 Discussion

With this study, we could develop a consistent set of additive
biomass functions for eight tree species and eight to nine
components, where each component function is based on
the full per-species data set. Models for all species were
fit using the same procedure, which accounted for intrinsic
correlation between components. Raw data were gathered
from different sources so that a general applicability of the
equations is given for five of eight species at least for the
area of Germany. Although fitted the same way, models
for Silver fir, European Ash and Sycamore are less general
due to limited data availability and geographic extent of the
data. Thickest trees show a dbh of more than 80 cm, which
is sufficient for most applications. For conservation, where
even larger trees are of interest (see e.g. Lutz et al 2012;
Stagoll et al 2012, and references therein), this high limit
might be important.

Consolidation of the heterogenous data sources was
possible because extremely differenciated information was
available for some studies and hence component definition
of other studies could be mimicked. Remaining missingness
in components were handled by multiple imputation.
Thereby, we could join studies with different sampling
schemes and hence take advantage of the information of as
many sample trees as possible.

The model equations are based on allometric theory
(Fehrmann and Kleinn 2006), which is well accepted and
most commonly applied in literature (c. f. Zianis et al
2005; Ter-Mikaelian and Korzukhin 1997), but alternative
parametrisations exist. Main differences between models
occur in large trees, where for example Marklund (1987) is
more conservative and deviations can be substantial.

Besides hsl, which can be considered tree- or stand-
specific, we used only tree-specific predictors to model
biomass. Dbh was most frequently used as independent
variable, followed by tree height. Indeed, dbh is the easiest
and most relevant measure in tree volume and biomass
applications, but from a theoretical viewpoint it would
be better to use a diameter in relative height (Fehrmann
and Kleinn 2006). To support these assertions, we found
that although upd and dbh are correlated they were
often used jointly, while upd even replaced dbh in some
cases. Additional predictors helped to increase accuracy
in predictions as could be shown in this study, but also
e.g. by Wirth et al. (2004) and Wutzler et al. (2008).
Especially crown length (cl) was valuable for the modelling
of crown components. Because possible applications might
differ in their availability of input variables, we developed
two sets of biomass functions (simple and full). The
more comprehensive full models, taking advantage of more
predictors, usually exhibit less residual variance as well as
lower RMSE and CV . Also, BIAS is small with some
exceptions in stump and crown components, indicating that
the allometric model might not be the ideal functional
form to model these components. An additional intrinsic
systematic bias like in log-linear models (Sprugel 1983)
could be avoided by fitting the models on the data scale.

To fit a system of biomass equations simultaneously,
several approaches were described and discussed in
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literature (e.g. Parresol 2001; Maltamo et al 2012; Dong et
al 2015; Poudel and Temesgen 2015; Affleck and Diéguez-
Aranda 2016). In this particular case, we had to handle three
main difficulties: (i) several studies with different sampling
schemes and missing data, (ii) grouping structure of the
data, and imperatively and (iii) the inclusion of summary
components into the NSUR model. This last requirement
excluded models using ML, as decribed by Affleck and
Diéguez-Aranda (2016). On the other hand, random effect
structures, usually fit by ML are not available in the LS
setting (Fahrmeir et al. 2009, p. 263). Hence, we built a
data stream from our collected raw data, across enhanced,
imputed and adjusted data to pooling of NSUR models fit
with GNLS. On that basis, we could include all collected
data, incorporate the uncertainty of missing data and treat
the grouping of the data. Additionally, through the use
of imputation, we avoided potentially biased parameter
estimates.

The effect of the data adjustment was a change in
variance of the data. We assume that the main effect of
the adjustment is in correcting for differences in sampling,
since the data adjustment with relevant magnitude mainly
occurred in bark and stump components, which are both
difficult to sample. Total bark mass can be estimated
based on volume or surface area, i.e. interpolated from
either measured or modelled bark thickness and assumed
shape of the trees. Also, stump components are challenging
to measure in the field due to their irregular shape.
Hence, larger deviations between different studies are to
be expected. Here, the adjustment was used to obtain
observations cleared from study specific effects, because
the desired response of our models is the conditional mean
response of the population average (and not study specific
predictions).

By stepping back from the inclusion of summary
components, more advanced models such as ML would
be possible. ML is able to handle hierarchical data
and missingness in the response variable (by allowing
unbalanced designs). The question of data harmonisation
still applies (c.f. Affleck and Diéguez-Aranda 2016) and
fitting parsimonious mixed effect models (Bates et al.
2015) with as many parameters as presented here is not
straight forward. In such complex models, the different
parts (random effects, correlation and heteroscedasticity)
compete with each other (Pinheiro and Bates 2000, p. 204),
leading to difficulties in optimisation.

5 Conclusions

Our approach to fit additive biomass functions led to a
consistent set of additive nonlinear biomass functions for
the most relevant tree species in Germany. We considered a

high number of observations, intrinsic correlations between
different components and corrected for study effects.
Different studies have been included, of which not all
component information was available from the raw data.
Some studies did not even sample the same components.
With our approach, taking advantage of higly differenciated
data and multiple imputation, we could consolidate all
studies into one scheme of additive components. For historic
data, such measures are necessary to be able to use this
data but for future data, projects like ENFIN or Cost E43
help harmonising definitions and methods already during
acquisation.

From these multiple sets of complete data, we have
developed simple and full allometric models applying
nonlinear seemingly unrelated regression (NSUR). These
models can now be used to compute component mass for
trees of interest. A step further, biomass can be transformed
into nutrient element mass of different components using
respective elemental concentrations. One can also deduce
proportions of the different components and their variation
with changing predictors.

Although quite some effort has been put into the
development, one could still improve estimates by including
even larger trees, to better capture the behaviour and
variance of the models. Additional observations could
improve the models for some species, while for Norway
spruce, Scots pine, Douglas fir, European beech and Oak
the number of observations seems to be sufficient for model
building.
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Forest Ecosystem Research, Jı́lové u Prahy, Czech Republic; Rainer
Joosten from the Ministry for Environment, Agriculture, Conservation
and Consumer Protection of the State of North Rhine-Westphalia,
Düsseldorf, Germany; Simon Klinner from Eberswalde forestry state
center of excellence, Eberswalde, Germany; Ralf Moshammer from
Chair of Forest Growth and Yield Science, Technical University
of Munich, Germany; Sabine Rumpf from Northwest German
Forest Research Institute, Göttingen, Germany; Wendelin Weis from
Bavarian State Institute of Forestry, Freising, Germany and Christian
Wirth from the Department of Systematic Botany and Functional
Biodiversity, University of Leipzig, Germany for kindly supplying
their data to our analysis.

Funding information This study was funded by BMEL / FNR (FKZ:
22006512).

Data availability The datasets analysed during the current study are
available from the corresponding author on reasonable request.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.



Annals of Forest Science (2018) 75: 49 Page 17 of 27 49

Appendix A: Sample tree origin

Fig. 6 Geographic distribution of referenced sample data for Silver
Fir. The size of the symbols indicate the number of sample trees and
scales from 1 to 80. For circles, the sample location is known, whereas
squares indicate unknown coordinates which could be approximated
by location names

Fig. 7 Geographic distribution of referenced sample data for Douglas
Fir. The size of the symbols indicate the number of sample trees and
scales from 1 to 80. For circles, the sample location is known, whereas
squares indicate unknown coordinates which could be approximated
by location names

Fig. 8 Geographic distribution of referenced sample data for Scots
pine. The size of the symbols indicate the number of sample trees and
scales from 1 to 80. For circles, the sample location is known, whereas
squares indicate unknown coordinates which could be approximated
by location names

Fig. 9 Geographic distribution of referenced sample data for European
beech. The size of the symbols indicate the number of sample trees and
scales from 1 to 80. For circles, the sample location is known, whereas
squares indicate unknown coordinates which could be approximated
by location names
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Appendix B: Parameter estimates

In the following, the pooled results of the repeated NSUR
model fit for the remaining species are presented.

Fig. 10 Geographic distribution of referenced sample data for Oak.
The size of the symbols indicate the number of sample trees and
scales from 1 to 80. For circles, the sample location is known, whereas
squares indicate unknown coordinates which could be approximated
by location names

Fig. 11 Geographic distribution of referenced sample data for
European ash. The size of the symbols indicate the number of sample
trees and scales from 1 to 80. For circles, the sample location is
known, whereas squares indicate unknown coordinates which could be
approximated by location names

Fig. 12 Geographic distribution of referenced sample data for
Sycamore. The size of the symbols indicate the number of sample
trees and scales from 1 to 80. For circles, the sample location is
known, whereas squares indicate unknown coordinates which could be
approximated by location names

Table 9 Parameter estimates for Silver fir

Type comp pred est se p λ

Simple stw slope 0.0121 0.0077 0.1435 0.7979
dbh 2.2645 0.1329 0.0000 0.7974
sth 0.7596 0.0503 0.0000 0.5215

stb slope 0.0036 0.0015 0.0310 0.7675
dbh 2.1225 0.0870 0.0000 0.7667
sth 0.7856 0.0361 0.0000 0.4085

cww slope 0.0046 0.0010 0.0000 0.1895
dbh 1.1917 0.1062 0.0000 0.0646
h 2.2103 0.1652 0.0000 0.0620

cwb slope 0.0019 0.0003 0.0000 0.0527
dbh 1.4458 0.0873 0.0000 0.0419
h 1.6780 0.1404 0.0000 0.0418

sw slope 0.0273 0.0056 0.0000 0.1022
dbh 2.2573 0.0621 0.0000 0.1045

nd slope 0.1071 0.0292 0.0003 0.1313
dbh 1.6952 0.0807 0.0000 0.1122

Full stw slope 0.0635 0.0283 0.0394 0.6781
dbh 2.5304 0.1432 0.0000 0.8009
sth 0.8015 0.0334 0.0000 0.4369
hsl − 0.4205 0.1059 0.0013 0.7123

stb slope 0.0091 0.0027 0.0020 0.4307
dbh 2.2383 0.1021 0.0000 0.7011

sth 0.8168 0.0320 0.0000 0.4219
hsl − 0.2111 0.0820 0.0177 0.5896

cww slope 0.0542 0.0134 0.0002 0.3224
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Table 9 (continued)

Type comp pred est se p λ

dbh 0.2327 0.1569 0.1436 0.3273
h 1.0799 0.1332 0.0000 0.3041
upd 1.7805 0.1649 0.0000 0.2462
a 0.3421 0.0447 0.0000 0.3489
hsl − 0.4926 0.0467 0.0000 0.2680

cwb slope 0.0050 0.0011 0.0000 0.1202
h 0.9923 0.1046 0.0000 0.1599
upd 1.8510 0.0939 0.0000 0.2929
a 0.1620 0.0413 0.0002 0.1871
hsl − 0.0949 0.0448 0.0362 0.1669

sw slope 0.0254 0.0045 0.0000 0.2002
dbh 2.2720 0.0559 0.0000 0.2028

nd slope 0.1214 0.0365 0.0013 0.2248
dbh 1.6556 0.0881 0.0000 0.2293

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6

Table 10 Parameter estimates for Douglas fir

Type comp pred est se p λ

Simple stw slope 0.0186 0.0034 0.0000 0.0081
dbh 2.1850 0.0373 0.0000 0.0097
sth 0.7723 0.0417 0.0000 0.0041

stb slope 0.0032 0.0007 0.0000 0.0092
dbh 2.0357 0.0479 0.0000 0.0090
sth 0.7621 0.0405 0.0000 0.0057

cww slope 0.0131 0.0007 0.0000 0.0057
dbh 1.9299 0.0320 0.0000 0.0283
h 1.0715 0.0459 0.0000 0.0221

cwb slope 0.0018 0.0002 0.0000 0.0018
dbh 1.9099 0.0511 0.0000 0.0021
h 1.0306 0.0720 0.0000 0.0022

sw slope 0.2784 0.0577 0.0000 0.0083
dbh 3.1276 0.1114 0.0000 0.0618
h − 1.7984 0.1649 0.0000 0.0451

nd intcp − 1.8821 0.1920 0.0000 0.0144
slope 0.2749 0.0452 0.0000 0.0123
dbh 2.4833 0.0916 0.0000 0.0575
h − 1.3051 0.1114 0.0000 0.0434

Full stw slope 0.0220 0.0028 0.0000 0.0028
dbh 2.1597 0.0252 0.0000 0.0040
sth 0.8318 0.0298 0.0000 0.0018

stb slope 0.0106 0.0035 0.0026 0.0010
dbh 1.8380 0.0937 0.0000 0.0036
sth 0.8417 0.0378 0.0000 0.0123
h 0.4136 0.1353 0.0023 0.0005

hsl − 0.3138 0.0378 0.0000 0.0034

cww slope 0.0084 0.0005 0.0000 0.0023

Table 10 (continued)

Type Comp Pred est se p λ

dbh 0.3630 0.0980 0.0002 0.0348
h 1.1578 0.0430 0.0000 0.0030
upd 1.5364 0.0938 0.0000 0.0341
a 0.1669 0.0210 0.0000 0.0040

cwb slope 0.0020 0.0003 0.0000 0.0123
h 1.4131 0.0818 0.0000 0.0074
upd 1.7165 0.0519 0.0000 0.0051
a 0.1509 0.0410 0.0002 0.0135
hsl − 0.1548 0.0232 0.0000 0.0182

sw intcp 5.3595 0.2467 0.0000 0.0286
slope 0.0446 0.0198 0.0272 0.3498
h − 1.6949 0.1940 0.0000 0.1984
upd 3.2448 0.1412 0.0000 0.1411
hsl − 0.3084 0.0700 0.0001 0.5485
cl 1.3312 0.1497 0.0000 0.1000

nd slope 0.1708 0.0410 0.0000 0.1789
h − 1.2492 0.1191 0.0000 0.1547
upd 2.5884 0.0976 0.0000 0.1660
hsl − 0.2632 0.0360 0.0000 0.2007
cl 0.7698 0.0930 0.0000 0.1365

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6

Table 11 Parameter estimates for Scots pine

Type Comp Pred est se p λ

Simple stw slope 0.0624 0.0074 0.0000 0.6618
dbh 1.9322 0.0425 0.0000 0.8715
sth 1.0414 0.0222 0.0000 0.5393

stb slope 0.0077 0.0010 0.0000 0.6173
dbh 1.8127 0.0244 0.0000 0.5452
sth 0.8732 0.0557 0.0000 0.9380

cww slope 0.0173 0.0009 0.0000 0.0554
dbh 2.0072 0.0194 0.0000 0.0606
h 0.9140 0.0329 0.0000 0.0723

cwb slope 0.0055 0.0006 0.0000 0.1328
dbh 2.0108 0.0496 0.0000 0.4079
h 0.5374 0.0787 0.0000 0.4376

sw slope 0.1316 0.0189 0.0000 0.0735
dbh 2.4440 0.0655 0.0000 0.0943
h − 0.9490 0.0880 0.0000 0.0614

nd slope 0.1484 0.0137 0.0000 0.0164
dbh 2.3320 0.0532 0.0000 0.0573
h − 1.2026 0.0671 0.0000 0.0484

Full stw slope 0.0390 0.0044 0.0000 0.5651
dbh 1.7956 0.0279 0.0000 0.3275
sth 0.9353 0.0282 0.0000 0.7228
a 0.1836 0.0206 0.0000 0.3651
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Table 11 (continued)

Type Comp Pred est se p λ

stb slope 0.0078 0.0009 0.0000 0.6274
dbh 1.8129 0.0219 0.0000 0.4931
sth 0.8788 0.0603 0.0000 0.9516

cww slope 0.0159 0.0011 0.0000 0.4879
dbh 1.1909 0.1176 0.0000 0.7075
h 0.9266 0.0317 0.0000 0.3313
upd 0.7650 0.1216 0.0000 0.7361
a 0.1172 0.0162 0.0000 0.5468
hsl − 0.0200 0.0051 0.0008 0.6885

cwb slope 0.0040 0.0002 0.0000 0.2542
dbh 0.8083 0.0702 0.0000 0.2904
h 0.7155 0.0269 0.0000 0.1660
upd 1.1511 0.0717 0.0000 0.3368
a 0.0674 0.0156 0.0000 0.1917

sw slope 0.2146 0.0405 0.0000 0.4323
h − 0.8896 0.1236 0.0000 0.3746
upd 2.0322 0.0852 0.0000 0.3980
cl 0.6288 0.0784 0.0000 0.3178

nd slope 0.2135 0.0381 0.0000 0.4987
h − 1.4766 0.1250 0.0000 0.4146
upd 2.2923 0.1037 0.0000 0.5072
cl 0.6001 0.1106 0.0000 0.5360

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6

Table 12 Parameter estimates for European beech

Type comp pred est se p λ

Simple stw slope 0.0315 0.0038 0.0000 0.7811
dbh 2.1447 0.0257 0.0000 0.7722
sth 0.7980 0.0202 0.0000 0.6470

stb slope 0.0040 0.0006 0.0000 0.7385
dbh 1.9184 0.0260 0.0000 0.6258
sth 0.8076 0.0263 0.0000 0.5435

cww intcp − 4.6332 0.4260 0.0000 0.3698
slope 0.0190 0.0012 0.0000 0.4301
dbh 2.0861 0.0172 0.0000 0.7011
h 0.9502 0.0352 0.0000 0.6758

Simple stw slope 0.0315 0.0038 0.0000 0.7811
cwb slope 0.0013 0.0001 0.0000 0.1149

dbh 1.9596 0.0198 0.0000 0.1544
h 1.0990 0.0366 0.0000 0.1346

sw slope 0.4006 0.0398 0.0000 0.1251
dbh 2.3211 0.0456 0.0000 0.3219
h − 0.7636 0.0674 0.0000 0.2523

Full stw slope 0.0305 0.0034 0.0000 0.7440
dbh 2.1514 0.0236 0.0000 0.7255
sth 0.7955 0.0203 0.0000 0.6465

Table 12 (continued)

Type comp pred est se p λ

stb slope 0.0039 0.0005 0.0000 0.5976
dbh 1.9242 0.0221 0.0000 0.4726
sth 0.8081 0.0235 0.0000 0.4201

cww intcp − 4.7790 0.4332 0.0000 0.4225
slope 0.0210 0.0012 0.0000 0.3485
dbh 1.4580 0.0867 0.0000 0.7247
h 0.9495 0.0287 0.0000 0.5712
upd 0.6351 0.0932 0.0000 0.7577

cwb slope 0.0014 0.0001 0.0000 0.1317
dbh 1.2652 0.1506 0.0000 0.7111
h 1.0303 0.0335 0.0000 0.0508
upd 0.6633 0.1522 0.0004 0.7155
a 0.0870 0.0184 0.0000 0.3392

sw slope 0.8474 0.0886 0.0000 0.2381
dbh 1.6256 0.2339 0.0000 0.7666
h − 0.9965 0.0878 0.0000 0.6866
upd 0.5037 0.2214 0.0376 0.7599
hsl − 0.1014 0.0146 0.0000 0.4182
cl 0.5173 0.0615 0.0000 0.7335

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6

Table 13 Parameter estimates for Oak

Type comp pred est se p λ

Simple stw slope 0.0363 0.0047 0.0000 0.1500
dbh 2.0657 0.0266 0.0000 0.1119
sth 0.7721 0.0305 0.0000 0.2087

stb slope 0.0158 0.0021 0.0000 0.0528
dbh 1.7910 0.0292 0.0000 0.0826
sth 0.9032 0.0357 0.0000 0.2227

cww intcp − 3.9731 0.7048 0.0000 0.3218
slope 0.0223 0.0035 0.0000 0.7045
dbh 2.1012 0.0229 0.0000 0.4790
h 0.8647 0.0692 0.0000 0.7374

cwb slope 0.0043 0.0005 0.0000 0.1611
dbh 1.9437 0.0365 0.0000 0.2718
h 0.9576 0.0633 0.0000 0.1775

sw slope 0.3028 0.0502 0.0000 0.1441
dbh 2.1945 0.0819 0.0000 0.4533
h − 0.6882 0.1227 0.0000 0.3586

Full stw slope 0.0251 0.0037 0.0000 0.1077
dbh 2.0770 0.0267 0.0000 0.0733
sth 0.7821 0.0301 0.0000 0.1190
hsl 0.0623 0.0119 0.0000 0.2881

stb slope 0.0152 0.0022 0.0000 0.0534
dbh 1.8045 0.0303 0.0000 0.0763
sth 0.9121 0.0375 0.0000 0.2383



Annals of Forest Science (2018) 75: 49 Page 21 of 27 49

Table 13 (continued)

Type comp pred est se p λ

cww slope 0.0125 0.0011 0.0000 0.6571

dbh 2.0818 0.0204 0.0000 0.3782

h 1.0629 0.0453 0.0000 0.5846

cwb slope 0.0046 0.0006 0.0000 0.3093

dbh 1.9220 0.0334 0.0000 0.1068

h 0.9592 0.0655 0.0000 0.2213

sw slope 0.2854 0.0598 0.0001 0.6089

dbh 2.3016 0.1341 0.0000 0.6686

h − 0.4922 0.1410 0.0017 0.5725

a − 0.4054 0.0871 0.0002 0.7158

cl 0.3846 0.1498 0.0236 0.8257

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6

Table 14 Parameter estimates for European ash

Type comp pred est se p λ

Simple stw slope 0.0111 0.0028 0.0001 0.0000

dbh 2.4593 0.0596 0.0000 0.0000

sth 0.7579 0.0583 0.0000 0.0000

stb slope 0.0367 0.0111 0.0011 0.0000

dbh 1.4515 0.0759 0.0000 0.0000

sth 0.7298 0.0579 0.0000 0.0000

cww slope 0.0220 0.0012 0.0000 0.0000

dbh 2.0683 0.0153 0.0000 0.0000

h 0.9050 0.0291 0.0000 0.0000

cwb slope 0.0006 0.0001 0.0000 0.0000

dh 1.7301 0.0173 0.0000 0.0000

sw slope 0.0966 0.0149 0.0000 0.0000

dbh 1.9989 0.0504 0.0000 0.0000

Full stw slope 0.0331 0.0106 0.0019 0.0000

dbh 2.6426 0.0920 0.0000 0.0000

sth 0.8950 0.0602 0.0000 0.0000

a − 0.3668 0.1046 0.0005 0.0000

stb slope 0.6414 0.3332 0.0552 0.0000

dbh 2.6680 0.2008 0.0000 0.0000

sth 0.7244 0.0841 0.0000 0.0000

h − 2.2208 0.3469 0.0000 0.0000

cww slope 0.0176 0.0014 0.0000 0.0000

dbh 2.0552 0.0247 0.0000 0.0000

h 0.9872 0.0453 0.0000 0.0000

cwb slope − 1.5154 0.3348 0.0000 0.0000

dh 0.4606 0.1297 0.0004 0.0000

Table 14 (continued)

Type comp pred est se p λ

upd 1.8394 0.2161 0.0000 0.0000

hsl − 0.8438 0.0521 0.0000 0.0000

sw slope 0.1277 0.0236 0.0000 0.0000

dbh 1.3032 0.1035 0.0000 0.0000

cl 0.8110 0.1163 0.0000 0.0000

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6

Table 15 Parameter estimates for Sycamore maple

Type comp pred est se p λ

Simple stw slope 0.0596 0.0311 0.0928 0.8844
dbh 1.9934 0.1214 0.0000 0.8741
sth 0.8314 0.0806 0.0000 0.7270

stb slope 0.0121 0.0058 0.0644 0.8102
dbh 1.8062 0.1332 0.0000 0.8452
sth 0.8178 0.1266 0.0001 0.8561

cww slope 0.0170 0.0025 0.0000 0.8070
dbh 2.0710 0.0354 0.0000 0.7156
h 0.9317 0.0607 0.0000 0.6975

cwb slope 0.0040 0.0004 0.0000 0.2680
dbh 2.0287 0.0229 0.0000 0.0975
h 0.7446 0.0447 0.0000 0.2014

sw slope 0.0426 0.0127 0.0015 0.3281
dbh 2.1166 0.1000 0.0000 0.3504

Full stw slope 0.0488 0.0291 0.1317 0.8721
dbh 2.0446 0.1245 0.0000 0.8362
sth 0.8127 0.0780 0.0000 0.6192

stb slope 0.0094 0.0039 0.0275 0.6089
dbh 1.8599 0.1024 0.0000 0.6529
sth 0.8212 0.0917 0.0000 0.6275

cww slope 0.0162 0.0021 0.0000 0.1928
dbh 1.5643 0.1572 0.0000 0.3514
h 0.9415 0.0791 0.0000 0.3012
upd 0.5472 0.1642 0.0021 0.4400

cwb slope 0.0041 0.0010 0.0001 0.3677
dbh 2.0251 0.0546 0.0000 0.1289
h 0.7476 0.1140 0.0000 0.3039

sw intcp 7.1339 0.9300 0.0000 0.1779

slope 0.0007 0.0010 0.4819 0.2640

dbh 1.6367 0.3151 0.0000 0.1643

cl 2.2019 0.5073 0.0001 0.2763

Column ‘comp’ refers to the fitted component, column ‘pred’ indicates
the associated predictors as well as intercept (intcp = α in Eq. 1) and
slope parameter (= β0). Columns ‘est’, ‘se’ and ‘p’ give parameter
estimates, standard errors and associated p-values. λ denotes the
increase in variance due to missingness. C.f. Tables 5 and 6



49 Page 22 of 27 Annals of Forest Science (2018) 75: 49

Appendix C: Estimated variance-covariance
matrices

The given matrices in this section are pooled from all
repeated analyses including both, the within imputation

variance and the between imputation variance. On the
diagonal (in italics), standard deviations of the errors are
given; the lower triangular matrix gives the covariances of
the errors between the different components and the upper
triangular matrix shows the respective correlations.

Table 16 Variance-covariance matrix of the errors for Norway spruce (simple model)

stw stb stwb cww cwb cwwb sw nd agb

stw 5e−04 0.8124 0.9955 0.3201 0.1696 0.3193 0.1211 0.1007 0.3711

stb 7.07e−08 2e−04 0.839 0.1478 0.3112 0.1811 0.1042 0.0853 0.2459

stwb 2.56e−07 8.12e−08 5e−04 0.3114 0.1848 0.3138 0.1216 0.1013 0.3677

cww 2.28e−06 3.95e−07 2.46e−06 0.0148 0.4997 0.9906 0.3281 0.2602 0.8892

cwb 3.03e−07 2.09e−07 3.67e−07 2.74e−05 0.0037 0.5932 0.2518 0.2126 0.5628

cwwb 3.24e−06 6.91e−07 3.54e−06 3.09e−04 4.64e−05 0.0211 0.3355 0.2661 0.8996

sw 9.36e−07 3.03e−07 1.05e−06 7.79e−05 1.5e−05 1.14e−04 0.0161 0.7125 0.6567

nd 1.18e−06 3.77e−07 1.32e−06 9.39e−05 1.93e−05 1.37e−04 2.79e−04 0.0244 0.5806

agb 5.55e−06 1.38e−06 6.11e−06 4.08e−04 6.49e−05 5.89e−04 3.28e−04 4.4e-04 0.0311

Values are averaged from each of ten imputation based analyses including the within imputation variance and the between imputation variance.
On the diagonal (italics), standard deviations of the errors are given; the lower triangular matrix gives the covariances of the errors between the
different components and the upper triangular matrix shows the corresponding correlations

Table 17 Variance-covariance matrix of the errors for Silver fir (simple model)

stw stb stwb cww cwb cwwb sw nd agb

stw 0.0046 0.8275 0.9635 0.0357 − 0.2046 0.0079 − 0.3116 0.4273 − 0.0706

stb 1.37e−06 4e−04 0.8965 − 0.1338 − 0.1351 − 0.1106 − 0.1371 0.4933 − 0.0726

stwb 2.52e−05 1.81e−06 0.0056 0.0216 − 0.1971 − 0.0016 − 0.2964 0.4343 − 0.0754

cww 2.79e−05 − 8.09e−06 2.06e−05 0.1687 0.7047 0.9567 0.0332 − 0.1863 0.7403

cwb − 2.13e−06 − 1.09e−07 − 2.49e−06 2.67e−04 0.0022 0.7384 0.5022 − 0.038 0.8367

cwwb 4.52e−05 − 4.89e−05 − 1.11e−05 1.99e−01 2.04e−03 1.2335 0.0305 − 0.2074 0.7905

sw − 3.95e−06 − 1.34e−07 − 4.57e−06 1.53e−05 3.08e−06 1.03e−04 0.0027 0.1652 0.506

nd 1.99e−05 1.78e−06 2.46e−05 − 3.16e−04 − 8.56e−07 − 2.57e−03 4.54e−06 0.01 0.1745

agb − 3.66e−04 − 2.91e−05 − 4.76e−04 1.4e−01 2.1e−03 1.09e+00 1.55e−03 1.96e−03 1.1193

Table 18 Variance-covariance matrix of the errors for Silver fir (full model)

stw stb stwb cww cwb cwwb sw nd agb

stw 0.003 0.8508 0.8643 0.3243 − 0.0383 0.2962 0.0612 0.2276 0.2981

stb 4.9e−07 2e−04 0.8113 0.166 0.0087 0.1639 0.0871 0.3811 0.3011

stwb 1.35e−05 8.03e−07 0.0052 0.3062 − 0.0156 0.3027 0.1153 0.1732 0.3094

cww 2.15e−05 6.96e−07 3.49e−05 0.022 0.2325 0.9602 0.1108 0.0643 0.6408

cwb − 1.97e−07 2.83e−09 − 1.38e−07 8.71e−06 0.0017 0.2938 − 0.0751 − 0.0146 0.1283

cwwb 2.77e−05 9.71e−07 4.87e−05 6.54e−04 1.55e−05 0.031 0.0992 0.0464 0.6398

sw 2.2e−07 1.98e−08 7.13e−07 2.9e−06 − 1.53e−07 3.67e−06 0.0012 0.1578 0.6619

nd 6.89e−06 7.3e−07 9.02e−06 1.42e−05 − 2.5e−07 1.44e−05 1.89e−06 0.01 0.5045

agb 8.23e−05 5.26e−06 1.47e−04 1.29e−03 2e−05 1.82e−03 7.22e−05 4.64e−04 0.0916
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Table 19 Variance-covariance matrix of the errors for Douglas fir (simple model)

stw stb stwb cww cwb cwwb sw nd agb

stw 3e−04 0.428 0.9858 0.3808 − 0.0264 0.3587 0.1386 0.0872 0.3196

stb 7.53e−08 6e−04 0.55 0.1672 0.3958 0.227 0.0048 − 0.0165 0.1471

stwb 1.13e−07 1.39e−07 4e−04 0.3687 0.0514 0.3635 0.1256 0.0931 0.3147

cww 1.94e−07 1.88e−07 2.7e−07 0.0018 0.2913 0.9717 0.3067 0.308 0.8381

cwb − 8.79e−09 2.92e−07 2.47e−08 6.21e−07 0.0012 0.4471 0.0258 0.2187 0.3684

cwwb 5.75e−07 8.05e−07 8.39e−07 9.96e−06 3e−06 0.0057 0.3107 0.3528 0.8755

sw 1.16e−06 8.81e−08 1.51e−06 1.64e−05 9.04e−07 5.23e−05 0.0296 0.8124 0.6893

nd 8.04e−08 − 3.37e−08 1.24e−07 1.82e−06 8.46e−07 6.56e−06 7.88e−05 0.0033 0.6647

agb 2.2e−06 2.24e−06 3.11e−06 3.68e−05 1.06e−05 1.21e−04 4.98e−04 5.3e−05 0.0244

Table 20 Variance-covariance matrix of the errors for Douglas fir (full model)

stw stb stwb cww cwb cwwb sw nd agb

stw 2e−04 0.3226 0.991 0.3756 − 0.1977 0.3262 0.1302 0.1112 0.3107

stb 2.57e−09 0 0.3956 0.0413 0.5037 0.1536 − 0.0395 − 0.0187 0.1004

stwb 4.75e−08 5.32e−09 3e-04 0.3574 − 0.1443 0.3227 0.1311 0.1136 0.3115

cww 2.13e−07 6.59e−09 3.42e−07 0.0034 0.0265 0.9736 0.2832 0.1774 0.7928

cwb − 3.24e−08 2.32e−08 − 3.99e−08 8.69e−08 0.001 0.2226 − 0.1615 − 0.0333 0.0852

cwwb 3.58e−07 4.74e−08 5.98e−07 2.14e−05 1.41e−06 0.0065 0.2504 0.18 0.8094

sw 1.56e−07 − 1.33e−08 2.65e−07 6.79e−06 − 1.12e−06 1.16e−05 0.0071 0.7679 0.5745

nd 5.3e−08 − 2.5e−09 9.13e−08 1.69e−06 − 9.16e−08 3.32e−06 1.54e−05 0.0028 0.4909

agb 1.48e−06 1.34e−07 2.51e−06 7.56e−05 2.34e−06 1.49e−04 1.16e−04 3.93e−05 0.0283

Table 21 Variance-covariance matrix of the errors for Scots pine (simple model)

stw stb stwb cww cwb cwwb sw nd agb

stw 6e−04 0.351 0.8252 0.3296 0.0933 0.3265 − 0.042 0.0308 0.3095

stb 4.28e−08 2e−04 0.34 0.0268 0.308 0.0728 − 0.0631 − 0.0491 0.0482

stwb 1.14e−06 1.68e−07 0.0024 0.2775 0.127 0.2861 − 0.0179 0.027 0.287

cww 4e−06 1.16e−07 1.37e−05 0.0208 0.2853 0.9812 − 0.0096 0.121 0.866

cwb 2.17e−07 2.55e−07 1.2e−06 2.36e−05 0.004 0.4147 − 0.0316 − 0.0174 0.3613

cwwb 9.29e−06 7.39e−07 3.31e−05 9.93e−04 8.02e−05 0.0487 0.012 0.116 0.895

sw −1.66e−06 − 8.92e−07 − 2.89e−06 −1.35e−05 − 8.51e−06 3.95e−05 0.0677 0.3837 0.4014

nd 1.48e−07 − 8.4e−08 5.26e−07 2.07e−05 − 5.67e−07 4.63e−05 2.13e−04 0.0082 0.3674

agb 1.07e−05 5.96e−07 4.05e−05 1.07e−03 8.52e−05 2.59e−03 1.61e−03 1.79e−04 0.0594

Table 22 Variance-covariance matrix of the errors for Scots pine (full model)

stw stb stwb cww cwb cwwb sw nd agb

stw 4e−04 0.4034 0.9897 0.2999 0.0079 0.2932 0.0482 0.0717 0.339

stb 3.73e−08 2e−04 0.5006 0.0139 0.2679 0.0703 − 0.0367 − 0.0055 0.0678

stwb 2.33e−07 5.55e−08 5e−04 0.2816 0.0592 0.2872 0.0402 0.0689 0.3291

cww 2.57e−06 5.58e−08 2.89e−06 0.0193 0.3246 0.965 − 0.0592 0.0571 0.841

cwb 1.22e−08 1.94e−07 1.09e−07 2.17e−05 0.0035 0.4663 − 0.1336 − 0.0423 0.3487

cwwb 4.88e−06 5.5e−07 5.73e−06 7e−04 6.06e−05 0.0375 − 0.0419 0.0634 0.8801

sw 9.48e−07 − 3.39e−07 9.49e−07 − 5.08e−05 − 2.05e−05 − 6.97e−05 0.0444 0.2447 0.3915

nd 2.29e−07 − 8.32e−09 2.64e−07 7.95e−06 − 1.06e−06 1.71e−05 7.82e−05 0.0072 0.284

agb 7.26e−06 6.83e−07 8.44e−06 7.84e−04 5.83e−05 1.59e−03 8.38e−04 9.87e−05 0.0483
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Table 23 Variance-covariance matrix of the errors for European beech (simple model)

stw stb stwb cww cwb cwwb sw agb

stw 8e−04 0.682 0.9817 0.1977 0.0894 0.1737 0.0128 0.2232

stb 8.37e−08 2e−04 0.709 0.072 0.251 0.0915 − 0.0104 0.1226

stwb 6.8e−07 9.19e−08 9e−04 0.1936 0.103 0.1693 0.011 0.2202

cww 3.4e−06 2.32e−07 3.51e−06 0.0212 0.5631 0.908 0.0507 0.793

cwb 2.36e−07 1.24e−07 2.87e−07 3.89e−05 0.0033 0.6216 0.0169 0.5259

cwwb 3.69e−05 3.64e−06 3.8e−05 5.05e−03 5.31e−04 0.2623 0.1033 0.8756

sw 8.69e−07 − 1.32e−07 7.86e−07 8.97e−05 4.59e−06 2.26e−03 0.0835 0.5329

agb 3.4e−05 3.49e−06 3.54e−05 3.16e−03 3.22e−04 4.32e−02 8.36e-03 0.1879

Table 24 Variance-covariance matrix of the errors for European beech (full model)

stw stb stwb cww cwb cwwb sw agb

stw 8e−04 0.6907 0.9818 0.205 0.0924 0.1955 − 0.0025 0.2308

stb 9.02e−08 2e−04 0.7247 0.0707 0.2378 0.0884 − 0.0252 0.119

stwb 6.76e−07 1e−07 9e−04 0.1928 0.1029 0.185 − 0.006 0.2245

cww 3.26e−06 2.25e−07 3.24e−06 0.0197 0.5705 0.9655 0.0388 0.8166

cwb 2.5e−07 1.29e−07 2.94e−07 3.76e−05 0.0033 0.6317 − 0.0074 0.5064

cwwb 5.49e−06 4.97e−07 5.49e−06 6.61e−04 7.34e−05 0.0347 0.0455 0.8275

sw − 1.57e−07 − 3.15e−07 − 3.98e−07 5.91e−05 − 1.91e−06 1.22e−04 0.0773 0.5422

agb 7.03e−06 7.26e−07 7.23e−06 6.07e−04 6.39e−05 1.09e−03 1.58e−03 0.0377

Table 25 Variance-covariance matrix of the errors for Oak (simple model)

stw stb stwb cww cwb cwwb sw agb

stw 0.001 0.5677 0.9784 0.4514 0.0524 0.375 0.0594 0.39

stb 1.04e−07 2e−04 0.557 0.0789 0.2107 0.0834 − 0.0177 0.1117

stwb 1.53e−06 1.52e−07 0.0015 0.4177 0.0546 0.3519 0.0678 0.3814

cww 8.01e−06 2.46e−07 1.11e−05 0.0174 0.2564 0.8966 0.1843 0.8138

cwb 1.32e−07 9.29e−08 2.05e−07 1.1e−05 0.0025 0.4327 0.0642 0.3824

cwwb 4.03e−05 1.57e−06 5.66e−05 1.64e−03 1.12e−04 0.1053 0.231 0.9268

sw 2.65e−06 − 1.38e−07 4.52e−06 1.4e−04 6.9e−06 1.06e−03 0.0437 0.5384

agb 3.99e−05 2e−06 5.83e−05 1.42e−03 9.42e−05 9.77e−03 2.36e-03 0.1001

Table 26 Variance-covariance matrix of the errors for Oak (full model)

stw stb stwb cww cwb cwwb sw agb

stw 9e−04 0.5527 0.9544 0.2298 0.0092 0.1722 9e-04 0.2283

stb 9.13e−08 2e-04 0.5446 0.0537 0.2107 0.0749 0.026 0.1156

stwb 1.46e−06 1.61e−07 0.0017 0.2198 0.0201 0.1728 0.0012 0.243

cww 2.26e−06 1.03e−07 3.88e−06 0.0107 0.3341 0.9349 0.1584 0.8563

cwb 2.1e−08 9.29e−08 8.19e−08 8.78e−06 0.0025 0.4685 0.0835 0.4274

cwwb 1.28e−05 1.08e−06 2.31e−05 8.07e−04 9.32e−05 0.0809 0.1969 0.925

sw 3.98e−08 2.12e−07 9.21e−08 7.69e−05 9.35e−06 7.24e−04 0.0455 0.5052

agb 2.04e−05 2.01e−06 3.89e−05 8.86e−04 1.02e−04 7.25e−03 2.23e−03 0.0969
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Table 27 Variance-covariance matrix of the errors for European ash (simple model)

stw stb stwb cww cwb cwwb sw agb

stw 0.0016 − 0.0765 0.9654 − 0.0158 − 0.1363 − 0.0104 0.1968 0.1522

stb − 5.98e−07 0.0049 0.1384 0.1827 0.638 0.2552 0.0833 0.2327

stwb 3.73e−06 1.62e−06 0.0024 0.0474 0.0113 0.0608 0.2319 0.2097

cww − 2.64e−08 9.26e−07 1.19e−07 0.001 0.6656 0.9794 0.2515 0.8801

cwb − 1.26e−06 1.79e−05 1.56e−07 3.99e−06 0.0058 0.765 0.3201 0.7425

cwwb − 1.15e−07 8.61e−06 1.01e−06 7.05e−06 3.05e−05 0.0069 0.2609 0.9195

sw 3.26e−06 4.19e−06 5.76e−06 2.7e−06 1.9e−05 1.87e−05 0.0103 0.5891

agb 1e-05 4.66e−05 2.07e−05 3.76e−05 1.76e−04 2.62e−04 2.5e−04 0.0411

Table 28 Variance-covariance matrix of the errors for European ash (full model)

stw stb stwb cww cwb cwwb sw agb

stw 0.0054 − 0.2537 0.9839 − 0.0501 0.0334 0.0136 0.208 0.1418

stb − 9.32e−06 0.0068 − 0.0879 0.0712 − 0.0558 0.0186 − 0.0864 − 0.0279

stwb 2.57e−05 − 2.85e−06 0.0048 − 0.0311 0.0295 0.0209 0.195 0.1431

cww − 2.83e−07 5e−07 − 1.55e-07 0.001 0.3128 0.9527 0.1122 0.8597

cwb 3.97e−08 − 8.24e−08 3.09e−08 7.11e−08 2e−04 0.4957 0.1447 0.4836

cwwb 7.54e−07 1.28e−06 1.02e−06 1.01e−05 1.1e−06 0.0102 0.1313 0.9037

sw 6.8e−06 − 3.51e−06 5.63e−06 7.02e−07 1.9e−07 8.04e−06 0.006 0.5344

agb 6.1e−06 − 1.49e−06 5.44e−06 7.07e−06 8.36e−07 7.28e−05 2.54e−05 0.0079

Table 29 Variance-covariance matrix of the errors for Sycamore maple (simple model)

stw stb stwb cww cwb cwwb sw agb

stw 0.0171 0.4416 0.998 0.0584 0.0213 0.0534 − 0.0061 0.0724

stb 1.66e−05 0.0022 0.4407 0.0776 -0.0187 0.0631 − 0.0785 0.0683

stwb 3.63e−04 2.06e−05 0.0213 0.0542 0.0227 0.0499 0 0.0732

cww 2.25e−06 3.84e−07 2.6e-06 0.0023 0.9308 0.9984 0.2799 0.8609

cwb 1.33e−06 − 1.49e−07 1.76e−06 7.62e−06 0.0036 0.9487 0.4115 0.8941

cwwb 2.96e−06 4.5e−07 3.45e−06 7.31e−06 1.12e−05 0.0032 0.3007 0.8724

sw − 1.35e−07 − 2.24e−07 3.65e−10 8.21e−07 1.94e−06 1.27e−06 0.0013 0.7

agb 8.45e−06 1.02e−06 1.06e−05 1.32e−05 2.21e−05 1.93e−05 6.21e−06 0.0068

Table 30 Variance-covariance matrix of the errors for Sycamore maple (full model)

stw stb stwb cww cwb cwwb sw agb

stw 0.0171 0.4416 0.998 0.0661 0.0213 0.0456 − 0.0064 0.0817

stb 1.66e−05 0.0022 0.4407 0.0757 -0.0187 0.0267 − 0.013 0.1447

stwb 3.63e−04 2.06e−05 0.0213 0.0632 0.0227 0.0428 0.0012 0.0854

cww 1.11e−06 1.63e−07 1.32e−06 0.001 0.7821 0.9576 − 0.0926 0.6431

cwb 1.33e−06 − 1.49e−07 1.76e−06 2.79e−06 0.0036 0.8477 − 0.1215 0.6014

cwwb 2.49e−05 1.87e−06 2.91e−05 3e−05 9.82e−05 0.0319 − 0.0934 0.6574

sw − 7.95e−08 − 2.07e−08 1.8e−08 − 6.59e−08 − 3.19e−07 − 2.16e−06 7e−04 0.4952

agb 1.24e−05 2.82e−06 1.61e−05 5.6e−06 1.94e−05 1.86e−04 3.18e−06 0.0089
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Cienciala E, Černý M, Tatarinov F, Apltauer J, Exnerová Z (2006)
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- Ergebnisse des Sollingprojekts : 1966-1986; 145 Tab. Ulmer,
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Forschung und Entwicklung / Institut für Forstwissenschaften vol
18. Inst. für Forstwiss., Eberswalde-Finow

Henningsen A, Hamann JD (2007) Systemfit: A package for
estimating systems of simultaneous equations in R. J. Stat. Softw.
23:40. https://doi.org/10.18637/jss.v023.i04

IPPC (2003) Good practice guidance for land use, Land-Use change
and forestry institute for global environmental strategies. IGES,
Kanagawa Prefecture

Joosten R, Schumacher J, Wirth C, Schulte A (2004) Evaluating
tree carbon predictions for beech (Fagus sylvatica L.) in Western
Germany. For Ecol Manag 189:87–96. https://doi.org/10.1016/
j.foreco.2003.07.037

Krauß HH, Heinsdorf D (2008) Herleitung von Trockenmassen
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