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Abstract
Drought impact prediction can improve early warning and thus preparedness for droughts. Across
Europe drought has and will continue to affect environment, society and economy with
increasingly costly damages. Impact models are challenged by a lack of data, wherefore reported
impacts archived in established inventories may serve as proxy for missing quantitative data. This
study develops drought impact models based on the Alpine Drought Impact report Inventory
(EDIIALPS) to evaluate the potential to predict impact occurrences. As predictors, the models use
drought indices from the Alpine Drought Observatory and geographic variables to account for
spatial variation in this mountainous study region. We implemented regression and random forest
(RF) models and tested their potential (1) to predict impact occurrence in other regions,
e.g. regions without data, and (2) to forecast impacts, e.g. for drought events near real-time. Both
models show skill in predicting impacts for regions similar to training data and for time periods
that have been extremely dry. Logistic regression outperforms RF models when predicting to very
different conditions. Impacts are predicted best in summer and autumn, both also characterised by
most reported impacts and therefore highlighting the relevance to accurately predict impacts
during these seasons in order to improve preparedness. The model experiments presented reveal
how impact-based drought prediction can be approached and complement index-based early
warning of drought.

1. Introduction

Impact-based prediction of natural hazards offers
new possibilities for emergency management and
adaptation strategies for decision-makers and
practitioners [1]. Currently, early warning systems
typically predict the magnitude, location and tim-
ing of potentially damaging hazard events, but rarely
provide impact estimates, such as expected physical
damage, affected people, disruption of service or fin-
ancial loss [2]. Predictions (or forecasts) including
such impact or damage data may increase willing-
ness to take protective action and have received broad
support from a communication perspective [3, 4].

Themethodologies for existing impact-based pre-
dictions vary considerably across natural hazards.
For example for earthquakes, operational impact

forecasting systems are implemented, while for floods
only prototypes exist [2]. For drought, several efforts
have been made. For Africa an operational system
focusing on famines and life loss caused by drought
has been developed [5]. Whereas, for the US no
impact-based drought prediction is in place, despite
extremely damaging drought events, in particular on
agriculture [6]. For Europe there is a limited num-
ber of scientific studies that incorporated drought
impacts into modelling approaches [2]. However,
the increasing potential of severe drought impacts in
near and far future has been repeatedly highlighted
[7–9] and thus should be integrated by early warning
systems.

Drought impact models are complicated by the
multifaceted nature of drought [10]. As there is
no consensus on drought definition, it is difficult
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to determine onset and termination of drought.
Typically, drought indices monitor the hazard’s char-
acteristics and define the abnormal dry conditions.
Reduced water availability builds up slowly, accumu-
lates over time and can persist over several years,
hence drought has been referred to as ‘creeping’
disaster [11]. This challenges the identification of
drought impacts, especially those with indirect caus-
ality and confounding factors, e.g. whether tree mor-
tality is caused by drought, pest diseases or heatwaves
is difficult to disentangle. Furthermore, drought
impacts may linger for years after the actual drought
has ceased [12]. The variety of affected sectors is large
and their different response times to dry conditions
are difficult to integrate in modelling, e.g. different
crop or forest types or water supply systems [13].
Thus, compared to other hazards with more direct
impacts, drought impacts are hard to identify, also
in monetary terms [14], resulting in limited impact
data.

In consequence, amain challenge of impact-based
prediction is the lack of quantitative drought impact
data. Efforts that have been made to estimate impacts
predominantly focus on the agricultural sector [14,
15]. Additionally, text-based drought impact data-
bases or inventories received scientific interest, as
they not only archive past impacts, but also struc-
ture them specifically across various affected sectors.
Most commonly used inventories are the US Drought
Impact Reporter by the National Drought Mitigation
Center [16] and the European Drought Impact
report Inventory (EDII) by [17]. Recently, the Alpine
Drought Impact report Inventory (EDIIALPS) was
published, presenting the European Alps’ and their
foothills as vulnerable to drought [18]. These invent-
ories define impact as a negative consequence of the
drought hazard on environment, society and eco-
nomy and demonstrate that drought can have multi-
faceted negative consequences, with most impacts on
agriculture, water supply and quality and forestry.
Several studies used the reported impacts archived
in the EDII for impact modelling [13, 19–22]. They
modelled the statistical link between impacts and
drought indices capturing drought conditions. All
of them analysed a given spatial unit separately and
claimed that model performance and predictor selec-
tion was region-specific. Acknowledged results from
these studies are (1) maps of the individually mod-
elled regions with their specific impact probability,
and (2) recommendations to select indices for differ-
ent impact types and regions. According to our know-
ledge, only one study tested the potential to predict
drought impacts with a lead time of several months
[23]. Since these predictions were tested in the past,
we call that ‘re-forecast’. None of the studies tested
the models performance to predict drought impacts
in other regions or into the far future.

The study’s aim is to take drought impact mod-
elling one step further towards prediction bey-
ond the training data environment. Therefore, the
study builds on prior experience of linking repor-
ted impacts with suitable drought indices. In partic-
ular, we move from unit-specific ‘local’ models to
a regional model integrating spatial components. As
the EDIIALPS is themost recent and spatially complete
source for drought impacts across a heterogeneous
terrain, we use this database to test the models’ spa-
tial transferability. Specifically, we test and evaluate
the results of two commonly used models asking the
following questions:

(i) How well do predicted impact estimates reflect
reported drought impacts in other regions?

(ii) How well do the models re-forecast drought
impacts?

2. Methods

2.1. Study region and drought impact data
Europe’s so-called ‘Alpine Space’ [24] covers theMain
Alpine Crest and the Alps’ foothills (figure 1(a)).
The heterogeneous terrain includes high peaks up
to 4848 m asl, deep valleys, and steep slopes of all
aspects, as well as plateau areas and lowlands. In this
region agriculture is characterised by a long tradi-
tion of pasture farming on higher elevation regions,
in addition to the cultivation of crops in the valleys.
Forests serving as protection against landslides and
avalanches cover almost a third of the area with a
higher tree line in the Southern region. The popula-
tion is heterogeneously distributed with large cities in
low elevation areas and small villages at higher alti-
tudes. The annual precipitation ranges from 400 to
beyond 3000 mmyear−1 [26] and the European Alps
contribute large amount of water to the four major
European rivers Danube, Po, Rhine and Rhone [27].
Due to these water-rich characteristics the Alps are
recognised as Europe’s Water Towers [28].

Despite the humid mountain climate, water
scarcity is a serious issue in some parts of the area
during certain periods, e.g. when the tourism sea-
son increases the water demand [29]. Across the
Alpine Space, drought impacts were reported par-
ticularly during the warm and dry years of 2003,
2015, and 2018 [18]. The Alpine Drought Impact
report Inventory (EDIIALPS) archives these impact
reports based on the text-coding approach of the
EDII [17]. Currently, the database stores more than
3200 drought impacts classified into 13 categories
and 96 subtypes with most impacts localised at least
to NUTS 3 regions (EDIIALPS V1.1, doi: 10.6094/
UNIFR/230219). NUTS 3 is a spatial unit based on
the nomenclature of territorial units for statistics used
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Figure 1. The Alpine Space in central Europe. (a) Land cover modified by Copernicus in 2018 [25] across the countries (white
borders) and their share across the Alpine Space. (b) Subregional pairs and elevation defined by [18] with NUTS 3 regions (white
borders). (c) Reported soil-moisture drought (DSM) impacts and hydrological drought (DH) impacts between 2001 and 2020:
sum of impact occurrence per NUTS region (Ns). (d) Geographic variables used for the predictions, population density presented
with a logarithmic scale.

to subdivide countries into minor regions for stat-
istical purposes [30]. The Alpine Space and thus the
EDIIALPS covers 188 NUTS 3 regions.

For the model experiments, we defined two
subregional pairs within the Alpine Space accord-
ing to [18]: (1) the Northern and Southern region
(NorthernR and SouthernR), and (2) the high-
altitude and pre-Alpine region (HighAltR and
PreAlpR, figure 1(b)). For each of these four subre-
gions, we extracted a monthly time-series of reported
impacts at least to a NUTS 3 level (in the following
called NUTS regions). The timespan considered is
between 2001 and 2020, and the impacts considered
needed at least information about the start of occur-
rence with a specific year and season or month.
If information about the end was unavailable, the
impact was assumed to only have occurred in that
given month or season. Then, the reported impacts
were classified into impacts likely triggered by soil-
moisture drought (DSM impacts) and/or hydrological
drought (DH impacts) proposed by [18]. Most DSM

impacts relate to reports about reduced crop pro-
duction and decreased plant vitality, and most DH

impacts relate to reports about limited water sup-
ply including irrigation and reduced water quality.
Thus, with these two impact groups we aim to pre-
dict a group of drought impacts that we assume are
caused by similar drought characteristics (for fur-
ther we refer to [18]). Impacts assigned to a spe-
cific month and NUTS region were translated into
‘impact occurrence’, while the remaining periodswere

labelled as ‘no impact occurrence’, converting the
qualitative information of reported impacts into bin-
ary occurrence/non-occurrence data, similar to [31].
Subsequently, two binary time-series with a monthly
resolution focusing on two drought type conditions
were obtained: occurrences of DSM impacts and of
DH impacts. The sum of occurrences varies strongly
between both timeseries and between NUTS regions
(Ns, figure 1(c)).

2.2. Predictor variables
As monthly predictors, we selected eight drought
hazard indices in order to represent different
drought characteristics captured by the monitoring
of meteorological, hydrological and remote sens-
ing data (table 1): The Standardised Precipitation
Index (SPI) [34] and the Standardised Precipitation
Evapotranspiration Index (SPEI) [35], the Soil
Moisture Index [36] of the top soil layer (0–7 cm into
the ground, SMI-1) and of the subsoil layer (7–28 cm
into the ground, SMI-2), the Vegetation Condition
Index (VCI) [37] and the Vegetation Health Index
(VHI) [38]. For the SPI and SPEI we selected accu-
mulation periods of 3 months (SPI-3, SPEI-3) and
6 months (SPI-6, SPEI-6) in order to account for
precipitation that initially fell as snow and was after-
wards released with warmer temperatures [39]. In
addition to the snow accumulation effect, winter typ-
ically resets the hydrological storage system every
year, wherefore we did not consider longer accumu-
lation periods. The indices were derived from the
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Table 1. Set of predictors used by the developed models.

Predictor Source Underlying data Processing to NUTS 3

Drought indicesa

SPI-3, SPI-6 ADO [32] Precipitation (1990–2020) Mean
SPEI-3, SPEI-6 ADO [32] Precipitation, potential evapotranspiration

(1990–2020)
Mean

SMI-1, SMI-2 ADO [32] Volumetric soil water layer 1 and 2 (1990–2020) Mean
VCI ADO [32] Visible and near infrared wavelengths

(2001–2020), both masked with vegetated surface
Mean

VHI ADO [32] Visible and near infrared wavelengths, land
surface temperature (2001–2020),
all masked with vegetated surface

Mean

Geographic variables
elev EEA [33] Elevation (2016) Median
agric CLC [25] Agricultural used land (2018) Sum
forest CLC [25] Forest area (2018) Sum
popd Eurostat [30] Population density (2018) —
Time variable
season — Month —
Reporting behaviour
cweight EDIIALPS [18] DH and DSM impacts (2001–2020) Sum of country
a The selected drought indices were computed specifically for drought monitoring across the Alpine Space by the Alpine Drought

Observatory ADO [40].

Alpine Drought Observatory [40], which monitors
drought across the Alpine Space (https://ado.eurac.
edu/), and were then aggregated to monthly means
for each NUTS region.

Four geographic variables for each NUTS
region served to describe the geographical variation
(figure 1(d) and table 1): forest area (forest), agri-
cultural used land (agric), elevation (elev) and pop-
ulation density (popd). The predictors forest, agric
and popd represent sensitivity factors of vulnerability
and have often been used in drought risk analyses
[41–43]. Elev represents the topography to integ-
rate one of the most prominent features of the study
region. The predictors forest and agric built on the
most recent Copernicus land cover data (CLC) [25],
as area of any forest type respectively and any type of
agricultural land, respectively, in each NUTS region.
Elevation (elev) represented the median elevation
based on the digital elevation model provided by
the European Environment Agency (EEA) [44] and
the mean population density (popd) stemmed from
Eurostat [30].

The predictor ‘season’ has been used by sev-
eral studies [13, 23, 45] in order to account for the
clear seasonality of drought impact occurrence. The
reporting variable ‘cweight’ addressed the known dif-
ferences across the countries within the Alpine Space
with the sum of all DSM and all DH impact occur-
rences in Germany, Austria, Switzerland, France, Italy
and Slovenia.

2.3. Model types, tested experiments and
evaluation
We applied two different model types to ensure that
our results are not an artefact of a specific approach
(figure 2(a)): Logistic regression (LR) and random

forest (RF), both frequently applied to binary occur-
rence data and also when modelling with reported
drought impacts [22, 23, 47–49]. The model exper-
iments predicting drought impacts included all data
for which all predictors were available at monthly res-
olution, e.g. cloud cover prevented the calculation of
theVCI andVHI for some regions during certain time
periods. Regarding LR, we log-transformed the pre-
dictors popd, forest and agric to achieve a more even
coverage of predictor space.

Testing the predictive power and transferability
of the models, we applied two model experiments in
space and one in time (figure 2(b)). The predictions
in space evaluated to what degree the models can pre-
dict impact occurrences in other regions, e.g. to those
omitted from training data. With two spatial scales,
the models potential to predict in space was assessed:
‘Swithin’ considered each subregion individually and
thus is applied to more similar conditions. Swithin pre-
dicted impact occurrences following the leave-one-
out method, predicting the impact occurrence in one
NUTS region with a trained model by the data of all
remaining NUTS regions, a repeating process until
all NUTS regions in the considered subregion are
predicted. ‘Sother’ tested the prediction to contrasting
climatic and altitudinal conditions. Therefore, Sother
trained the models with the data from one subregion
and predicted the impacts in all NUTS regions of the
other subregion.

The experiment ‘Tmonth’ predicted impacts of the
next month with all data before, simulating a re-
forecast. This way, the training dataset increased from
month tomonth over the whole time period. The first
predicted month was January 2005 with a model fit
to data between January 2001 and December 2004.
The last predicted month was December 2020 with
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Figure 2. Conceptual framework illustrating (a) the applied model types, (b) model experiments to predict in space, and in time,
and (c) the evaluation using the AUC [46] and r2 of aggregated impacts.

all data between January 2001 and November 2020.
To reduce complexity, themodels did not use weather
forecasts, but used themonitored index’ values to pre-
dict occurrences. Hence, Tmonth focused solely on the
impact prediction and not on the hazard component.

We applied Sother, Swithin and Tmonth in each sub-
region, and therefore implemented an evaluation
approach for 48 model predictions (2 model types,
3 experiments, 4 subregions, 2 impact types, figure 2):
first, we calculated the Area Under the receiver oper-
ating characteristic Curve (AUC) [46]. The AUC has
been widely used for probabilistic forecasts, as it
measures the prediction accuracy based on the true-
positive rate (sensitivity) and the false positive rate
(specificity). The AUC ranges from [0,1] where AUC
= 1 is a perfect score andAUC! 0.5 indicates no skill.
Second, we evaluated the predictions of Swithin, Sother
and Tmonth over time (Nt) and space (Ns) by the sum
of predicted occurrence probabilities versus the sum
of reported occurrences.

Nt =
∑

s∈{NUTS}

st · Is (1)

Ns =
∑

t∈{date}

ss · It (2)

where t represented a date between January 2001
and December 2020, s represented a NUTS region in
the considered subregion. I represented the impact
occurrence either binary, when Nt and Ns were
calculated for reported occurrences (I ∈ {0,1}), or
as probability when Nt and Ns were calculated

for predicted occurrences (I ∈ [0,1]). The square of
Pearson’s r (r2) between observed and predicted Nt

and Ns helped to identify, if the applied models pre-
dicted better at the temporal or spatial scale.

3. Results

3.1. Predictive model performance
Drought predictions were more successful within a
region (Swithin) than to other regions (Sother, figure 3).
DSM impacts weremore difficult to predict than those
of DH, most pronounced for the predictions in space.
Since fewer impacts were recorded for winter, also the
model predictions in winter were of overall poorer
quality (figure 3(b)). For the other seasons better per-
formance could be shown with, on average, best per-
formance for autumn (median AUC= 0.87) followed
by summer and spring.

LR outperformed RF in most cases and most
clearly when predicting to other regions (median
AUC = 0.85 and 0.78, figure 3(a)). RF performed
slightly better within a region, with less difference
between DSM and DH impacts and with the best over-
all prediction of DH impacts in the Northern region
(AUC= 0.93).

LR showed better skill than RF for the re-forecast
Tmonth, in particular shown by the better results
for DSM impacts (median AUC = 0.87 and 0.83,
figure 3(a)). Contrasting the model experiments in
space, Tmonth predicted the winter season substan-
tially better. Moreover, Tmonth did not result in con-
sistent differences between DSM and DH impacts.
Even though the training data increased, the per-
formance of Tmonth showed no improvement over
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Figure 3. Predictive quality based on AUC comparing (a) model types across all model experiments, and between (b) model
experiments for each season. The point colour displays the impact type, the shape each subregion.

the timespan, neither for any subregion, nor for any
model type (supplementary data, figure S1).

3.2. Aggregated impact predictions in space and
time
According to the aggregated predictions versus obser-
vations (figure 4), LR outperformed RF in most cases
by higher r2. Both models types showed consistently
higher r2 for predictions within a region than to other
regions, and better results for DH impacts than for
DSM impacts, confirming previous results.

Regarding themodel experiments in space, higher
r2 for Nt than for Ns indicated better prediction for
specific time periods than for specific NUTS regions.
For example, r2 was lowest for the prediction in
specific NUTS regions, while it was highest for the
monthly aggregations (compare Ns and Nt of Sother
and Swithin).

Regarding the re-forecast Tmonth, LR performed
generally better than RF. In particular, RF showed
little skill to predict impact probabilities to the cor-
responding months the EDIIALPS reports them (r2 of
Nt ! 0.25).

4. Discussion

Our prediction experiments showed that hydrological
drought (DH) impacts can be predicted better than
soil-moisture drought (DSM) impacts during all

prediction experiments. Within a region, predictions
were generally good, and random forest (RF) was
slightly superior to logistic regression (LR), while
across regions, LR fared substantially better. LR
showed also slightly better skill than RF during the re-
forecast experiment.

4.1. Prediction within and to other regions
As the drought characteristics of the prediction data
deviated from the training data, RF’s fundamental
inability to extrapolate beyond the range of training
data became problematic and led to a loss of pre-
diction accuracy, when predicting regions character-
ised by very different climatic (from the Northern
to the Southern region and vice versa) and altitud-
inal conditions (from the pre-Alpine to the high-
altitude region and vice versa). In those cases, LR per-
formed substantially better. For the prediction within
a region, the training data appeared to cover a suffi-
cient range that enabled better performance by RF. In
conclusion, for regionsmore similar andwith enough
training data we suggest to use the RF algorithm, but
when predicting to conditions outside the training
data environment, we suggest to better use regression
approaches.

The consistent better predictions of DH impacts
compared to DSM impacts probably have resulted
from DH impacts’ larger sample size (n = 541)
compared to DSM impacts (n = 336). In addition,
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Figure 4. Scatterplots with r2 of aggregated predictions and observations per month (Nt) and per NUTS region (Ns) for (a) the
RF model and (b) the LR model, each split by the model experiments in space and time.

DH exhibits a stronger occurrence seasonality [18],
allowing themodel to identify patterns of DH impacts
and hence yielding better predictions.

The seasonal variability of predictive perform-
ance (figure 3) supports that the accuracy is affected
by the impacts’ sample size. Impacts were best
predicted in autumn, followed by summer, spring
and winter corresponding to the amount of repor-
ted impacts, highest in summer (n = 1954), fol-
lowed by autumn (n = 604), spring (n = 476)
and winter (n = 136). During winter, worst per-
formance was presented, in particular with no skill
for regions, where the EDIIALPS reported almost no
impacts. One reason might be that during winter
the value range of the drought indices used as pre-
dictors differed from the value range of the train-
ing data. In particular, when predicting from the
high-altitude region to the pre-Alpine region (or vice
versa) the winter season differed most, and therefore,
the winter predictions might have lacked perform-
ance. Another reason might be the limited aware-
ness of people to drought in winter, which might
have led to few reports on winter impacts, des-
pite their occurrence. [50, 51] highlight the relev-
ance of winter for droughts, as accumulative drought

effects from summer and autumn can result in winter
impacts. Typical examples from the EDIIALPS are lack
of water for artificial snow production and thus less
visits in ski resorts. However, the number indic-
ates little relevance in the past [18]. With climate
change and raised temperatures winter impactsmight
increase in future. Therefore, a better understand-
ing of the direct and prolonged consequences are
essential to improve the presented drought impact
predictions.

The best prediction serves as potential applica-
tion case and is therefore illustrated in more detail
(figure 5). For this prediction of DH impacts in the
Northern region, most occurrence data (n = 354)
was available. The predictions matched the reported
peaks of impact occurrences during the years 2003,
2011, 2015 and 2018, although less clear for the lat-
ter two events (figure 5(a)). The reasons for underes-
timation might be a more active reporting during the
later peaks due to digitization and higher interest over
the last decade, a trend that has not been captured
by the model fit. Contrasting the peak periods, the
model predicted few impact probabilities during time
periods without any observed occurrences, e.g. in the
June, 2006. Furthermore, the model located impact

7



Environ. Res. Lett. 18 (2023) 074004 R Stephan et al

Figure 5. Results of RF predicting DH impacts within the NorthernR by the experiment Swithin following the leave-one-out
method across the NUTS regions. Scatterplots and barplots plotting predictions versus observations for (a) aggregations per
month (Nt) and (b) aggregations per NUTS region (Ns). The highest underestimated months are labelled and marked in red. The
colour of the bars present the location across the countries covered by the NorthernR.

probabilities in all NUTS regions, while the EDIIALPS
did not report any DH impact for 29 out of 122 NUTS
regions across the Northern region (figure 5(b)).
Thus, the prediction distributed impactsmore homo-
geneously. The overestimation during certain periods
and for specific regionsmight be an artefact of gaps in
the EDIIALPS in accordance with [18]. They presen-
ted several reasons for potentially missed impacts.
Furthermore, the example shows clearly the effect
of the predictor for reporting behaviour (cweight)
accounting for country-specific differences, since the
predicted impact probabilities rank as the reported
impacts: highest in France followed by Switzerland
and then by Austria and Germany. In addition to
varying reporting behaviour, we assume national-
specific vulnerability could as well have driven the
differences between the countries. Including the pre-
dictor cweight appears essential for the predictions cor-
recting the sampling bias in the EDIIALPS, but it is
simplified and thus could be further addressed. The
predicted peaks estimate where and when further
impacts may have occurred and could thus serve as
a tool to identify gaps in the database.

4.2. Re-forecasting skill
LR performed better in the re-forecast Tmonth than RF,
and thus predicted better impacts of the next month
(figure 3(a)), confirming the better skill to extrapol-
ate. Furthermore, the better performance of LR than
of RF to locate impact probabilities to specific time
periods, in particular during winter was shown by the
evaluation with r2 and the AUC (figures 3(b) and 4).
One reasonmight be the higher share of training data

relative to the prediction data, which covered only a
singlemonth. In contrast, the share of prediction data
of Sother was substantially higher, since Sother predicted
the whole time period for all NUTS regions in the
other subregion. Hence, more training data probably
has led to better predictions.

However, the AUC evaluating Tmonth on a yearly
basis did not indicate any trend of improved perform-
ance, despite the increasing training data set (sup-
plementary data, figure S1). Since the AUC changed
from year to year, the data used to fit the models
might be below a certain density of records needed
to identify all patterns, even when data of the whole
time periods would be used. For selected single
regions with good data coverage [23] presented a re-
forecasting skill up to seven months ahead highlight-
ing the potential of models using reports as proxy
data also for time periods further in future. To over-
come data scarcity, text-mining approaches may help
and could be implemented almost in near-real time
[49]. But the developed text-mining approaches still
have to cope with correct timing and classification of
drought impacts and are also affected by reporting
behaviour.

The re-forecast was implemented with 1 month
lead time showing good performance throughout
the year and presenting the potential of reported
impacts as proxy data also in regions of spatially lar-
ger extent. For more robust results, we suggest to
compare the estimates based on reported impacts
with other quantitative data, in particular when the
model is developed for specific impact types. For
example, when predicting agricultural impacts, the
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results could be compared with data for yield losses,
similarly to [52]. For an operational implementa-
tion, the model has to predict the hazard component
as well, as with numerical weather prediction mod-
els. The coupling of these two models adds uncer-
tainty, but is required to complement early warning
systems [2].

4.3. Limits and future directions
The models used predictors that have been identified
by other studies as suitable for quantifying drought
impacts [22, 31, 47, 48, 53]. Even though some of
the selected drought indices are correlated, this study
applied a combination of them for two reasons. (1)
We assume a similar level of correlation in the pre-
diction data meaning the predictive performance is
not affected by correlation of the training data [54],
and (2) we aim to gather the best prediction skill,
and not to identify the best exploratory variables.
The predictions might be further improved by integ-
rating hydrological data, such as discharge or snow
measurements, especially regarding the winter sea-
son and the higher-elevation regions. Data of snow
and glacier melt may help to account for water stor-
ages that are released with warmer temperatures.
Integrating such processes may better identify the
delayed occurrence of drought impacts, in particular
when distinguishing from upstream to downstream
[55]. In addition, process-based components, captur-
ing interactions and feedback loops, could improve
the performance. Most impact-based predictions of
natural hazards are simplified due to the limited
experience compared to forecast the hazards, such as
floods and storms [2]. In the drought context, the
limited impact data also lead to simple model struc-
tures that may miss more complex processes.

The models used text reports from the EDIIALPS
as a proxy to predict impact occurrences, an approach
applied by several studies due to the lack of alternative
quantitative data [13, 22, 23, 56] . Even though these
studies highlighted the potential to provide useful
information for drought risk management, the con-
version of text-data into quantitative data has limita-
tions. There might have been impacts not recognised
and/or not described and published and thus missed.
On the other hand, an increasing number of reported
impacts might be affected by higher awareness rather
than the level of impact severity [13, 17]. Thus, it is
difficult to disentangle reporting behaviour from true
impacts and their severity level. To reduce such bias,
the predictions were made with a binary response
and by the predictor accounting for country-specific
reporting behaviour, but could be addressed further.

Both impact types integrate a broad range of
impacts. DSM impacts cover consequences, such as
reduced productivity of crop cultivation, yield losses,
or reduced tree vitality, andDH impacts availability of

irrigation water, water supply, water quality or mor-
tality of aquatic species. Each of the assigned impact
types have their specific causes from the drought-
hazard component, but as well from exposure and
vulnerability characteristics. With better data avail-
ability the implemented method could be tested on
more specific impacts with impact-type dependant
predictors.

This study implemented LR and RF, since both
have been previously used for modelling drought
impacts based on text reports [22, 23, 47–49]. Despite
very different optimisation processes, the results sup-
ported that both model types are generally suitable
to take drought impact modelling one step further
towards prediction. However, the more modern RF
approach was shown to be inferior to LR, when pre-
dictions were beyond the training data environment.
When using the report data as count response, model
types such as Poisson regression or negative binomial
regression could be suitable alternatives.

5. Conclusion

The drought impact predictions presented in this
study reveal particular limits and potentials. With the
help of reported impacts and themost commonmon-
itoring indices, the implemented models are the first
to integrate spatial components and testing the pre-
diction of impact occurrence in regions outside the
training data area. The results highlight the poten-
tial to identify and fill gaps in data-sparse regions,
though with considerably more confidence for more
similar regions. For model applications to different
conditions our results suggest that logistic regression
obtains better skill to extrapolate compared to ran-
dom forest. Winter impacts are not predicted well,
but occur rarely, and might be improved by targeted
data including snow. Both model types presented
good re-forecasting skill with one month lead time.
However, in this setup the increasing training data
did not improve the prediction performance. Further
work might test improvements from a larger range
of drought events and additional impact data, more
targeted or additional predictors and different model
structures. Comparisons with complementary data
sources and processes-based approaches are needed
to better understand causal relations between drivers
and impacts and should be used in combination for
drought early-warning.
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