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Abstract
& Key message Bark thickness was shown to vary between
regions, stands, and trees. Bark thickness prediction equa-
tions of different model complexity can be suggested de-
pending on the purpose of application. Site and stand con-
ditions, which influence variation of growth rate to a large
extent, seem to have a strong influence on bark thickness,
with better site quality leading to smaller relative bark
thickness.
& Context For many applications in forestry and forest sci-
ence, local or regional species-specific bark thickness equa-
tions are used to estimate inside-bark diameters with outside-
bark diameter measurements.
& Aims The objectives of this study were (1) to assess varia-
tion in bark thickness due to tree and stand factors in two

Norway spruce (Picea abies (L.) Karst) datasets from different
time periods, (2) to compare and evaluate alternative
established model forms for estimating bark thickness, and
(3) to assess spatial variation in bark thickness to estimate
the effects of environmental factors on bark thickness.
& Methods Different bark thickness models were chosen from
the literature and compared for their predictive quality for new
measurements and a dataset from the 1970s. Mixed-effect
modelling was applied to account for the hierarchical data
structure, and generalized additive mixed models were used
to analyse spatial effects and the influence of climatic factors,
such as precipitation and temperature.
&Results A strong positional autocorrelation of bark thickness
within trees and within plots could be shown. Bark thickness
was smaller in the new data compared to the measurements
from the 1970s. The variation between stands could not be
explained by the tested environmental factors, but tree age had
a strong positive effect on bark thickness.
& Conclusion In the study region, the variation of site produc-
tivity and individual growth rate seem to have a strong influ-
ence on bark thickness, whereas no significant effect of large
scale climatic factors could be found.

Keywords Norway spruce . Linear mixed-effects models .

Nonlinear mixed-effects models . Generalized additivemixed
models . Allometric equations . Growth rate . Climatic effects

1 Introduction

Although tree and log diameters are usually measured outside
bark, for many applications in forestry and forest science,
diameters inside bark are more important. Diameters inside
bark are used to calculate wood volume of logs or trees for
trade and forest inventories, and also, bucking optimization
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software in harvesters depends on them. To convert outside-
bark diameters to inside-bark diameters, bark thickness equa-
tions have been developed for many species in the last decades
(e.g. Li and Weiskittel 2011). These can also be used to cal-
culate bark volume, which increasingly gained interest with
the shift in the commercial relevance of bark from an unwant-
ed residue to a valuable fuel and a source for high-value bio-
materials (Doruska et al. 2009). The prediction of available
bark biomass is important to assess the potential of such tech-
nologies generating potential additional income for the forest-
ry sector. Another important application for bark thickness
estimates is growth and increment predictions that are based
on outside-bark measurements.

A common definition of bark, which we also used in this
study, includes all tissues outside the vascular cambium and
comprises secondary phloem up to the last-formed periderm
and the rhytidome, which comprises all layers of dead tissue
outside of the currently active periderm (Martin and Christ
1970). Bark development depends on two lateral meristems:
the vascular cambium, which forms the phloem, and the phel-
logen (cork cambium) in each periderm, which forms phello-
derm to the inside and phellem (cork) to the outside (Evert
2009).

The first studies on bark thickness and bark volume in
central Europe were performed in the late nineteenth century
in Switzerland to develop conversion factors from log volume
with bark to log volume without bark. This research by Flury
(1897) was the beginning of still ongoing research on the
development of bark equations for many species in many parts
of the world. Bark thickness equations have been developed
from simple linear regression models that predict the percent-
age of bark with only diameter measurements (e.g. Flury
1897) to more elaborate model forms that describe the bark
thickness as a function of several predictor variables that are
usually easy to asses on the stem. The coefficients of such
equations are usually valid for one species for a certain region.
For many coniferous species, it has been shown that bark
thickness can be well described by tree-inherent variables,
such as diameter outside bark, total tree height, and height of
the measurement position (e.g. Li and Weiskittel 2011). For
Norway spruce (Picea abies (L.) Karst), it has been shown
that bark thickness increases with diameter outside bark and
with relative tree height and is influenced by tree age, tree
height, and tree form (Laasasenaho et al. 2005).

Numeral external factors that correlate with bark percent-
age of trees have been reported, and many of them can be
interpreted in a way that slower tree growth leads to larger
relative bark thickness, as the following examples illustrate.
For Pinus sylvestris (L.), the latitude of forest stands, which
mainly describes differences in temperature and the length of
the growing season, could help explaining bark thickness var-
iation (Wilhelmsson et al. 2002). A correlation between a low
site index or yield class of stands and a larger relative bark

thickness was shown for Norway spruce (Dimitrov 1976;
Hoffmann 1958; Schmidt-Vogt 1986) and silver fir (Abies
albaMill.) (Božić et al. 2007). Sonmez et al. (2007) reported
a positive effect of tree age on bark thickness for Picea
orientalis (L.) Link. Contrasting results were reported for the
broadleaved Nothofagus pumilio (Poepp. and Endl.) Krasser
by Cellini et al. (2012), where relative bark thickness was
lower on low-productivity sites.

Besides growth conditions, also, genetics can determine
bark thickness. Provenance has been shown to influence the
phenotypic development of bark thickness of Pinus contorta
var. latifolia Engelm. (Persson and Downie 1992) and
Pseudotsuga menziesii (Mirb.) Franco (Kohnle et al. 2012).

In this study, we focus onNorway spruce in central Europe.
Measurements in the state of Baden-Württemberg, southwest
Germany, in the 1970s revealed a spatial heterogeneity of
spruce bark thickness in that region (Altherr et al. 1978).
Silvicultural practices have changed in the study region within
the last decades with trees planted at wider initial spacing and
earlier thinning being performed. Additionally, more forests
have been converted to uneven-aged or mixed-species stands.
Changes in silviculture, changed climatic conditions, and in-
creased nitrogen emissions altered tree growth trends within
the last century in the study area (e.g. Yue et al. 2011) and
potentially also changed the relation between diameter incre-
ment and bark development. Advanced technology for data
processing and modelling is available today and allows us to
compare the correlation structure within bark thickness data
from the 1970s and the 2010s and analyse the new data for
potential factors influencing bark thickness development.

The objectives of this study were to:

1. Assess variation in bark thickness due to tree and stand
factors in two Norway spruce datasets from different time
periods

2. Compare and evaluate alternative established model
forms for estimating bark thickness

3. Assess the spatial variation in bark thickness to estimate
the effects of environmental factors on bark thickness.

2 Material and methods

2.1 Data origin

Bark thickness data were obtained from two sources: an ex-
tensive dataset with 7712 trees fromAltherr et al. (1978) and a
smaller set with 508 trees from measurements acquired be-
tween 2014 and 2016. Dimensional details are listed in
Table 1. Trees of both datasets were sampled throughout the
35,752-km2 state of Baden-Württemberg in temperate forests
with a broad range of site and stand conditions. For the new
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data, 508 trees were selected for measurements in 35 plots,
covering the major growth regions within the state (Fig. 1).
Elevation of the plots varied between 277 and 1219 m above
sea level. Mean annual air temperature varied between 4.6 and
9.3 °C and annual precipitation sum between 806 and
1945mm year−1. Mixed-species stands and pure spruce stands
were chosen, and trees from thinning operations as well as
from final harvest in selection-cutting systems were chosen.
Sample size for plots and trees per plot was chosen after the
variation in the Altherr et al. (1978) data had been assessed by
Stängle et al. (2016).

2.2 Measurements

The sampling for both datasets was performed as described by
Altherr et al. (1974, 1978): trees were felled, delimbed, and
measured in the forest before any further log manipulation
was performed. Measurement locations were at breast height
(1.3 m above ground) and along the tree bole in 2-m incre-
ments up to a top diameter of approximately 10–15 cm. This
distribution of locations within trees was shown to be ade-
quate to describe within-tree variability within the merchant-
able bole length above 1.3 m (Stängle et al. 2016). Variability
of bark thickness below 1.3 m could, however, significantly
increase due to changes in stem form and bark profiles.

Diameter and bark thickness were measured twice (approxi-
mately perpendicularly) at each location using both a calliper
and a Swedish bark gauge, respectively. Double bark
thickness was calculated as the sum of the two bark
measurements. Additional measurements for the new data
were tree height, which was measured on the felled tree, and
tree age. Tree height for the Altherr et al. (1978) data was
modelled with mixed B-spline regression describing tree taper
using the R package TapeR (Kublin and Breidenbach 2013).

2.3 Variability between stands and trees

Due to the nested sampling design, bark thickness measure-
ments display similarity of measurements within each tree and
within plots (e.g. Li and Weiskittel 2011). If the variance be-
tween groups (such as trees and plots in our case) is large,
additional information on group-level predictors could explain
this variance. The between-group variance can be expressed
by the intraclass correlation coefficient (Schielzeth and
Nakagawa 2013). Variance components of two linear bark
thickness models of different complexity (see below) were
analysed, and the intraclass correlation coefficients were cal-
culated as the ratio of between-group variances to total resid-
ual variance. Depending on model form and the included co-
variates, intraclass correlation can differ substantially for the

Table 1 Characteristics of the
measured trees from datasets 1
and 2: diameter at breast height
(dbh), double bark thickness at
breast height (DBT1.3), the total
tree height, and age. Dataset 1 is
from Altherr et al. (1978)

Dataset 1 (1970s) Dataset 2 (2014–2016)

Mean SD Minimum Maximum Mean SD Minimum Maximum

dbh (cm) 34.5 14.5 13.1 84.6 39.8 11.3 17.3 81.5

DBT1.3 (mm) 19.1 6.4 6.0 48.0 20.1 6.0 7.0 46.0

Tree height (m) 29.6 4.2 14.6 44.3

Age (a) 86.4 28.2 32 216

SD standard deviation

Fig. 1 Distribution of the sample
plots of dataset 2. Sampling of
dataset 1 was performed in the
same area (plots not shown)
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same data (e.g. Stängle et al. 2016). Equations (1) and (2) were
chosen from the literature as both are established model forms
for predicting bark thickness. Equation (1) was introduced by
Loetsch et al. (1973) and was used by Zacco (1974) for
Sweden and was suggested as useful for spruce species by
Li and Weiskittel (2011, eqn 7). Equation (2) was introduced
by Hannrup (2004) and is implemented in the harvester pro-
tocol Standard for Forest Data and Communication StanForD
(Skogforsk 2012). Double bark thickness is predicted in the
two linear models as follows:

DBT ¼ β0 þ β1dob þ ε ð1Þ

DBT ¼ β0 þ β1dbhob þ β2dob þ ε ð2Þ

where DBT is the double bark thickness at any point of the
stem (mm), dob is the diameter outside bark at that position
(mm), dbhob is the diameter outside bark at breast height
(1.3 m height) (mm), ε is the residual of the model, and
β0 ,β1 , and β2 are the regression coefficients.

2.4 Model comparison

Six different model forms were compared for their fit qual-
ity and their predictive capacity for both datasets. To ac-
count for the hierarchical data structure, we applied mixed-
effect modelling with random deviation of the intercept on
the tree and the plot levels, leading to Eqs. (3), (4), (5), (6),
(7), and (8):

DBT ¼ β0 þ β1dob þ bi þ bij þ εijk ð3Þ

DBT ¼ β0 þ β1dbhob þ β2dob þ bi þ bij þ εijk ð4Þ

log DBTð Þ ¼ β0 þ β1dob þ β2logdob þ β3inddbh þ bi

þ bij þ εijk ð5Þ

DBT ¼ dob β1 þ β2
h
H

þ β3
h
H

� �2

þ β4H

 !
þ bi þ bij

þ εijk ð6Þ

DBT ¼ β0 þ β1dob þ β2dob
2 þ β3dob

3 þ bi þ bij þ εijk ð7Þ

log DBT=dobð Þ ¼ β0 þ β1 1−
h
H

� �β2

þ β3
h
H

� �β4H

þ β5dbhob þ β6
H

dbhob
þ bi þ bij þ εijk ð8Þ

where inddbh is an indicator for breast height (if true = 1;
else = 0), h is the height above ground at the measurement
point along the bole (m),H is the total tree height (m), bi is the
random effect for the ith plot, bij is the random effect for the jth
tree in plot i, εijk is the residual error for the kth measurement
in the jth tree in plot i, β0 – 6 are the regression coefficients, and
other variables are defined as above.

Equations (3) and (4) correspond to Eqs. (1) and (2), re-
spectively, with the additional random effect terms. Equation
(5) was found to be suitable for spruce by Wilhelmsson et al.
(2002, eqn S5b), and Eq. (6) was introduced by Cao and
Pepper (1986, eqn 4) and suggested by Li and Weiskittel
(2011, eqn 4). Model forms of Eqs. (7) and (8) were described
by Gordon (1983, eqs 9 and 3). The dependent variable of
Eqs. (5), (6), and (7) in the original publications was the di-
ameter inside bark and was changed for this study, so that
predictions were made for double bark thickness for
Eqs. (3), (4), (5), (6), and (7).

To account for positional autocorrelation within each tree,
which was not eliminated by introducing the tree-level ran-
dom effect, a first-order continuous autoregressive correlation
structure (CAR1) was applied (Pinheiro and Bates 2000),
which has widely been used in forestry (Weiskittel et al.
2011). This accounts for the similarity of bark thickness
values within the tree along the stem, with closer positions
being more similar to each other. A power variance function
with dob as covariate was introduced to account for a larger
residual spread for increasing diameters. Previous analyses
showed correlated errors and heteroscedastic errors in the data
and led us to introduce the above-described within-group cor-
relation structure and within-group heteroscedasticity struc-
ture. Bayesian information criterion (BIC) was computed to
quantify an improvement of the model fit by introducing those
structures.

Fit statistics include mean absolute error (MAE) and root
mean square error (RMSE). Fits of the models (6) and (8) were
corrected after logarithmic back-transformation (Baskerville
1972; Sprugel 1983). For the evaluation of the predictive ca-
pacity of the models, tenfold block cross-validation was per-
formed. Therefore, the data was randomly split in ten subsam-
ples with each of them containing the same number of plots. In
each of ten runs, one subsample was used as validation data
and the remaining nine subsamples as training data. Results
from all runs were averaged. Mixed model fitting was per-
formed using the lme function of the package nlme
(Pinheiro et al. 2016) in the software R version 3.2.2 (R
Core Team 2015).

To check if the two datasets led to significantly different
parameter estimates, the best-fitting model (8) was fit to both
datasets separately. Residuals from both fits were compared
with equivalence testing to see whether the model form could
describe both datasets similarly well. Subsequently, both
models were applied to calculate double bark thickness
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predictions for the new dataset and results were compared
with equivalence testing. For both equivalence tests, the re-
gion of indifference was set to 0.5 mm, which defines the
absolute size that the mean of the differences can reach so that
H0 is still rejected, and therefore, equivalence is assumed
(Robinson and Froese 2004). The R package equivalence
(Robinson 2016) was used to calculate a robust two one-
sided t test (TOST) for equivalence of unpaired data for the
residuals and for paired data for the bark thickness predictions,
respectively.

2.5 Spatial variation of bark thickness

In the last step of this study, we tried to interpret the variation
in bark thickness between stands, which could be caused by
environmental factors. As exact stand position and tree age
were only known for the newly collected data, this step could
only be performed for dataset 2. To account for climatic ef-
fects, we included annual precipitation (mm year−1) and mean
annual air temperature (°C). The elevation of the sample plots
(metres above sea level) and geographic coordinates (Gauss-
Krüger projection, in m) were included to evaluate spatial
effects that could be explained by climatic as well as by biotic
or abiotic factors such as site index and soil materials, respec-
tively. Additionally, we included tree age to account for
growth rate of the single trees, which can be influenced by
site quality and tree individual factors, such as suppression in
their early growth phase by larger trees. Generalized additive
mixed models (GAMMs) were chosen for this analysis, and
predictor variables were introduced as thin-plate regression
splines with the R package mgcv (Wood 2011). Geographic
coordinates were introduced as tensor product splines to mod-
el a two-dimensional surface as suggested inWood (2006). To
account for positional autocorrelation within each tree, a first-
order continuous autoregressive correlation structure (CAR1)
was applied (Pinheiro and Bates 2000). The model had the
following form:

DBT ¼ β þ f s dobð Þ þ f s dbhobð Þ þ f s Hð Þ þ f s
h
H

� �

þ f s ageð Þ þ f te X coord; Ycoordð Þ þ f s elev:ð Þ
þ f s prec:ð Þ þ f s temp:ð Þ þ bi þ bij þ εijk ð9Þ

where fs(dob), fs(dbhob), fs(H), f s
h
H

� �
, fs(age), fs(elev.), fs(prec.),

and fs(temp.) are smooth functions of dob, dbhob, H, h
H, tree age

(years), elevation, annual precipitation, and mean annual air
temperature; fte(Xcoord,Ycoord) is a tensor product spline of
geographic coordinates; bi is the random effect of the ith plot,
bij is the random effect for jth tree in plot i, and εijk is the residual
error for the kth measurement in the jth tree in plot i.

Fit statistics of submodels of Eq. (9) were compared
after dropping single explanatory variables using the
dredge function of the MuMIn package (Barton 2016)
to test significance of each model parameter. BIC was
computed to rank the fits achieved by this procedure.

3 Results

3.1 Variability between stands and trees

For both datasets, a strong positional autocorrelation of
bark thickness within trees and within plots could be
shown. Total residual variance was similar between the
two datasets (old and new data) and was lower for
Eq. (2), which had one more predictor variable than
Eq. (1) (Table 2). Differences in the correlation structure
of the two datasets could be shown, as the largest propor-
tion of variability was found between the plots in dataset
1 and between the trees in dataset 2. The intraclass corre-
lation at the plot level in the old data was approximately
twice as high as in the new data, which means that the
variability within plots, and therefore between trees, was
much lower in the old data. The within-tree variability
was higher in the old dataset, which was indicated by a
lower intraclass correlation coefficient at the tree level.

3.2 Model evaluation

Fit statistics revealed that Eq. (5), which included dob and
inddbh as predictor variables, performed best for model fitting,
but generally worst in the validation process (Table 3). For
prediction purposes, the nonlinear model form (Eq. (8)),
which included dob; dbhob; hH ; and H , was found to be the best
model for both datasets. Equation (3) that only used the diam-
eter outside bark as prediction variable was found to perform
worse than Eq. (4), which included also the diameter at breast
height. Parameter estimates of all models can be found in
Table 4.

Fitting model (8) on both datasets separately led to
equivalent prediction bias (p < 0.05, region of equiva-
lence 0.5 mm), leading to the assumption that the model
could describe both datasets equally well. However,
predictions for the newly assessed data were signifi-
cant ly higher (p < 0.05, region of equivalence
0.5 mm), when the model had been fit on dataset 1
compared to predictions made with a model fit from
dataset 2 (Fig. 2). Inverting the TOST revealed that a
region of equivalence of at least 2.9 mm would have to
be chosen, to assume equivalence of the bark thickness
predictions made with equations that had been fit on the
two datasets separately.

Annals of Forest Science  (2017) 74:16 Page 5 of 10  16 



3.3 Spatial effects

The GAMM fitting of Eq. (9) and its submodels obtained
the best fit (assessed with BIC) when only the tree-
inherent predictors dob; dbhob; hH ;H , and age were includ-
ed. Geographic coordinates and the climatic factors could
not significantly contribute in explaining the variation.
Estimated effects of the tested explanatory variables on
double bark thickness can be interpreted with their
smooth curves, where each curve illustrates the partial
effect for each variable on double bark thickness, which
is the sum of all effects. The effect of diameter outside
bark on double bark thickness increased almost in a linear
pattern (Fig. 3a). The effect of diameter at breast height
increased over the full range of measured trees (Fig. 3b).
The effect of tree height decreased linearly (Fig. 3c). The
relative height showed almost no effect in the region of
10% relative tree height; however, a strong positive effect
below and a slightly increasing effect above 10% could be
observed (Fig. 3d). The effect of age clearly showed
thicker bark at higher tree age (Fig. 3e). Diameter at
breast height naturally increases with age. The increasing
effects of diameter at breast height and age could therefore, at

least partially, be caused by collinearity. Figure 4, however,
shows that both variables have positive effects on the bark
thickness prediction at the same time, meaning that bark thick-
ness in trees of the same dimension was higher when the trees
were older.

4 Discussion

The two analysed datasets showed clear differences, with
dataset 1 from Altherr et al. (1978) having higher bark thick-
ness in general and more variability between different plots
and within trees. We attribute those differences in the correla-
tion structure to a lack of standardisation of the measurement
procedure for dataset 1, as the Swedish gauge is very sensitive
to differences in pressure (Gray 1956; Mesavage 1969). For
those measurements, different personnel was used for differ-
ent plots, whereas the newmeasurements for dataset 2 were all
made by the same operator. Other influencing factors might be
sampling season, which was almost exclusively out of growth
season for the new data and could not be reconstructed for the
old data. Also, we tried to sample a possibly large range of tree
diameters in each plot in the new data, which might have

Table 3 Summary of fit statistics of mixed-effect models (3)–(8) and the respective prediction bias using only the fixed terms for validation. The best
values per dataset are set in italics

Dataset Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7) Eq. (8)
LME LME LME LME LME NLME

1 (1970s) Fitting MAE (mm) 1.87 1.76 1.01 1.58 1.85 1.14

RMSE (mm) 2.44 2.35 1.34 2.14 2.42 1.52

Validation (10-fold CV) MAE (mm) 2.56 2.34 3.08 2.92 2.58 2.22

RMSE (mm) 3.17 3.07 4.04 3.78 3.29 2.94

2 (2014–16) Fitting MAE (mm) 1.91 1.95 1.20 1.44 1.98 1.26

RMSE (mm) 2.48 2.55 1.57 1.95 2.61 1.68

Validation (10-fold CV) MAE (mm) 3.03 2.58 3.28 2.62 2.98 2.39

RMSE (mm) 3.75 3.31 4.19 3.42 3.69 3.14

LME linear mixed-effects model, NLME nonlinear mixed-effects model, MAE mean absolute error, RMSE root mean square error

Table 2 Correlation structure of
both datasets expressed by total
residual variance and variances
between plots, between trees, and
within trees for the two tested
models

Dataset Equation Predictor
variables σ ̂2

total
σ ̂
2
plot

σ ̂2total
(%) σ̂

2
tree

σ ̂2total
(%) σ ̂

2
ε

σ̂2
total

(%)

1 (1970s) (1) dob 10.51 46.91 18.56 34.53

(2) dob, dbhob 8.71 49.82 22.79 27.39

2 (2014–2016) (1) dob 12.37 28.76 35.54 35.70

(2) dob, dbhob 9.73 20.72 44.47 34.81

dob is the diameter outside bark, dbhob is the diameter outside bark at breast height, σ ̂2
total is the total residual

variance, σ ̂2
plot is the variance between plots, σ ̂2

tree is the variance between trees, and σ ̂2
ε is the variance within

trees
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reduced similarity of measurements within plots and, there-
fore, reduced the part of the variation that could be explained
by the nesting in plots.

Results showed a complex nonlinear model (Eq. (8)) to be
the best model for bark thickness prediction. This model can-
not be suggested for all applications, though. Depending on
the purpose of application, different explanatory variables are
available and different degrees of computational complexity
are reasonable. If bark thickness is to be modelled for inven-
tory data, for example, a complex model with many explana-
tory variables, such as Eq. (8), can be suggested because taper
curves outside bark are often available. If total and relative tree
heights are not known, as in the situation when a harvester
measures a tree, the best possible model without these covar-
iates should be selected (Eq. (3)).

Differences in bark thickness development between trees
of different seed source origin have been shown by Kohnle
et al. (2012) and Persson and Downie (1992), however could
not be reflected in this study. Most Norway spruce stands in
southwest Germany were planted, but the origin of the seeds
or the reproductive material was often unknown or not docu-
mented (Hosius et al. 2006; Konnert 1991).

The bark thickness variation that was found between the
plots in this study could not be linked to large-scale spatial
patterns, such as climatic zones, because geographic coordi-
nates did not explain the variation to a significant amount.
Also, the climatic factors temperature and precipitation
could not explain differences between plots. Age, however,
was found to have a significant positive effect on bark
thickness. These findings are in accordance with findings of
Laasasenaho et al. (2005) and Sonmez et al. (2007). This leads
to the conclusion that faster tree growth results in smaller
relative bark thickness for Norway spruce. Increased site qual-
ity, which usually can be linked to faster growth of individual
trees, was shown to reduce bark thickness also in other studies
(Božić et al. 2007; Dimitrov 1976; Hoffmann 1958; Schmidt-
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Fig. 2 Difference in double bark thickness predictions gained with two
fits of Eq. (8): one fit on the Altherr et al. (1978) data (dataset 1) and one
fit on the newly collected data of this study (dataset 2)
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Vogt 1986). Also, Laasasenaho et al. (2005) found that param-
eters, which described the individual growth, could explain
differences between climatic regions.

It seems that no single environmental variable, such as
climate or geography, can explain differences in bark thick-
ness, but only the combination of many factors, which influ-
ence the productivity of a stand and the growth of individual
trees. For bark thickness studies in the future, the assessment
of tree age or site index is, therefore, strongly recommended to
consider the effects of factors such as nutrient and water avail-
ability, aspect, or stand density.

The effect, that faster-grown trees have a thinner bark,
might explain the thicker bark in dataset 1 compared to the
new data. Since growth of Norway spruce in southwestern
Germany has accelerated in the twentieth century (Yue et al.
2011), it can be expected that the trees of the new dataset had
grown faster than the trees of dataset 1, which were harvested
about 40 years earlier. The same equations with the same
combination of independent variables showed to best explain
bark thickness variation in the two datasets. This leads to the
conclusion that the general processes influencing bark thick-
ness were not different in two studied time periods.

Fig. 3 Estimated smooth
functions describing the partial
effect of the five covariates on
double bark thickness (DBT): a)
the smooth of diameter outside
bark, (b) the smooth of dbh
outside bark, (c) the smooth of
tree height, (d) the smooth of
relative tree height, and (e) the
smooth of age. Shaded areas are
95%-confidence intervals
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Intraspecific bark thickness differences between sites could
mainly have two physiological reasons: either differences in
the cambial activity on the xylem and the phloem sides or
differences in the activity ratio of cambium and phellogen.
Phloem increment in Norway spruce seems to vary between
sites (Gričar et al. 2015b) but is more stable and less subjected
to fluctuations in environmental conditions than xylem incre-
ment (Gričar and Čufar 2008; Gričar et al. 2007; Prislan et al.
2013). However, phloem cells collapse within few years
(Evert 2009) and total bark thickness is largely determined
by the thickness of the rhytidome. Factors influencing rhyti-
dome development are difficult to estimate as there is not yet
much research done on the complex processes of cell collapse
and simultaneous inflation of other cell types (Gričar et al.
2015a). We may speculate that the higher investment in bark
of slower-growing trees is evolutionary adaptive, as slower-
grown trees need more time to reach reproductive age and,
therefore, have a higher risk of mechanical damage and expo-
sure to radiation and extreme temperature or other factors that
a thicker bark might protect them from.

5 Conclusion

With our analysis, we confirmed that bark thickness varies for
Norway spruce between single trees and between groups of
trees that were sampled in different sites. Models of different
complexity can be suggested depending on the purpose of
application. An increase in predictive accuracy can be obtain-
ed by using models with more predictor variables; however,
this increases the costs for data acquisition. In our study, we
could not gain convincing evidence for geospatial variation of
bark thickness development within the study area. In the study
region, the variation of site productivity and individual growth

rate seem to have a strong influence on bark thickness, with
better site quality leading to smaller relative bark thickness.
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