
Ecological Modelling 455 (2021) 109608

Available online 5 June 2021
0304-3800/© 2021 Elsevier B.V. All rights reserved.

Sequential Monte-Carlo algorithms for Bayesian model calibration – A
review and method comparison✰

Matthias Speich a,3, Carsten F. Dormann a,2, Florian Hartig a,b,*,1

a Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
b Theoretical Ecology, University of Regensburg, Regensburg, Germany

A R T I C L E I N F O

Keywords:
Bayesian inference
Sequential Monte-Carlo (SMC)
Mechanistic models
Model calibration
Particle filters
Equifinality

A B S T R A C T

Bayesian inference has become an important framework for calibrating complex ecological and environmental
models. Markov-Chain Monte Carlo (MCMC) algorithms are the methodological backbone of this framework, but
they are not easily parallelizable and can thus not make optimal use of modern computer architectures. A
possible solution is the use of Sequential Monte Carlo (SMC) algorithms. Currently, SMCs are used mainly for
Bayesian state updating, for example in weather forecasting, and are thought to be less efficient for parameter
calibration than MCMCs. Unlike MCMCs, however, SMCs are easily parallelizable. Thus, SMCs may become an
interesting alternative when modelers have access to parallel computing environments. The purpose of this paper
is to provide an introduction to SMC algorithms for Bayesian model calibration, and to explore the trade-off
between efficiency and parallelizability for MCMC and SMC algorithms. To that end, we discuss different SMC
variants, and benchmark them against a state-of-the-art MCMC algorithm by calibrating three ecological models
of increasing complexity. Our results show that, with appropriately chosen settings, SMCs can be faster than
state-of-the-art MCMC algorithms when a sufficiently large number of parallel cores are available and when the
model runtime is large compared to communication overhead for parallelization (on our hardware, a model
runtime of 20 ms was enough to favor SMC algorithms). Efficient SMC settings were characterized by a balanced
mix of SMC filtering and MCMC mutation steps, suggesting that mixing MCMC and SMC principles may be ideal
for creating efficient and parallelizable calibration algorithms. The algorithms used in this study are provided
within the BayesianTools R package for Bayesian inference with complex ecological models.

1. Introduction

Many research communities within ecology and environmental sci-
ences traditionally rely strongly on complex, process-based system
models (e.g. global circulation models / GCMs, (global) dynamic vege-
tation models (G/DVMs), or hydrological models, see Jeffers, 1982).
Other ecological fields have recently moved in the direction of mecha-
nistic modeling approaches, for models of biodiversity change (e.g.
Urban et al., 2016), or models of biogeography or macroevolutionary
processes (Pontarp et al., 2019). Through this increasing use complex
process-based models, in particular for forecasting (e.g. Dietze 2017),
the question of how to choose model parameters and determine their

uncertainties has become more prominent.
Historically, parameters for complex process-based models were

often chosen ad-hoc, either by direct measurements, or by literature
reviews, without formal model calibrations (cf. Hartig et al., 2012;
Dietze 2017). With sufficient computing power, however, process-based
models can be fit in very much the same way as statistical models, and
standard statistical procedures such as residual checks, model compar-
ison or model averaging can be performed on top of the fitted model (e.
g. van Oijen et al., 2005; Schoups and Vrugt, 2010).

A practical difference to statistical models, however, is that process-
based models tend to be more nonlinear and connected, which, together
with data-limitations, results in frequent occurrences of multiple optima

✰Tweetable abstract: We show that SMC algorithms can outperform MCMC algorithms for fitting slow models on parallel hardware. R package provided.
* Corresponding author.

E-mail address: florian.hartig@ur.de (F. Hartig).
1 ORCID FH: 0000–0002–6255–9059
2 ORCID CFG: 0000–0002–9835–1794
3 ORCID MS: 0000–0003–0173–5351

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

https://doi.org/10.1016/j.ecolmodel.2021.109608
Received 21 October 2020; Received in revised form 21 April 2021; Accepted 11 May 2021

mailto:florian.hartig@ur.de
www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2021.109608
https://doi.org/10.1016/j.ecolmodel.2021.109608
https://doi.org/10.1016/j.ecolmodel.2021.109608
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2021.109608&domain=pdf

Ecological Modelling 455 (2021) 109608

2

or trade-offs between parameters (non-identifiability or equifinality).
Equifinality means that there is no unique optimal parameter set, but
that many combinations of parameters fit the observations equally well
(see Beven and Freer, 2001). Moreover, unlike for statistical models,
parameters in mechanistic models have a clear meaning and researchers
often have prior expectations about their likely value. Optimization
approaches often perform poorly for such nonlinear equifinal problems,
and frequentist statistical approaches such as maximum likelihood
estimation struggle to provide a framework for considering prior infor-
mation about ecologically plausible parameter values in the calibration
procedure. For all these reasons, Bayesian approaches have risen in
popularity for calibrating complex process-based models in recent years,
for example to model vegetation dynamics (Van Oijen et al., 2005;
Lagarrigues et al., 2015), hydrological processes (Beven and Freer,
2001; Jeremiah et al., 2012, 2011; Zhu et al., 2018) or biogeochemical
processes (Arhonditsis et al., 2008; Ahrens et al., 2014).

The aim of the Bayesian calibration procedure is to calculate the
posterior uncertainty p(θ|y) for the model parameters. The posterior is
interpreted as the probability density for a given parameter set θ to be
correct, conditional on the observed data y and our prior beliefs p(θ), the
latter representing our knowledge about the likely parameter values
beyond the calibration data. The ability to include prior information in a
Bayesian calibration provides a framework to build upon pre-existing
knowledge on the values of parameters. Conversely, where there is lit-
tle empirical basis for constraining the values of a certain parameter, this
can be accounted for by setting a wide prior distribution. The posterior is
proportional to the product of the prior distribution p(θ), representing
our best knowledge about parameter values before model calibration,
and the likelihood function p(y|θ), the probability of observing the data y
given the model with parameters θ. Informally, one can view the like-
lihood as the goodness-of-fit of the model with parameters θ, and the
Bayesian posterior as a mix between prior information and the infor-
mation provided by the data through the likelihood. Because the
Bayesian framework does not search for an optimal parameter combi-
nation, but only updates the prior uncertainty by the new data, there is
no lower limit of how many data are needed for calculating a posterior
estimate, nor pose multiple optima or equifinality a fundamental prob-
lem for a valid posterior estimate. For a more thorough description of the
typical Bayesian calibration process, we refer to Van Oijen et al. (2005)
or Hartig et al. (2012).

A practical challenge for using Bayesian inference is that the poste-
rior can usually not be calculated analytically, and must therefore be
approximated numerically, which is often computationally demanding.
The current standard solution to this problem are Markov Chain Monte-
Carlo (MCMC) methods (see Andrieu et al., 2003 for an overview). Very
briefly, the idea of an MCMC is to specify a stochastic (Markov) process
that performs a random walk in parameter space. The Markov process is
chosen such that the probability of visiting each parameter combination
is proportional to its posterior density p(θ|y). The simplest algorithm of
this kind is the so-called Metropolis-Hastings MCMC. Many MCMC
variants have been proposed to increase the efficiency this algorithm, for
example through dynamically adapting the transition process (Haario
et al., 2006), or combining principles of MCMC with evolutionary al-
gorithms (ter Braak and Vrugt, 2008). Those variants have improved
sampling efficiency (i.e. the number of iterations needed to get a good
estimate of the posterior), but they all still require a substantial number
of model evaluations to fit a complex model (often in the range of 106 -
108), which can make calibrations of complex models a matter of weeks
or even months. More recent MCMC algorithms run several Markov
chains concurrently (e.g. ter Braak and Vrugt, 2008; Vrugt et al., 2009),
but because all MCMCs principally evaluate a new parameter proposal
relative a current parameter set, calculations can be parallelized only to
a very limited degree. This lack of MCMC parallelizability currently
limits the use of Bayesian inference for calibrating models with a run-
time of minutes or longer, and poses a serious problem for the wider
adoptation of Bayesian inference in the ecological modeling community.

Outside the context of model calibration, a widely-used alternative to
MCMC sampling are Sequential Monte Carlo (SMC) algorithms (see Del
Moral et al. (2006) for an extensive treatment of the mathematical as-
pects of SMC; and Speekenbrink (2016) for an introduction). The idea of
an SMC is to generate a (usually large, e.g. 103) population of parameter
sets termed “particles”, which are then iteratively filtered according to
their fit to the data, in a way that the final particle population approx-
imates p(θ|y). The main use of SMC methods are situations where it is
advantageous to use data iteratively, for example in state-space models,
or when data becomes available in real time, as in weather forecasting
(Doucet and Johansen, 2009; Speekenbrink, 2016). However, SMCs can
also be used to estimate parameters for statistical (Fan et al., 2008;
Dufays, 2016) and dynamic models (Jeremiah et al., 2012, 2011; Sisson
et al., 2007; Zhu et al., 2018). The attractive property of doing so is that,
unlike MCMCs, this process can be parallelized, making it potentially
suitable for calibrating complex, time-consuming models.

The downside of replacing MCMCs with SMCs is that the latter tend
to be less efficient for a single model calibration than an MCMC and
require careful tuning to avoid sample degeneracy and impoverishment
(detailed in the methods below). Moreover, the Markovian nature of
MCMCs integrates information from past model evaluations faster into
the algorithm’s exploration of the parameter space. Although many
methods exist to reduce the risk of these problems (Jasra et al., 2011;
Jeremiah et al., 2012; Li et al., 2014), those are not guaranteed to pre-
vent their occurrence, and SMCs have therefore rarely been used for
model calibration.

Whether this neglect of SMCs is justified, however, is an open
question, in particular when considering that modern computer hard-
ware is moving towards parallel architectures that cannot be efficiently
used by MCMCs. So far, there have been few serious attempts to
benchmark the two approaches against each other. An exception is
Jeremiah et al. (2011), who found in a direct comparison between an
SMC and an MCMC sampler that SMC was less likely to be trapped in
local optima, leading to greater sample robustness. However, the
Adaptive Metropolis MCMC (Haario et al., 2001) used in that study is
known for its inferior performance in the presence of multiple optima,
compared to more advanced MCMC algorithms (e.g. Haario et al., 2006;
ter Braak and Vrugt, 2008). Overall, the relative performance of SMC
and MCMC samplers is therefore still somewhat unresolved. A key
question, so far not systematically investigated, is whether the paral-
lelizability of SMC samplers could offset possible disadvantages
regarding efficiency in practical situations.

Here, we address these issues by first giving an overview of the
design principles and flavors of SMC algorithms, identifying the most
promising SMC variants for parameter calibration. We then implement
an SMC algorithm with the possibility to modify various SMC tuning
parameters and variants and evaluate their ability to calibrate three
models of increasing complexity against a state-of-the-art MCMC
sampler as a benchmark. The considered models were a multivariate
normal distribution, a simple dynamic vegetation model, and a state-of-
the-art forest growth model. We assessed the approximation error of the
multivariate posterior distribution against the time used by the
algorithm.

2. Methods

2.1. A primer to SMC sampling

Sequential Monte Carlo (SMC) is a generic term for a range of al-
gorithms based on similar principles. SMCs, also known as particle fil-
ters, are always initialized by generating a population of N particles
(each particle corresponding to a possible parameter set), typically
drawn from some initial distribution. The SMC will now filter these
particles in a way that the final distribution of particles approximates the
posterior distribution. This filtering typically consists of three steps:
weighting, resampling and mutation (illustrated on Fig. 1a), which are

M. Speich et al.

Ecological Modelling 455 (2021) 109608

3

iteratively applied while data is added at each iteration.
Weighting means that each particle is assigned a weight, usually

proportional to its likelihood (i.e. fit to the data). In the next step, the
particles are resampled with replacement, with their sampling proba-
bility given by their normalized weights. This means that particles with
low weights (= bad fit) tend to be discarded, whereas particles with high
weights (= good fit) are more likely to be replicated. The purpose of this
step is preventing the issue of particle or sample degeneracy (Li et al.,
2014), i.e. the concentration of weights on a small number of particles.
Finally, to avoid having identical particles, a mutation step is performed
where particles are slightly moved in parameter space based on a
defined transition rule. This alleviates the risk of “sample impoverish-
ment” (Li et al., 2014), i.e. the situation where nearly all particles have
identical parameter values.

The typical use case for SMC algorithms are iterative filtering prob-
lems (Fig. 1b), for example for estimating time-varying model states,
such as the location of a tracked object (Djuric et al., 2003) or soil
moisture (Moradkhani et al., 2005; Vrugt et al., 2013). They may also be
used to update model parameter values if new observations become
available in real time (Fig 1c, for an example see e.g. Speekenbrink,
2016). However, SMCs can also be used to fit static model parameters
(Fig. 1d), which is our interest in this study.

2.2. Using SMC algorithms for model calibration

As explained above, the principle of an SMC is to iteratively filter a
population of particles regarding their fit to new information. Unlike in

traditional SMC applications (Fig. 1b,c), data in a model calibration do
not have a natural time order or appear iteratively. One could still
establish an iterative filtering by adding the data step-wise to the SMC,
but a more flexible approach is to use all data at once, and instead in-
crease the weight of the data step-wise during the SMC iterations.
Technically, this is done by creating a sequence of intermediary distri-
butions moving gradually from an initial distribution π0 to the posterior
distribution, in a so-called bridge approach (Neal 2001; Fan et al.,
2008). In the few instances where SMC was applied to model calibration
(e.g. Fan et al., 2008; Jeremiah et al., 2012, 2011; Zhu et al., 2018), this
approach was always used.

In practice, the initial distribution π0 is usually the prior, although
any distribution can be chosen in principle. The intermediate distribu-
tions πn are then defined as:

πn∝ π0(θ)1− βn π(θ|y)βn , (1)

where the sequence of parameters βn, defined so that 0 ≤ β1 ≤ β2 ≤ …
≤ βn = 1, controls the mix between the initial distribution and the final
posterior based on all data. When choosing a sequence βn, a trade-off
exists between stability (avoiding particle degeneracy) and efficiency
(speed). If the difference between the intermediate distributions is too
great, filtering will be too aggressive, leading to particle degeneracy
(Jeremiah et al., 2011). If the difference is too narrow, the algorithm will
perform more iterations than necessary. To solve this trade-off, Jere-
miah et al. (2012) proposed an adaptive approach, starting with a
pre-defined series βn, and decreasing the spacing if the algorithm is at

Fig. 1. Principle of an SMC algorithm (a) and its different use cases (b-c). Panel (a) illustrates that, as for an MCMC, the objective of an SMC is to efficiently sample
from a (typically high-dimensional) target distribution (blue line). The SMC achieves this by starting with a sample from an initial distribution, and then to perform
resampling and mutation steps on this sample based on a number of intermediary distributions (orange lines), so that the final sample converges to the posterior. The
purpose of resampling is to change the distribution toward the target, while the purpose of mutating is to maintain sufficient diversity in the sample (details see text).
Panels (b-d) show three use cases for SMC algorithms in Bayesian computations: updating the uncertainty of state variables as temporal information enters the model
over time, for example in weather forecasting (b), sequential inclusion of new information in a parameterization (c) and a standard Bayesian calibration, where all
data is used at once (d). Note that the most typical use for an MCMC is case (d), while the most typical use for an SMC is case (b).

M. Speich et al.

Ecological Modelling 455 (2021) 109608

4

risk of becoming unstable.
Mutating the particles after resampling is crucial for the efficiency of

SMC samplers (Zhu et al., 2018). For SMCs designed for parameter
calibration, some variation of the Metropolis algorithm (Metropolis
et al., 1953) is typically used, which also forms the basis of many MCMC
samplers. The principle of the Metropolis move is that a new parameter
value is generated based on the current one according to some proposal
function. The probability to accept the move is given by the “Metropo-
lis-ratio”: the ratio of p(θ|y) for the proposed over the current parame-
ters. In an SMC mutation step, this procedure is applied to each particle,
possibly multiple times per iteration. Indeed, the number of MCMC
mutation steps per SMC iteration has been shown to have a substantial
effect on sampler efficiency (Fearnhead and Taylor, 2013).

The simplest Metropolis MCMCs use pre-defined univariate normal
distributions as proposal distributions. Many of the improvements over
this simple choice in the context of MCMC (e.g. Haario et al., 2006; ter
Braak and Vrugt, 2008) have also been applied within SMC samplers.
For example, the covariance structure of a multivariate proposal dis-
tribution can be updated at each iteration, based on the covariance
matrix of the particles (Chopin, 2002; Fan et al., 2008; Jeremiah et al.,
2012). Another example is Zhu et al. (2018), who use a combination of
genetic and evolutionary algorithms to generate proposals, leading to a
considerable increase in sampler efficiency.

2.3. Description of the smc algorithm used in this study

The algorithm proposed in this study (Fig. 2a) was based on the
lessons drawn from our literature review regarding efficient SMC
implementations for model calibration. It uses an adaptive scheme to
determine the series of intermediate distributions (following Jasra et al.,
2011). The sampler is initialized by drawing N particles from an initial
distribution π0. The initial exponent β (which controls the position be-
tween the initial and the final distribution) is set to zero. As the initial
population represents an unweighted sample from p0, all weights are set
to 1/N. At each iteration, the algorithm calculates the particle weights
and then searches for a new value β′ based on an informal measure of
particle diversity, the effective sample size Neff

Neff =
1

∑N
i=1w2

i
, (2)

where wi are the normalized weights of the N particles and takes values
between 1 (when all the weight is concentrated on a single particle) and
N (when all particles have equal weight). The algorithm will determine
the value of β′ for which the effective sample size N′

eff equals a fraction a
of the current Neff . One can think of this choice as a trade-off between
stability (large effective sample size) and efficiency (large β

′ steps to
minimize the number of filtering steps).

Next, a resample-move step is made: the particles are first resampled
using systematic resampling (see Douc and Cappe, 2005) and all weights

Fig. 2. a) Pseudocode for the SMC sampler proposed in this paper. The parts in bold highlights at which point the entire model has to be evaluated b-d) change of
parameters and acceptance rate during the runtime (iterations) of the SMC for an example simulation. b) change of the exponent β, which controls the gradual change
from the prior to the posterior weighting of the particles during the SMC steps. c) acceptance rate of the mutation step d) distance Ds between the true and the
approximate posterior distribution. The exact definition of the distance measure is described in section “Benchmarking the SMC against a state-of-the-art MCMC”.

M. Speich et al.

Ecological Modelling 455 (2021) 109608

5

are reset to 1/N. Next, the particles are mutated by an MCMC step based
on Differential Evolution and snooker update (ter Braak, 2006; ter Braak
and Vrugt, 2008): for each particle xi, two particles xj and xk are
randomly sampled, with i ∕= j ∕= k. The proposal x′

i is obtained as follows:

x
′

i = xi + γ
(
xj − xk

)
+ ε, (3)

where γ is a scaling factor, typically set to 2.38/
̅̅̅̅̅̅
2d

√
(ter Braak, 2006),

with d being the number of parameters under calibration, and ε is drawn
from a narrow distribution N (0, b), with a default of b = 10− 4. In 10%
of the cases (randomly selected), a snooker update is performed instead,
following ter Braak and Vrugt (2008). As b implies a particular scale for
the parameters, b should be either adjusted to the prior or expected
posterior parameter uncertainty, or parameters should be scaled
accordingly.

When β reaches 1 (meaning that the full data is used), a last
resampling step is performed (Step 5), so that the particles can be
considered an unweighted sample from π(θ|y). As this sample likely
contains many identical particles, a final round of mutation steps (Step
6) are executed to increase sample diversity.

During the search for β′ (Step 4a), some weights may take infinite
values, due to p′

(xi)/(xi) ratios exceeding the numeric accuracy of the
computer. In this case (omitted from the listing in Fig. 2), a resample-
move step is executed, and the current value for β is kept for the next
iteration. This is a failsafe to keep the sampler from crashing due to
numerical issues.

The output of an exemplary SMC simulation is displayed on Fig. 2b.
The emerging series of β values reveals that small changes between
intermediary distributions are necessary at the beginning to avoid
sample impoverishment, and while β increases these changes become
larger as the SMC progresses. The acceptance rate of the MCMC steps
(averaged over all S MCMC steps at each iteration) fluctuates between 6
and 9% in this example. The distance DS, a measure of dissimilarity to
the true posterior, is defined below.

2.4. Benchmarking the SMC against a state-of-the-art MCMC

We benchmarked the performance of the SMC algorithm in four
calibration case studies of increasing complexity against a Differential
Evolution MCMC with snooker update (DEZS; ter Braak and Vrugt,
2008), which is a state-of-the-art MCMC algorithm. As performance
measure, we calculated the similarity between SMC or MCMC samples to
a reference distribution using the following metric DS, proposed by
Laloy and Vrugt (2012):

DS =

̅̅̅

1
2d

∑d

i=1

[(μi,1 − μi,2

σi,1

)2

+

(
σi,1 − σi,2

σi,1

)2]

,

√

(4)

where μi,x and σi,x (x ∈ {1,2}) are the mean and standard deviation of
the marginal distribution of each parameter in the reference sample (x
= 1) and the sample being evaluated (x = 2), and d is the number of
parameters. Essentially, DS expresses the average normalized Euclidean

distance between the means and standard deviations of both distribu-
tions. As reference distribution, we used the analytical posterior when it
was available, and otherwise an extremely long independent DEzs run.

As case studies for the benchmark, we selected a multivariate normal
distribution, a simple ecosystem model, and a state-of-the-art forest
growth model. As shown in Table 1, these case studies differ greatly in
model complexity. The first example is a simple three-dimensional
multi-variate normal distribution, with a strong correlation (r ≅ 0.9).
The second case study consisted of calibrating the Very Simple
Ecosystem Model (VSEM), a simple ecosystem model serving as bench-
mark in R’s BayesianTools package. Two configurations were tested
with VSEM: in one case, we included two parameters in the calibration
for which the posterior was strongly correlated (r≅ 0.95), whereas in the
second case, there were no strong posterior correlations between pa-
rameters. The third case study used the model 3-PGN (Minunno et al.,
2018) , a recent extension of the forest growth model 3-PG (Landsberg
and Waring, 1997). With 51 parameters, 3-PGN is substantially more
complex than the VSEM model, but due to its monthly time step, the
model still executes very fast (Table 1). To emulate the calibration of a
computationally more expensive model, a fourth case study (3-PGNsleep)
was set up, in which the execution time of 3-PGN was increased by
adding a pause of 50 ms after each model execution. All other settings
are identical.

In case of the multivariate distribution, the distribution itself was the
calibration target. For the dynamic models, we simulated synthetic data
from the model’s default parameters and added a normally distributed
observation error on top, and specified a likelihood from these as-
sumptions, including parameters for the error terms (1 for VSEM and 2
for 3-PGN, because two outputs were used for calibration in the latter
case). For all models, we used wide uniform (uninformative) priors. As
min / max values for the priors, we chose [− 5,5] for the multivariate
normal distribution, and for the VSEM / 3-PGN model, we chose the min
/ max values for calibration provided by the model developers (see
supplementary material for details).

To explore how the SMC’s control parameters influence the sam-
pler’s efficiency, we ran all case studies in a full factorial design, varying
the values of the control parameters (Table 2), resulting in 240 alter-
native SMC configurations. An exception is the multivariate normal
case, where N was set to 50, 100 and 1000 particles, yielding 180 al-
gorithm configurations that we tested. For each model, the experiment

Table 1
Overview of the five case studies described in this paper. Execution time indicates the average run time of a single model run on the cluster where these experiments
were performed. As explained in the main text, the DEzs can be partly parallelized, albeit to a much lower degree than an SMC algorithm. We tested for all case studies if
such a parallelization speeds up computations and always selected the faster option.

Case study Number of calibrated model parameters (+
error terms)

Average runtime for a single model run [ms] (SD in
brackets)

Iterations for reference
MCMC-DEzs

Parallel MCMC-
DEzs

Multivariate
normal

3 0.56 (0.49) 100 000 No

VSEM
(uncorrelated)

6 + 1 0.37 (0.48) 2 000 000 No

VSEM (correlated) 6 + 1 0.37 (0.48) 2 000 000 No
3-PGN 51 + 2 0.93 (0.29) 2 000 000 No
3-PGNsleep 51 + 2 51.39 (0.5) 2 000 000 Yes

Table 2
Settings used in the evaluation of the SMC algorithm.

Control
parameter

Description Values

N Number of particles 5000, 20 000, 50 000,
100 000

a Neff threshold for resample-move step
(fraction of N)

0.5, 0.75, 0.9

S Number of mutation steps 2, 5, 10, 20, 30
γ Scaling factor for mutation steps 0.01, 0.1, 0.333, 0.5

M. Speich et al.

Ecological Modelling 455 (2021) 109608

6

was repeated five times with different random seeds, to assess conver-
gence of the algorithm and variations in runtime and sample quality.
Convergence was assessed using the Gelman-Rubin diagnostic R̂
(Brooks and Gelman, 1998; Gelman and Rubin, 1992). It was assumed
that convergence is reached when no univariate R̂ for point estimates
and upper confidence interval is greater than 1.05, and the multivariate
R̂ estimate (Brooks and Gelman, 1998) is less than 1.2.

The MCMC-DEZS algorithm used as a benchmark requires several
chains to be run independently from each other. Based on the results of
ter Braak and Vrugt (2008), the number of chains was set to 3.
Convergence was assessed by estimating R̂ over the 3 chains of a run,
with the same criteria as for the SMC runs. The number of iterations,
given in Table 1, was selected to ensure convergence of the reference
run. Because each single MCMC iteration depends on the previous
iteration, MCMCs iterations can in general not be computed in parallel.
However, for the MCMC-DEZS, each MCMC iteration requires several
model evaluations to calculate the posterior values for the (in our case)
three internal DE chains. These internal computations will make the
algorithm somewhat faster (at maximum by a factor 3), unless the model

evaluates very fast. In this case, parallelization overhead will offset
parallelization gains. For all case studies, we tried both options (parallel
and sequential), selected the faster option for the benchmark (Table 1).
In general, we note that although the MCMC-DEZS offers some options
for parallelization, these are very limited, because only a small number
of computer cores can sensibly be used in parallel with this algorithm.
SMCs, however, scale practically linearly with the number of cores, up to
a large number of cores (see our later results, Fig. 4), which is one of
their core advantages over MCMCs.

2.5. Effect of parallelization

All the experiments described above were executed on the same
computer cluster (NEMO at the University of Freiburg; technical speci-
fications see supplementary material). Each node on this cluster consists
of 20 cores. For the SMC experiments, 40 cores were used, spanning no
more than 2 different nodes. To assess the effect of parallelization on
runtime, further tests were run on a varying number of cores (1, 2, 5, 10,
20 and 40 cores). In these tests, the SMC parameters were set to N = 50
000, a = 0.9, S = 30 and γ = 0.1. For each of these settings, 3-PGN was

Fig. 3. Comparison of MCMC and SMC sampler quality for the dynamic models VSEM and 3-PGN, and different settings for the SMC sampler. The shaded area shows
the difference to the reference DS for five MCMC runs as a function of the runtime. The points show the average runtime and DS for five SMC runs with equal
algorithm settings coded by size (number of particles N), fill color (intermediate distribution tuning parameter a), symbol (final mutation steps S) and border color
(proposal scaling parameter), respectively.

M. Speich et al.

Ecological Modelling 455 (2021) 109608

7

run without artificial runtime increase, as well as with a runtime in-
crease of 20 and 50 ms. Each combination was executed five times, to
account for potential variations in execution time.

3. Results

3.1. Quality and efficiency

For the multivariate normal case (Fig S1 in the supplementary ma-
terial), MCMC runs converged after 22.8 s on average and achieved a DS
score of 0.0018. 83 out of 180 SMC runs reached convergence, and the
lowest DS score is 0.028. Execution time for the converging SMC runs
ranged between 0.35 and 36.32 s. SMC runs were more likely to reach
convergence with a greater number of particles and mutation steps.

The results for the more complex models are summarized in Fig. 3.
For the MCMC, the distance from the reference run was monitored every
1000 iterations of the algorithm. The blue area indicates the spread of
the five MCMC runs. For SMC, only converged runs are shown on the
graph. SMC runs located below the shaded area compare favorably to
the MCMC algorithm, i.e. the same sample quality can be achieved in
less time.

In both VSEM examples, the MCMC sampler quickly reached a state
close to the reference (DS < 0.01). Most of the SMC runs converged
according to the Gelman-Rubin criterion (180 and 166 out of 240 for the
cases with and without strong correlation, respectively), although the
sample quality, as expressed by DS, varied greatly. None of the SMC runs
are located below the MCMC curves, meaning that they did not
outperform the MCMC. The plot shows a strong dependency of sample
quality on the scaling factor of the MCMC proposals γ: the higher the
value for γ, the better the sample quality. Interestingly, more particles by
themselves did not translate into better performance.

For the 3-PGN benchmark, the MCMC sampler reached levels of DS as
low as 0.04. Of the 240 SMC runs, 32 reached convergence. All those
that did had a at least 10 mutation steps S, and for most, the value of γ
was either 0.1 or 0.333. Some of the SMC runs were located at the same
level as the MCMC curves, indicating a similar efficiency. Sample quality
generally increased (DS decreased) with increasing S, at the expense of
additional runtime. Increasing the number of particles N generally had a

positive effect on the performance of the algorithm, but this effect was
often small. Runtime, in contrast, increases greatly with N. For the three
runs with a = 0.9, γ = 0.1 and S = 30, for example, DS only improved
marginally with N, whereas runtime was six times higher for N =

100 000 than for N = 20 000.
The ranking of the different SMC settings stayed qualitatively similar

for the benchmarks with 3-PGNsleep, compared to 3-PGN, which is un-
surprising, given that the two models are functionally identical and
differ only in their runtime. In this case, 29 of the SMC settings achieved
convergence. Small differences between the ranking of different settings
for 3-PGNsleep and 3-PGN are likely due to the inherent stochasticity of
the sampler. For the 3-PGNsleep model, all converged SMC runs were at
the same level or below the MCMC curves, indicating that the SMC
sampler was typically more efficient than the MCMC sampler for this
model.

3.2. Effect of parallelization

To better understand the trade-off between communication over-
head (i.e. the computation time lost during parallelization due to the
necessary communication between cores) and speed-up due to paralle-
lization, we performed SMC simulations with models of different run-
time across a range of used CPU cores, and regressed the relationship
between runtime and cores with a linear regression on the log-log scale
(Fig. 4).

For the standard 3-PGN model (runtime approx. 1 ms), paralleliza-
tion could reduce the total SMC runtime maximally by a factor 3 when
using 10 cores instead of running the algorithm serially (Fig. 4, left).
Runtime increased with less than linearly with the number of cores (log-
log slope estimate − 0.5), and adding more cores beyond 10 did not in-
crease a further speed-up. Scaling was much better for the calibrations of
the identical 3-PGN model which was modified to include a pause of 20
and 50 ms after model execution (Fig. 4, middle, right). The log-log
slope estimates were − 0.88 and − 0.94, suggesting that the scaling
would likely approach the ideal value of − 1 (i.e. a runtime ~ 1/cores
scaling) for even slower models. A detailed regression table with slope
estimates is provided in the supplementary material, Fig. S2.

Fig. 4. Scaling of the SMC runtime with the number of cores used for the standard 3-PGN model (left, runtime approx. 1 ms) and the identical model with added
execution pauses of 20 and 50 ms (middle, right). Each point displays the average runtime of 5 SMC calibrations. The straight solid (black) line shows the fit of a
linear regression to the data points (for the left figure, the points with 20 / 40 cores were omitted). Dashed (red) show slopes of − 1, which, in a log-log plot, display
an ideal linear scaling of the runtime with the number of cores.

M. Speich et al.

Ecological Modelling 455 (2021) 109608

8

4. Discussion and conclusions

The purpose of this paper was to provide an introduction into SMC
sampling for the calibration of complex environmental models, to
explore which SMC settings work well for complex dynamic model, and
to assess the potential runtime reduction through parallelization for
SMC algorithms compared to MCMC methods.

Our main findings are that SMC samplers are efficient algorithms for
model calibration that can outperform MCMCs for runtime-intensive
models, when at least a moderate number of parallel computer cores
(in the order of some 10 cores) is available to the user (see Figs. 3,4). A
possible drawback of SMCs is that convergence and sampling efficiency
depended strongly on the tuning parameters of the algorithm. For the
best settings of the tuning parameters, we could achieve relatively
reliable convergence, but badly tuned algorithms often showed particle
degeneracy and other problems. Once these phenomena occur, it is
difficult for the algorithm to recover, unlike for an MCMC, which can
always be run longer, even if it mixes badly. It is therefore vital that SMC
algorithms are correctly tuned from the start. Assuming that the results
from our test cases can be extrapolated to other ecological models, we
would conclude that a large number of particles is less important than a
sufficient number of intermediate MCMC steps to achieve favorable
convergence behavior. The SMC settings that were most efficient in our
simulations effectively prescribe an algorithm that consists of a mix
between MCMC and SMC steps. We conjecture that such “mixed algo-
rithms” may be an interesting direction for future research.

The values for the tuning parameter γ (scaling factor for the DE
MCMC steps during mutation) that led to greatest sampling efficiency
were close to the optimal value for normal distributions in standard
MCMC tuning (γ = 2.38/d1/2 → 0.9 for VSEM and 0.3 for 3-PG), sug-
gesting that many of the lessons learned from MCMC tuning can be taken
over to the mutation steps in an SMC. Given the apparent importance of
the mutation steps, it seems obvious that further research should be
directed towards optimizing this part of the algorithm. A particularly
promising idea seems to us to examine adaptive procedures to determine
the number of MCMC steps, as suggested by Fearnhead and Taylor
(2013).

Whether SMC calibration can outperform MCMC calibration depends
primarily on the trade-off between communication overhead and par-
allelizability (Fig. 4). In the case of the standard 3-PGN model without
artificial runtime increase, the fastest SMC configurations came close to,
but did not beat, the time taken by the MCMC-DEZS algorithm to reach
the same sample quality, expressed as DS (1700s, cf. Fig. 3). By contrast,
for the 3-PGN with a 50 ms pause, executing the SMC sampler with 5 or
more cores took less time than using MCMC-DEZS for the same sample
quality. Communication overhead is also the reason why we used the
possible parallelization option for the DEzs MCMC algorithm in the
BayesianToools R package (which would have allowed using 3 CPU
cores) only for the 3-PGNsleep scenario – for all faster models, running
the MCMC without parallelization was faster, due to communication
overhead. Given that we parallelized on a setup that has in our experi-
ence a comparatively low communication overhead, we conclude that a
model runtime of around 20 ms – 50 ms is needed to make the use of an
SMC worthwhile. When parallelizing across more cluster nodes, or in a
distributed system, communication overhead will likely be larger, and
models should therefore likely be even slower until the advantages of
parallelization are offset by their costs. Given that many ecological and
environmental models have runtimes of minutes or even hours, how-
ever, this does not appear to pose a major limitation for the applicability
of SMC algorithms to model calibration.

Our results are less favorable for SMCs than those of Jeremiah et al.
(2011), which we attribute to the fact that we benchmark against a
state-of-the-art MCMC algorithm, rather than against a
Metropolis-Hastings MCMC. Although we anticipate that our results are
fairly representative, in that SMC will eventually outperform MCMC

regarding given sufficient parallel resources, it would be interesting to
run further tests, varying both the models and parameters under cali-
bration, as well as the algorithm settings. In particular our results that
favor a balanced mix of SMC and MCMC steps points towards exploring
more aggressive design principles that mix SMC and MCMC ideas (e.g.
Zhu et al., 2018)

Another issue that seems to require urgent attention are robust
adaptation procedures that would, for example, automatically select the
SMC settings that we identified as most efficient in Fig. 3, and reliable
convergence checks that monitor and report potential issues during an
SMC run. While there is some development in this direction (for example
our automatic adaptation of the β′ steps), we find that SMCs lack in this
respect compared to state-of-the-art MCMC algorithms such as the DEzs,
which is completely self-adaptive under mildly beneficial
circumstances.

Although we do provide the posterior parameter estimates in the
code repository (see section Data accessibility), we stress that the pur-
pose of this study was not to test the ecological plausibility of the fitted
models or the identifiability of their parameters with real data (for an
ecologically interpretable calibration of 3-PGN with real forest data, see,
for example, Trotsiuk et al., 2020). Moreover, the use of synthetic data
circumvented possible problems that can arise when calibrating models
with structural error (e.g. Oberpriller et al., 2021). Such problems can
potentially increase or decrease convergence speed of MCMCs or SMCs
in practical applications. As we only compare across MCMC and SMCs
with different settings in a fixed scenario, however, we do not see this as
a potential limitation for our results.

5. Conclusions

In conclusion, our paper demonstrates that SMC algorithms should
be considered as an alternative to MCMC samplers by modelers who
want to calibrate slow models and have access to appropriate parallel
computing hardware. For slow models, communication overhead due to
parallel computing becomes negligible, and SMCs can draw on the op-
portunity provided by their superior parallelizability. Our results also
suggest that SMCs with a large share of internal MCMC steps work best,
possibly supporting a broader insight that a mix of both design princi-
ples (as it is already done to a lesser degree in population-based MCMC
algorithms where several MCMC chains are run in parallel, such as the
DEzs MCMC that we used as a reference) might actually be the most
successful strategy for calibrating complex models on modern computer
hardware. Our study also highlighted various opportunities for further
research, in particular with regard to further development of robust
adaptive methods for tuning SMC parameters, and the need to develop
better tools for monitoring efficiency and convergence issues in SMCs.

Data accessibility

The SMC algorithm presented in this paper is based on the Baye-
sianTools R package, which is available on CRAN (Hartig et al., 2019).
The BayesianTools package is a framework for Bayesian inference that
includes a several MCMC samplers, as well as plots and diagnostic
functions for Bayesian computations. The BayesianTools vignette
(available via https://cran.r-project.org/web/packages/BayesianTools
/vignettes/BayesianTools.html) explains in detail how to specify likeli-
hoods and prior in the format that is expected by the package . Instal-
lation instructions and code for reproducing the results of this paper are
available at https://github.com/florianhartig/BayesianTools/tree/mast
er/Publications/SpeichEtAl-SMCForModelCalibration.

CRediT authorship contribution statement

Matthias Speich: Methodology, Software, Formal analysis, Project
administration, Writing – original draft. Carsten F. Dormann:
Conceptualization, Writing - Review & Editing. Florian Hartig:

M. Speich et al.

https://cran.r-project.org/web/packages/BayesianTools/vignettes/BayesianTools.html
https://cran.r-project.org/web/packages/BayesianTools/vignettes/BayesianTools.html
https://github.com/florianhartig/BayesianTools/tree/master/Publications/SpeichEtAl-SMCForModelCalibration
https://github.com/florianhartig/BayesianTools/tree/master/Publications/SpeichEtAl-SMCForModelCalibration

Ecological Modelling 455 (2021) 109608

9

Conceptualization, Methodology, Project administration, Writing - Re-
view & Editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

We gratefully acknowledge support by the DFG (DOR 786/8–1) as
part of the Priority Program 1374 “Infrastructure-Biodiversity-Explor-
atories”. Johannes Oberpriller provided helpful comments on the pre-
sentation of the manuscript. We are grateful to the comments and
suggestions by two anonymous reviewers.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.ecolmodel.2021.109608.

References

Ahrens, B., Reichstein, M., Borken, W., Muhr, J., Trumbore, S.E., Wutzler, T., 2014.
Bayesian calibration of a soil organic carbon model using Δ14C measurements of soil
organic carbon and heterotrophic respiration as joint constraints. Biogeosciences 11,
2147–2168. https://doi.org/10.5194/bg-11-2147-2014.

Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I., 2003. An introduction to MCMC for
machine learning. Mach. Learn. 50, 5–43. https://doi.org/10.1023/A:
1020281327116.

Arhonditsis, G.B., Papantou, D., Zhang, W., Perhar, G., Massos, E., Shi, M., 2008.
Bayesian calibration of mechanistic aquatic biogeochemical models and benefits for
environmental management. J. Marine Syst. 73 (1–2), 8–30. https://doi.org/
10.1016/j.jmarsys.2007.07.004.

Beven, K., Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in
mechanistic modelling of complex environmental systems using the GLUE
methodology. J. Hydrol. 249, 11–29. https://doi.org/10.1016/S0022-1694(01)
00421-8.

Brooks, S.P., Gelman, A., 1998. General methods for monitoring convergence of iterative
simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.1080/
10618600.1998.10474787.

Chopin, N., 2002. A sequential particle filter method for static models. Biometrika 89,
539–552. https://doi.org/10.1093/biomet/89.3.539.

Del Moral, P., Doucet, A., Jasra, A., 2006. Sequential Monte Carlo samplers. J. R. Stat.
Soc. Ser. B Stat. Methodol. 68, 411–436. https://doi.org/10.1111/j.1467-
9868.2006.00553.x.

Dietze, M.C., 2017. Ecological Forecasting. Princeton University Press.
Djuric, P.M., Kotecha, J.H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M.F., Miguez, J.,

2003. Particle filtering. IEEE Signal Process. Mag. 20, 19–38. https://doi.org/
10.1109/MSP.2003.1236770.

Douc, R., Cappe, O. (2005) Comparison of resampling schemes for particle filtering.
IEEE, 64–69. 10.1109/ISPA.2005.195385.

Doucet, A., Johansen, A.M., 2009. A tutorial on particle filtering and smoothing: fifteen
years later. In: Crisan, D., Rozovsky, B. (Eds.), Handbook of Nonlinear Filtering.
Cambridge University Press, Cambridge.

Dufays, A., 2016. Evolutionary Sequential Monte Carlo samplers for change-point
models. Econometrics 4, 12. https://doi.org/10.3390/econometrics4010012.

Fan, Y., Leslie, D.S., Wand, M.P., 2008. Generalised linear mixed model analysis via
sequential Monte Carlo sampling. Electron. J. Stat. 2, 916–938. https://doi.org/
10.1214/07-EJS158.

Fearnhead, P., Taylor, B.M., 2013. An adaptive Sequential Monte Carlo sampler.
Bayesian Anal 8, 411–438. https://doi.org/10.1214/13-BA814.

Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple
sequences. Stat. Sci. 7, 457–472. https://doi.org/10.1214/ss/1177011136.

Haario, H., Laine, M., Mira, A., Saksman, E., 2006. DRAM: efficient adaptive MCMC. Stat.
Comput. 16, 339–354. https://doi.org/10.1007/s11222-006-9438-0.

Haario, H., Saksman, E., Tamminen, J., 2001. An adaptive metropolis algorithm.
Bernoulli 7, 223–242. https://doi.org/10.2307/3318737.

Hartig, F., Dyke, J., Hickler, T., Higgins, S.I., O’Hara, R.B., Scheiter, S., Huth, A., 2012.
Connecting dynamic vegetation models to data - an inverse perspective. J. Biogeogr.
39, 2240–2252. https://doi.org/10.1111/j.1365-2699.2012.02745.x.

Lagarrigues, G., Jabot, F., Lafond, V., Courbaud, B., 2015. Approximate Bayesian
computation to recalibrate individual-based models with population data:
illustration with a forest simulation model. Ecol. Model 306, 278–286. https://doi.
org/10.1016/j.ecolmodel.2014.09.023.

Hartig, Florian, Minunno, Francesco, Paul, Stefan, 2019. BayesianTools: General-Purpose
MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7.
https://cran.r-project.org/package=BayesianTools.

Jasra, A., Stephens, D.A., Doucet, A., Tsagaris, T., 2011. Inference for lévy-driven
stochastic volatility models via adaptive sequential Monte Carlo: lévy-driven
stochastic volatility. Scand. J. Stat. 38, 1–22. https://doi.org/10.1111/j.1467-
9469.2010.00723.x.

Jeffers, J.N.R, 1982. Modelling. Springer, Netherlands, Dordrecht. https://doi.org/
10.1007/978-94-009-5968-2.

Jeremiah, E., Sisson, S., Marshall, L., Mehrotra, R., Sharma, A., 2011. Bayesian
calibration and uncertainty analysis of hydrological models: a comparison of
adaptive Metropolis and sequential Monte Carlo samplers. Water Resour. Res. 47 (7)
https://doi.org/10.1029/2010WR010217.

Jeremiah, E., Sisson, S.A., Sharma, A., Marshall, L., 2012. Efficient hydrological model
parameter optimization with Sequential Monte Carlo sampling. Environ. Model.
Softw. 38, 283–295. https://doi.org/10.1016/j.envsoft.2012.07.001.

Laloy, E., Vrugt, J.A., 2012. High-dimensional posterior exploration of hydrologic
models using multiple-try DREAM (ZS) and high-performance computing. Water
Resour. Res. 48 https://doi.org/10.1029/2011WR010608.

Landsberg, J.J., Waring, R.H., 1997. A generalised model of forest productivity using
simplified concepts of radiation-use efficiency, carbon balance and partitioning. For.
Ecol. Manag. 95, 209–228. https://doi.org/10.1016/S0378-1127(97)00026-1.

Li, T., Sun, S., Sattar, T.P., Corchado, J.M., 2014. Fight sample degeneracy and
impoverishment in particle filters: a review of intelligent approaches. Expert Syst.
Appl. 41, 3944–3954. https://doi.org/10.1016/j.eswa.2013.12.031.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953.
Equation of state calculations by fast computing machines. J. Chem. Phys. 21,
1087–1092. https://doi.org/10.1063/1.1699114.

Minunno, F., Hartig, F., Trotsiuk, V. (2018) threePGN - A Fortran Implementation of the
3PGN Model for R. R package version 0.1.0, https://github.com/ForModLabUHel/th
reePGN-package.

Moradkhani, H., Hsu, K.-.L., Gupta, H., Sorooshian, S., 2005. Uncertainty assessment of
hydrologic model states and parameters: sequential data assimilation using the
particle filter. Water Resour. Res. 41 https://doi.org/10.1029/2004WR003604.

Neal, R.M., 2001. Annealed importance sampling. Stat. Comput. 11, 125–139. https://
doi.org/10.1023/A:1008923215028.

Oberpriller, J., Cameron, D.R., Dietze, M.C., & Hartig, F. (2021). Towards robust
statistical inference for complex computer models. Ecol. Lett., in press.

Pontarp, M., Bunnefeld, L., Cabral, J.S., Etienne, R.S., Fritz, S.A., Gillespie, R., et al.,
2019. The latitudinal diversity gradient: novel understanding through mechanistic
eco-evolutionary models. Trends Ecol. Evol. (Amst.) 34, 11–223.

Schoups, G., Vrugt, J.A., 2010. A formal likelihood function for parameter and predictive
inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian
errors. Water Resour. Res. 46 (10) https://doi.org/10.1029/2009WR008933.

Sisson, S.A., Fan, Y., Tanaka, M.M., 2007. Sequential Monte Carlo without likelihoods.
Proc. Natl. Acad. Sci. 104, 1760–1765. https://doi.org/10.1073/pnas.0607208104.

Speekenbrink, M., 2016. A tutorial on particle filters. J. Math. Psychol. 73, 140–152.
https://doi.org/10.1016/j.jmp.2016.05.006.

ter Braak, C.J.F., 2006. A Markov Chain Monte Carlo version of the genetic algorithm
Differential Evolution: easy Bayesian computing for real parameter spaces. Stat.
Comput. 16, 239–249. https://doi.org/10.1007/s11222-006-8769-1.

ter Braak, C.J.F., Vrugt, J.A., 2008. Differential Evolution Markov Chain with snooker
updater and fewer chains. Stat. Comput. 18, 435–446. https://doi.org/10.1007/
s11222-008-9104-9.

... Trotsiuk, V., Hartig, F., Cailleret, M., Babst, F., Forrester, D.I., Baltensweiler, A.,
Schaub, M., 2020. Assessing the response of forest productivity to climate extremes
in Switzerland using model–data fusion Glob. Chang Biol. 26 (4), 2463–2476.

Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.-.B., Pe, G., Singer, A., Travis, J.M.J.,
2016. Improving the forecast for biodiversity under climate change. Science 353
(6304). https://doi.org/10.1126/science.aad8466.

Van Oijen, M., Rougier, J., Smith, R., 2005. Bayesian calibration of process-based forest
models: bridging the gap between models and data. Tree Physiol 25, 915–927.
https://doi.org/10.1093/treephys/25.7.915.

Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., Higdon, D.,
2009. Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution
with Self-Adaptive Randomized Subspace Sampling. Int. J. Nonlinear Sci. Numer.
Simul. 10 https://doi.org/10.1515/IJNSNS.2009.10.3.273.

Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Schoups, G., 2013. Hydrologic data
assimilation using particle Markov chain Monte Carlo simulation: theory, concepts
and applications. Adv. Water Resour. 51, 457–478. https://doi.org/10.1016/j.
advwatres.2012.04.002.

Zhu, G., Li, X., Ma, J., Wang, Y., Liu, S., Huang, C., Zhang, K., Hu, X., 2018. A new
moving strategy for the sequential Monte Carlo approach in optimizing the
hydrological model parameters. Adv. Water Resour. 114, 164–179. https://doi.org/
10.1016/j.advwatres.2018.02.007.

M. Speich et al.

https://doi.org/10.1016/j.ecolmodel.2021.109608
https://doi.org/10.5194/bg-11-2147-2014
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1016/j.jmarsys.2007.07.004
https://doi.org/10.1016/j.jmarsys.2007.07.004
https://doi.org/10.1016/S0022-1694(01)00421-8
https://doi.org/10.1016/S0022-1694(01)00421-8
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1093/biomet/89.3.539
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.1467-9868.2006.00553.x
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0008
https://doi.org/10.1109/MSP.2003.1236770
https://doi.org/10.1109/MSP.2003.1236770
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0012
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0012
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0012
https://doi.org/10.3390/econometrics4010012
https://doi.org/10.1214/07-EJS158
https://doi.org/10.1214/07-EJS158
https://doi.org/10.1214/13-BA814
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1007/s11222-006-9438-0
https://doi.org/10.2307/3318737
https://doi.org/10.1111/j.1365-2699.2012.02745.x
https://doi.org/10.1016/j.ecolmodel.2014.09.023
https://doi.org/10.1016/j.ecolmodel.2014.09.023
https://cran.r-project.org/package=BayesianTools
https://doi.org/10.1111/j.1467-9469.2010.00723.x
https://doi.org/10.1111/j.1467-9469.2010.00723.x
https://doi.org/10.1007/978-94-009-5968-2
https://doi.org/10.1007/978-94-009-5968-2
https://doi.org/10.1029/2010WR010217
https://doi.org/10.1016/j.envsoft.2012.07.001
https://doi.org/10.1029/2011WR010608
https://doi.org/10.1016/S0378-1127(97)00026-1
https://doi.org/10.1016/j.eswa.2013.12.031
https://doi.org/10.1063/1.1699114
https://github.com/ForModLabUHel/threePGN-package
https://github.com/ForModLabUHel/threePGN-package
https://doi.org/10.1029/2004WR003604
https://doi.org/10.1023/A:1008923215028
https://doi.org/10.1023/A:1008923215028
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0034
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0034
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0034
https://doi.org/10.1029/2009WR008933
https://doi.org/10.1073/pnas.0607208104
https://doi.org/10.1016/j.jmp.2016.05.006
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1007/s11222-008-9104-9
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0041
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0041
http://refhub.elsevier.com/S0304-3800(21)00170-8/sbref0041
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1093/treephys/25.7.915
https://doi.org/10.1515/IJNSNS.2009.10.3.273
https://doi.org/10.1016/j.advwatres.2012.04.002
https://doi.org/10.1016/j.advwatres.2012.04.002
https://doi.org/10.1016/j.advwatres.2018.02.007
https://doi.org/10.1016/j.advwatres.2018.02.007

	Sequential Monte-Carlo algorithms for Bayesian model calibration – A review and method comparison✰
	1 Introduction
	2 Methods
	2.1 A primer to SMC sampling
	2.2 Using SMC algorithms for model calibration
	2.3 Description of the smc algorithm used in this study
	2.4 Benchmarking the SMC against a state-of-the-art MCMC
	2.5 Effect of parallelization

	3 Results
	3.1 Quality and efficiency
	3.2 Effect of parallelization

	4 Discussion and conclusions
	5 Conclusions
	Data accessibility
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References

