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A B S T R A C T   

Bayesian inference has become an important framework for calibrating complex ecological and environmental 
models. Markov-Chain Monte Carlo (MCMC) algorithms are the methodological backbone of this framework, but 
they are not easily parallelizable and can thus not make optimal use of modern computer architectures. A 
possible solution is the use of Sequential Monte Carlo (SMC) algorithms. Currently, SMCs are used mainly for 
Bayesian state updating, for example in weather forecasting, and are thought to be less efficient for parameter 
calibration than MCMCs. Unlike MCMCs, however, SMCs are easily parallelizable. Thus, SMCs may become an 
interesting alternative when modelers have access to parallel computing environments. The purpose of this paper 
is to provide an introduction to SMC algorithms for Bayesian model calibration, and to explore the trade-off 
between efficiency and parallelizability for MCMC and SMC algorithms. To that end, we discuss different SMC 
variants, and benchmark them against a state-of-the-art MCMC algorithm by calibrating three ecological models 
of increasing complexity. Our results show that, with appropriately chosen settings, SMCs can be faster than 
state-of-the-art MCMC algorithms when a sufficiently large number of parallel cores are available and when the 
model runtime is large compared to communication overhead for parallelization (on our hardware, a model 
runtime of 20 ms was enough to favor SMC algorithms). Efficient SMC settings were characterized by a balanced 
mix of SMC filtering and MCMC mutation steps, suggesting that mixing MCMC and SMC principles may be ideal 
for creating efficient and parallelizable calibration algorithms. The algorithms used in this study are provided 
within the BayesianTools R package for Bayesian inference with complex ecological models.   

1. Introduction 

Many research communities within ecology and environmental sci-
ences traditionally rely strongly on complex, process-based system 
models (e.g. global circulation models / GCMs, (global) dynamic vege-
tation models (G/DVMs), or hydrological models, see Jeffers, 1982). 
Other ecological fields have recently moved in the direction of mecha-
nistic modeling approaches, for models of biodiversity change (e.g. 
Urban et al., 2016), or models of biogeography or macroevolutionary 
processes (Pontarp et al., 2019). Through this increasing use complex 
process-based models, in particular for forecasting (e.g. Dietze 2017), 
the question of how to choose model parameters and determine their 

uncertainties has become more prominent. 
Historically, parameters for complex process-based models were 

often chosen ad-hoc, either by direct measurements, or by literature 
reviews, without formal model calibrations (cf. Hartig et al., 2012; 
Dietze 2017). With sufficient computing power, however, process-based 
models can be fit in very much the same way as statistical models, and 
standard statistical procedures such as residual checks, model compar-
ison or model averaging can be performed on top of the fitted model (e. 
g. van Oijen et al., 2005; Schoups and Vrugt, 2010). 

A practical difference to statistical models, however, is that process- 
based models tend to be more nonlinear and connected, which, together 
with data-limitations, results in frequent occurrences of multiple optima 
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or trade-offs between parameters (non-identifiability or equifinality). 
Equifinality means that there is no unique optimal parameter set, but 
that many combinations of parameters fit the observations equally well 
(see Beven and Freer, 2001). Moreover, unlike for statistical models, 
parameters in mechanistic models have a clear meaning and researchers 
often have prior expectations about their likely value. Optimization 
approaches often perform poorly for such nonlinear equifinal problems, 
and frequentist statistical approaches such as maximum likelihood 
estimation struggle to provide a framework for considering prior infor-
mation about ecologically plausible parameter values in the calibration 
procedure. For all these reasons, Bayesian approaches have risen in 
popularity for calibrating complex process-based models in recent years, 
for example to model vegetation dynamics (Van Oijen et al., 2005; 
Lagarrigues et al., 2015), hydrological processes (Beven and Freer, 
2001; Jeremiah et al., 2012, 2011; Zhu et al., 2018) or biogeochemical 
processes (Arhonditsis et al., 2008; Ahrens et al., 2014). 

The aim of the Bayesian calibration procedure is to calculate the 
posterior uncertainty p(θ|y) for the model parameters. The posterior is 
interpreted as the probability density for a given parameter set θ to be 
correct, conditional on the observed data y and our prior beliefs p(θ), the 
latter representing our knowledge about the likely parameter values 
beyond the calibration data. The ability to include prior information in a 
Bayesian calibration provides a framework to build upon pre-existing 
knowledge on the values of parameters. Conversely, where there is lit-
tle empirical basis for constraining the values of a certain parameter, this 
can be accounted for by setting a wide prior distribution. The posterior is 
proportional to the product of the prior distribution p(θ), representing 
our best knowledge about parameter values before model calibration, 
and the likelihood function p(y|θ), the probability of observing the data y 
given the model with parameters θ. Informally, one can view the like-
lihood as the goodness-of-fit of the model with parameters θ, and the 
Bayesian posterior as a mix between prior information and the infor-
mation provided by the data through the likelihood. Because the 
Bayesian framework does not search for an optimal parameter combi-
nation, but only updates the prior uncertainty by the new data, there is 
no lower limit of how many data are needed for calculating a posterior 
estimate, nor pose multiple optima or equifinality a fundamental prob-
lem for a valid posterior estimate. For a more thorough description of the 
typical Bayesian calibration process, we refer to Van Oijen et al. (2005) 
or Hartig et al. (2012). 

A practical challenge for using Bayesian inference is that the poste-
rior can usually not be calculated analytically, and must therefore be 
approximated numerically, which is often computationally demanding. 
The current standard solution to this problem are Markov Chain Monte- 
Carlo (MCMC) methods (see Andrieu et al., 2003 for an overview). Very 
briefly, the idea of an MCMC is to specify a stochastic (Markov) process 
that performs a random walk in parameter space. The Markov process is 
chosen such that the probability of visiting each parameter combination 
is proportional to its posterior density p(θ|y). The simplest algorithm of 
this kind is the so-called Metropolis-Hastings MCMC. Many MCMC 
variants have been proposed to increase the efficiency this algorithm, for 
example through dynamically adapting the transition process (Haario 
et al., 2006), or combining principles of MCMC with evolutionary al-
gorithms (ter Braak and Vrugt, 2008). Those variants have improved 
sampling efficiency (i.e. the number of iterations needed to get a good 
estimate of the posterior), but they all still require a substantial number 
of model evaluations to fit a complex model (often in the range of 106 - 
108), which can make calibrations of complex models a matter of weeks 
or even months. More recent MCMC algorithms run several Markov 
chains concurrently (e.g. ter Braak and Vrugt, 2008; Vrugt et al., 2009), 
but because all MCMCs principally evaluate a new parameter proposal 
relative a current parameter set, calculations can be parallelized only to 
a very limited degree. This lack of MCMC parallelizability currently 
limits the use of Bayesian inference for calibrating models with a run-
time of minutes or longer, and poses a serious problem for the wider 
adoptation of Bayesian inference in the ecological modeling community. 

Outside the context of model calibration, a widely-used alternative to 
MCMC sampling are Sequential Monte Carlo (SMC) algorithms (see Del 
Moral et al. (2006) for an extensive treatment of the mathematical as-
pects of SMC; and Speekenbrink (2016) for an introduction). The idea of 
an SMC is to generate a (usually large, e.g. 103) population of parameter 
sets termed “particles”, which are then iteratively filtered according to 
their fit to the data, in a way that the final particle population approx-
imates p(θ|y). The main use of SMC methods are situations where it is 
advantageous to use data iteratively, for example in state-space models, 
or when data becomes available in real time, as in weather forecasting 
(Doucet and Johansen, 2009; Speekenbrink, 2016). However, SMCs can 
also be used to estimate parameters for statistical (Fan et al., 2008; 
Dufays, 2016) and dynamic models (Jeremiah et al., 2012, 2011; Sisson 
et al., 2007; Zhu et al., 2018). The attractive property of doing so is that, 
unlike MCMCs, this process can be parallelized, making it potentially 
suitable for calibrating complex, time-consuming models. 

The downside of replacing MCMCs with SMCs is that the latter tend 
to be less efficient for a single model calibration than an MCMC and 
require careful tuning to avoid sample degeneracy and impoverishment 
(detailed in the methods below). Moreover, the Markovian nature of 
MCMCs integrates information from past model evaluations faster into 
the algorithm’s exploration of the parameter space. Although many 
methods exist to reduce the risk of these problems (Jasra et al., 2011; 
Jeremiah et al., 2012; Li et al., 2014), those are not guaranteed to pre-
vent their occurrence, and SMCs have therefore rarely been used for 
model calibration. 

Whether this neglect of SMCs is justified, however, is an open 
question, in particular when considering that modern computer hard-
ware is moving towards parallel architectures that cannot be efficiently 
used by MCMCs. So far, there have been few serious attempts to 
benchmark the two approaches against each other. An exception is 
Jeremiah et al. (2011), who found in a direct comparison between an 
SMC and an MCMC sampler that SMC was less likely to be trapped in 
local optima, leading to greater sample robustness. However, the 
Adaptive Metropolis MCMC (Haario et al., 2001) used in that study is 
known for its inferior performance in the presence of multiple optima, 
compared to more advanced MCMC algorithms (e.g. Haario et al., 2006; 
ter Braak and Vrugt, 2008). Overall, the relative performance of SMC 
and MCMC samplers is therefore still somewhat unresolved. A key 
question, so far not systematically investigated, is whether the paral-
lelizability of SMC samplers could offset possible disadvantages 
regarding efficiency in practical situations. 

Here, we address these issues by first giving an overview of the 
design principles and flavors of SMC algorithms, identifying the most 
promising SMC variants for parameter calibration. We then implement 
an SMC algorithm with the possibility to modify various SMC tuning 
parameters and variants and evaluate their ability to calibrate three 
models of increasing complexity against a state-of-the-art MCMC 
sampler as a benchmark. The considered models were a multivariate 
normal distribution, a simple dynamic vegetation model, and a state-of- 
the-art forest growth model. We assessed the approximation error of the 
multivariate posterior distribution against the time used by the 
algorithm. 

2. Methods 

2.1. A primer to SMC sampling 

Sequential Monte Carlo (SMC) is a generic term for a range of al-
gorithms based on similar principles. SMCs, also known as particle fil-
ters, are always initialized by generating a population of N particles 
(each particle corresponding to a possible parameter set), typically 
drawn from some initial distribution. The SMC will now filter these 
particles in a way that the final distribution of particles approximates the 
posterior distribution. This filtering typically consists of three steps: 
weighting, resampling and mutation (illustrated on Fig. 1a), which are 
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iteratively applied while data is added at each iteration. 
Weighting means that each particle is assigned a weight, usually 

proportional to its likelihood (i.e. fit to the data). In the next step, the 
particles are resampled with replacement, with their sampling proba-
bility given by their normalized weights. This means that particles with 
low weights (= bad fit) tend to be discarded, whereas particles with high 
weights (= good fit) are more likely to be replicated. The purpose of this 
step is preventing the issue of particle or sample degeneracy (Li et al., 
2014), i.e. the concentration of weights on a small number of particles. 
Finally, to avoid having identical particles, a mutation step is performed 
where particles are slightly moved in parameter space based on a 
defined transition rule. This alleviates the risk of “sample impoverish-
ment” (Li et al., 2014), i.e. the situation where nearly all particles have 
identical parameter values. 

The typical use case for SMC algorithms are iterative filtering prob-
lems (Fig. 1b), for example for estimating time-varying model states, 
such as the location of a tracked object (Djuric et al., 2003) or soil 
moisture (Moradkhani et al., 2005; Vrugt et al., 2013). They may also be 
used to update model parameter values if new observations become 
available in real time (Fig 1c, for an example see e.g. Speekenbrink, 
2016). However, SMCs can also be used to fit static model parameters 
(Fig. 1d), which is our interest in this study. 

2.2. Using SMC algorithms for model calibration 

As explained above, the principle of an SMC is to iteratively filter a 
population of particles regarding their fit to new information. Unlike in 

traditional SMC applications (Fig. 1b,c), data in a model calibration do 
not have a natural time order or appear iteratively. One could still 
establish an iterative filtering by adding the data step-wise to the SMC, 
but a more flexible approach is to use all data at once, and instead in-
crease the weight of the data step-wise during the SMC iterations. 
Technically, this is done by creating a sequence of intermediary distri-
butions moving gradually from an initial distribution π0 to the posterior 
distribution, in a so-called bridge approach (Neal 2001; Fan et al., 
2008). In the few instances where SMC was applied to model calibration 
(e.g. Fan et al., 2008; Jeremiah et al., 2012, 2011; Zhu et al., 2018), this 
approach was always used. 

In practice, the initial distribution π0 is usually the prior, although 
any distribution can be chosen in principle. The intermediate distribu-
tions πn are then defined as: 

πn∝ π0(θ)1− βn π(θ|y)βn , (1)  

where the sequence of parameters βn, defined so that 0 ≤ β1 ≤ β2 ≤ … 
≤ βn = 1, controls the mix between the initial distribution and the final 
posterior based on all data. When choosing a sequence βn, a trade-off 
exists between stability (avoiding particle degeneracy) and efficiency 
(speed). If the difference between the intermediate distributions is too 
great, filtering will be too aggressive, leading to particle degeneracy 
(Jeremiah et al., 2011). If the difference is too narrow, the algorithm will 
perform more iterations than necessary. To solve this trade-off, Jere-
miah et al. (2012) proposed an adaptive approach, starting with a 
pre-defined series βn, and decreasing the spacing if the algorithm is at 

Fig. 1. Principle of an SMC algorithm (a) and its different use cases (b-c). Panel (a) illustrates that, as for an MCMC, the objective of an SMC is to efficiently sample 
from a (typically high-dimensional) target distribution (blue line). The SMC achieves this by starting with a sample from an initial distribution, and then to perform 
resampling and mutation steps on this sample based on a number of intermediary distributions (orange lines), so that the final sample converges to the posterior. The 
purpose of resampling is to change the distribution toward the target, while the purpose of mutating is to maintain sufficient diversity in the sample (details see text). 
Panels (b-d) show three use cases for SMC algorithms in Bayesian computations: updating the uncertainty of state variables as temporal information enters the model 
over time, for example in weather forecasting (b), sequential inclusion of new information in a parameterization (c) and a standard Bayesian calibration, where all 
data is used at once (d). Note that the most typical use for an MCMC is case (d), while the most typical use for an SMC is case (b). 
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risk of becoming unstable. 
Mutating the particles after resampling is crucial for the efficiency of 

SMC samplers (Zhu et al., 2018). For SMCs designed for parameter 
calibration, some variation of the Metropolis algorithm (Metropolis 
et al., 1953) is typically used, which also forms the basis of many MCMC 
samplers. The principle of the Metropolis move is that a new parameter 
value is generated based on the current one according to some proposal 
function. The probability to accept the move is given by the “Metropo-
lis-ratio”: the ratio of p(θ|y) for the proposed over the current parame-
ters. In an SMC mutation step, this procedure is applied to each particle, 
possibly multiple times per iteration. Indeed, the number of MCMC 
mutation steps per SMC iteration has been shown to have a substantial 
effect on sampler efficiency (Fearnhead and Taylor, 2013). 

The simplest Metropolis MCMCs use pre-defined univariate normal 
distributions as proposal distributions. Many of the improvements over 
this simple choice in the context of MCMC (e.g. Haario et al., 2006; ter 
Braak and Vrugt, 2008) have also been applied within SMC samplers. 
For example, the covariance structure of a multivariate proposal dis-
tribution can be updated at each iteration, based on the covariance 
matrix of the particles (Chopin, 2002; Fan et al., 2008; Jeremiah et al., 
2012). Another example is Zhu et al. (2018), who use a combination of 
genetic and evolutionary algorithms to generate proposals, leading to a 
considerable increase in sampler efficiency. 

2.3. Description of the smc algorithm used in this study 

The algorithm proposed in this study (Fig. 2a) was based on the 
lessons drawn from our literature review regarding efficient SMC 
implementations for model calibration. It uses an adaptive scheme to 
determine the series of intermediate distributions (following Jasra et al., 
2011). The sampler is initialized by drawing N particles from an initial 
distribution π0. The initial exponent β (which controls the position be-
tween the initial and the final distribution) is set to zero. As the initial 
population represents an unweighted sample from p0, all weights are set 
to 1/N. At each iteration, the algorithm calculates the particle weights 
and then searches for a new value β′ based on an informal measure of 
particle diversity, the effective sample size Neff 

Neff =
1

∑N
i=1w2

i
, (2)  

where wi are the normalized weights of the N particles and takes values 
between 1 (when all the weight is concentrated on a single particle) and 
N (when all particles have equal weight). The algorithm will determine 
the value of β′ for which the effective sample size N′

eff equals a fraction a 
of the current Neff . One can think of this choice as a trade-off between 
stability (large effective sample size) and efficiency (large β

′ steps to 
minimize the number of filtering steps). 

Next, a resample-move step is made: the particles are first resampled 
using systematic resampling (see Douc and Cappe, 2005) and all weights 

Fig. 2. a) Pseudocode for the SMC sampler proposed in this paper. The parts in bold highlights at which point the entire model has to be evaluated b-d) change of 
parameters and acceptance rate during the runtime (iterations) of the SMC for an example simulation. b) change of the exponent β, which controls the gradual change 
from the prior to the posterior weighting of the particles during the SMC steps. c) acceptance rate of the mutation step d) distance Ds between the true and the 
approximate posterior distribution. The exact definition of the distance measure is described in section “Benchmarking the SMC against a state-of-the-art MCMC”. 
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are reset to 1/N. Next, the particles are mutated by an MCMC step based 
on Differential Evolution and snooker update (ter Braak, 2006; ter Braak 
and Vrugt, 2008): for each particle xi, two particles xj and xk are 
randomly sampled, with i ∕= j ∕= k. The proposal x′

i is obtained as follows: 

x
′

i = xi + γ
(
xj − xk

)
+ ε, (3)  

where γ is a scaling factor, typically set to 2.38/
̅̅̅̅̅̅
2d

√
(ter Braak, 2006), 

with d being the number of parameters under calibration, and ε is drawn 
from a narrow distribution N (0, b), with a default of b = 10− 4. In 10% 
of the cases (randomly selected), a snooker update is performed instead, 
following ter Braak and Vrugt (2008). As b implies a particular scale for 
the parameters, b should be either adjusted to the prior or expected 
posterior parameter uncertainty, or parameters should be scaled 
accordingly. 

When β reaches 1 (meaning that the full data is used), a last 
resampling step is performed (Step 5), so that the particles can be 
considered an unweighted sample from π(θ|y). As this sample likely 
contains many identical particles, a final round of mutation steps (Step 
6) are executed to increase sample diversity. 

During the search for β′ (Step 4a), some weights may take infinite 
values, due to p′

(xi)/(xi) ratios exceeding the numeric accuracy of the 
computer. In this case (omitted from the listing in Fig. 2), a resample- 
move step is executed, and the current value for β is kept for the next 
iteration. This is a failsafe to keep the sampler from crashing due to 
numerical issues. 

The output of an exemplary SMC simulation is displayed on Fig. 2b. 
The emerging series of β values reveals that small changes between 
intermediary distributions are necessary at the beginning to avoid 
sample impoverishment, and while β increases these changes become 
larger as the SMC progresses. The acceptance rate of the MCMC steps 
(averaged over all S MCMC steps at each iteration) fluctuates between 6 
and 9% in this example. The distance DS, a measure of dissimilarity to 
the true posterior, is defined below. 

2.4. Benchmarking the SMC against a state-of-the-art MCMC 

We benchmarked the performance of the SMC algorithm in four 
calibration case studies of increasing complexity against a Differential 
Evolution MCMC with snooker update (DEZS; ter Braak and Vrugt, 
2008), which is a state-of-the-art MCMC algorithm. As performance 
measure, we calculated the similarity between SMC or MCMC samples to 
a reference distribution using the following metric DS, proposed by 
Laloy and Vrugt (2012): 

DS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2d

∑d

i=1

[(μi,1 − μi,2

σi,1

)2

+

(
σi,1 − σi,2

σi,1

)2]

,

√

(4)  

where μi,x and σi,x (x ∈ {1,2}) are the mean and standard deviation of 
the marginal distribution of each parameter in the reference sample (x 
= 1) and the sample being evaluated (x = 2), and d is the number of 
parameters. Essentially, DS expresses the average normalized Euclidean 

distance between the means and standard deviations of both distribu-
tions. As reference distribution, we used the analytical posterior when it 
was available, and otherwise an extremely long independent DEzs run. 

As case studies for the benchmark, we selected a multivariate normal 
distribution, a simple ecosystem model, and a state-of-the-art forest 
growth model. As shown in Table 1, these case studies differ greatly in 
model complexity. The first example is a simple three-dimensional 
multi-variate normal distribution, with a strong correlation (r ≅ 0.9). 
The second case study consisted of calibrating the Very Simple 
Ecosystem Model (VSEM), a simple ecosystem model serving as bench-
mark in R’s BayesianTools package. Two configurations were tested 
with VSEM: in one case, we included two parameters in the calibration 
for which the posterior was strongly correlated (r≅ 0.95), whereas in the 
second case, there were no strong posterior correlations between pa-
rameters. The third case study used the model 3-PGN (Minunno et al., 
2018) , a recent extension of the forest growth model 3-PG (Landsberg 
and Waring, 1997). With 51 parameters, 3-PGN is substantially more 
complex than the VSEM model, but due to its monthly time step, the 
model still executes very fast (Table 1). To emulate the calibration of a 
computationally more expensive model, a fourth case study (3-PGNsleep) 
was set up, in which the execution time of 3-PGN was increased by 
adding a pause of 50 ms after each model execution. All other settings 
are identical. 

In case of the multivariate distribution, the distribution itself was the 
calibration target. For the dynamic models, we simulated synthetic data 
from the model’s default parameters and added a normally distributed 
observation error on top, and specified a likelihood from these as-
sumptions, including parameters for the error terms (1 for VSEM and 2 
for 3-PGN, because two outputs were used for calibration in the latter 
case). For all models, we used wide uniform (uninformative) priors. As 
min / max values for the priors, we chose [− 5,5] for the multivariate 
normal distribution, and for the VSEM / 3-PGN model, we chose the min 
/ max values for calibration provided by the model developers (see 
supplementary material for details). 

To explore how the SMC’s control parameters influence the sam-
pler’s efficiency, we ran all case studies in a full factorial design, varying 
the values of the control parameters (Table 2), resulting in 240 alter-
native SMC configurations. An exception is the multivariate normal 
case, where N was set to 50, 100 and 1000 particles, yielding 180 al-
gorithm configurations that we tested. For each model, the experiment 

Table 1 
Overview of the five case studies described in this paper. Execution time indicates the average run time of a single model run on the cluster where these experiments 
were performed. As explained in the main text, the DEzs can be partly parallelized, albeit to a much lower degree than an SMC algorithm. We tested for all case studies if 
such a parallelization speeds up computations and always selected the faster option.  

Case study Number of calibrated model parameters (+
error terms) 

Average runtime for a single model run [ms] (SD in 
brackets) 

Iterations for reference 
MCMC-DEzs 

Parallel MCMC- 
DEzs 

Multivariate 
normal 

3 0.56 (0.49) 100 000 No 

VSEM 
(uncorrelated) 

6 + 1 0.37 (0.48) 2 000 000 No 

VSEM (correlated) 6 + 1 0.37 (0.48) 2 000 000 No 
3-PGN 51 + 2 0.93 (0.29) 2 000 000 No 
3-PGNsleep 51 + 2 51.39 (0.5) 2 000 000 Yes  

Table 2 
Settings used in the evaluation of the SMC algorithm.  

Control 
parameter 

Description Values 

N  Number of particles 5000, 20 000, 50 000, 
100 000 

a Neff threshold for resample-move step 
(fraction of N)  

0.5, 0.75, 0.9 

S  Number of mutation steps 2, 5, 10, 20, 30 
γ  Scaling factor for mutation steps 0.01, 0.1, 0.333, 0.5  
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was repeated five times with different random seeds, to assess conver-
gence of the algorithm and variations in runtime and sample quality. 
Convergence was assessed using the Gelman-Rubin diagnostic R̂ 
(Brooks and Gelman, 1998; Gelman and Rubin, 1992). It was assumed 
that convergence is reached when no univariate R̂ for point estimates 
and upper confidence interval is greater than 1.05, and the multivariate 
R̂ estimate (Brooks and Gelman, 1998) is less than 1.2. 

The MCMC-DEZS algorithm used as a benchmark requires several 
chains to be run independently from each other. Based on the results of 
ter Braak and Vrugt (2008), the number of chains was set to 3. 
Convergence was assessed by estimating R̂ over the 3 chains of a run, 
with the same criteria as for the SMC runs. The number of iterations, 
given in Table 1, was selected to ensure convergence of the reference 
run. Because each single MCMC iteration depends on the previous 
iteration, MCMCs iterations can in general not be computed in parallel. 
However, for the MCMC-DEZS, each MCMC iteration requires several 
model evaluations to calculate the posterior values for the (in our case) 
three internal DE chains. These internal computations will make the 
algorithm somewhat faster (at maximum by a factor 3), unless the model 

evaluates very fast. In this case, parallelization overhead will offset 
parallelization gains. For all case studies, we tried both options (parallel 
and sequential), selected the faster option for the benchmark (Table 1). 
In general, we note that although the MCMC-DEZS offers some options 
for parallelization, these are very limited, because only a small number 
of computer cores can sensibly be used in parallel with this algorithm. 
SMCs, however, scale practically linearly with the number of cores, up to 
a large number of cores (see our later results, Fig. 4), which is one of 
their core advantages over MCMCs. 

2.5. Effect of parallelization 

All the experiments described above were executed on the same 
computer cluster (NEMO at the University of Freiburg; technical speci-
fications see supplementary material). Each node on this cluster consists 
of 20 cores. For the SMC experiments, 40 cores were used, spanning no 
more than 2 different nodes. To assess the effect of parallelization on 
runtime, further tests were run on a varying number of cores (1, 2, 5, 10, 
20 and 40 cores). In these tests, the SMC parameters were set to N = 50 
000, a = 0.9, S = 30 and γ = 0.1. For each of these settings, 3-PGN was 

Fig. 3. Comparison of MCMC and SMC sampler quality for the dynamic models VSEM and 3-PGN, and different settings for the SMC sampler. The shaded area shows 
the difference to the reference DS for five MCMC runs as a function of the runtime. The points show the average runtime and DS for five SMC runs with equal 
algorithm settings coded by size (number of particles N), fill color (intermediate distribution tuning parameter a), symbol (final mutation steps S) and border color 
(proposal scaling parameter), respectively. 
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run without artificial runtime increase, as well as with a runtime in-
crease of 20 and 50 ms. Each combination was executed five times, to 
account for potential variations in execution time. 

3. Results 

3.1. Quality and efficiency 

For the multivariate normal case (Fig S1 in the supplementary ma-
terial), MCMC runs converged after 22.8 s on average and achieved a DS 
score of 0.0018. 83 out of 180 SMC runs reached convergence, and the 
lowest DS score is 0.028. Execution time for the converging SMC runs 
ranged between 0.35 and 36.32 s. SMC runs were more likely to reach 
convergence with a greater number of particles and mutation steps. 

The results for the more complex models are summarized in Fig. 3. 
For the MCMC, the distance from the reference run was monitored every 
1000 iterations of the algorithm. The blue area indicates the spread of 
the five MCMC runs. For SMC, only converged runs are shown on the 
graph. SMC runs located below the shaded area compare favorably to 
the MCMC algorithm, i.e. the same sample quality can be achieved in 
less time. 

In both VSEM examples, the MCMC sampler quickly reached a state 
close to the reference (DS < 0.01). Most of the SMC runs converged 
according to the Gelman-Rubin criterion (180 and 166 out of 240 for the 
cases with and without strong correlation, respectively), although the 
sample quality, as expressed by DS, varied greatly. None of the SMC runs 
are located below the MCMC curves, meaning that they did not 
outperform the MCMC. The plot shows a strong dependency of sample 
quality on the scaling factor of the MCMC proposals γ: the higher the 
value for γ, the better the sample quality. Interestingly, more particles by 
themselves did not translate into better performance. 

For the 3-PGN benchmark, the MCMC sampler reached levels of DS as 
low as 0.04. Of the 240 SMC runs, 32 reached convergence. All those 
that did had a at least 10 mutation steps S, and for most, the value of γ 
was either 0.1 or 0.333. Some of the SMC runs were located at the same 
level as the MCMC curves, indicating a similar efficiency. Sample quality 
generally increased (DS decreased) with increasing S, at the expense of 
additional runtime. Increasing the number of particles N generally had a 

positive effect on the performance of the algorithm, but this effect was 
often small. Runtime, in contrast, increases greatly with N. For the three 
runs with a = 0.9, γ = 0.1 and S = 30, for example, DS only improved 
marginally with N, whereas runtime was six times higher for N =

100 000 than for N = 20 000. 
The ranking of the different SMC settings stayed qualitatively similar 

for the benchmarks with 3-PGNsleep, compared to 3-PGN, which is un-
surprising, given that the two models are functionally identical and 
differ only in their runtime. In this case, 29 of the SMC settings achieved 
convergence. Small differences between the ranking of different settings 
for 3-PGNsleep and 3-PGN are likely due to the inherent stochasticity of 
the sampler. For the 3-PGNsleep model, all converged SMC runs were at 
the same level or below the MCMC curves, indicating that the SMC 
sampler was typically more efficient than the MCMC sampler for this 
model. 

3.2. Effect of parallelization 

To better understand the trade-off between communication over-
head (i.e. the computation time lost during parallelization due to the 
necessary communication between cores) and speed-up due to paralle-
lization, we performed SMC simulations with models of different run-
time across a range of used CPU cores, and regressed the relationship 
between runtime and cores with a linear regression on the log-log scale 
(Fig. 4). 

For the standard 3-PGN model (runtime approx. 1 ms), paralleliza-
tion could reduce the total SMC runtime maximally by a factor 3 when 
using 10 cores instead of running the algorithm serially (Fig. 4, left). 
Runtime increased with less than linearly with the number of cores (log- 
log slope estimate − 0.5), and adding more cores beyond 10 did not in-
crease a further speed-up. Scaling was much better for the calibrations of 
the identical 3-PGN model which was modified to include a pause of 20 
and 50 ms after model execution (Fig. 4, middle, right). The log-log 
slope estimates were − 0.88 and − 0.94, suggesting that the scaling 
would likely approach the ideal value of − 1 (i.e. a runtime ~ 1/cores 
scaling) for even slower models. A detailed regression table with slope 
estimates is provided in the supplementary material, Fig. S2. 

Fig. 4. Scaling of the SMC runtime with the number of cores used for the standard 3-PGN model (left, runtime approx. 1 ms) and the identical model with added 
execution pauses of 20 and 50 ms (middle, right). Each point displays the average runtime of 5 SMC calibrations. The straight solid (black) line shows the fit of a 
linear regression to the data points (for the left figure, the points with 20 / 40 cores were omitted). Dashed (red) show slopes of − 1, which, in a log-log plot, display 
an ideal linear scaling of the runtime with the number of cores. 
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4. Discussion and conclusions 

The purpose of this paper was to provide an introduction into SMC 
sampling for the calibration of complex environmental models, to 
explore which SMC settings work well for complex dynamic model, and 
to assess the potential runtime reduction through parallelization for 
SMC algorithms compared to MCMC methods. 

Our main findings are that SMC samplers are efficient algorithms for 
model calibration that can outperform MCMCs for runtime-intensive 
models, when at least a moderate number of parallel computer cores 
(in the order of some 10 cores) is available to the user (see Figs. 3,4). A 
possible drawback of SMCs is that convergence and sampling efficiency 
depended strongly on the tuning parameters of the algorithm. For the 
best settings of the tuning parameters, we could achieve relatively 
reliable convergence, but badly tuned algorithms often showed particle 
degeneracy and other problems. Once these phenomena occur, it is 
difficult for the algorithm to recover, unlike for an MCMC, which can 
always be run longer, even if it mixes badly. It is therefore vital that SMC 
algorithms are correctly tuned from the start. Assuming that the results 
from our test cases can be extrapolated to other ecological models, we 
would conclude that a large number of particles is less important than a 
sufficient number of intermediate MCMC steps to achieve favorable 
convergence behavior. The SMC settings that were most efficient in our 
simulations effectively prescribe an algorithm that consists of a mix 
between MCMC and SMC steps. We conjecture that such “mixed algo-
rithms” may be an interesting direction for future research. 

The values for the tuning parameter γ (scaling factor for the DE 
MCMC steps during mutation) that led to greatest sampling efficiency 
were close to the optimal value for normal distributions in standard 
MCMC tuning (γ = 2.38/d1/2 → 0.9 for VSEM and 0.3 for 3-PG), sug-
gesting that many of the lessons learned from MCMC tuning can be taken 
over to the mutation steps in an SMC. Given the apparent importance of 
the mutation steps, it seems obvious that further research should be 
directed towards optimizing this part of the algorithm. A particularly 
promising idea seems to us to examine adaptive procedures to determine 
the number of MCMC steps, as suggested by Fearnhead and Taylor 
(2013). 

Whether SMC calibration can outperform MCMC calibration depends 
primarily on the trade-off between communication overhead and par-
allelizability (Fig. 4). In the case of the standard 3-PGN model without 
artificial runtime increase, the fastest SMC configurations came close to, 
but did not beat, the time taken by the MCMC-DEZS algorithm to reach 
the same sample quality, expressed as DS (1700s, cf. Fig. 3). By contrast, 
for the 3-PGN with a 50 ms pause, executing the SMC sampler with 5 or 
more cores took less time than using MCMC-DEZS for the same sample 
quality. Communication overhead is also the reason why we used the 
possible parallelization option for the DEzs MCMC algorithm in the 
BayesianToools R package (which would have allowed using 3 CPU 
cores) only for the 3-PGNsleep scenario – for all faster models, running 
the MCMC without parallelization was faster, due to communication 
overhead. Given that we parallelized on a setup that has in our experi-
ence a comparatively low communication overhead, we conclude that a 
model runtime of around 20 ms – 50 ms is needed to make the use of an 
SMC worthwhile. When parallelizing across more cluster nodes, or in a 
distributed system, communication overhead will likely be larger, and 
models should therefore likely be even slower until the advantages of 
parallelization are offset by their costs. Given that many ecological and 
environmental models have runtimes of minutes or even hours, how-
ever, this does not appear to pose a major limitation for the applicability 
of SMC algorithms to model calibration. 

Our results are less favorable for SMCs than those of Jeremiah et al. 
(2011), which we attribute to the fact that we benchmark against a 
state-of-the-art MCMC algorithm, rather than against a 
Metropolis-Hastings MCMC. Although we anticipate that our results are 
fairly representative, in that SMC will eventually outperform MCMC 

regarding given sufficient parallel resources, it would be interesting to 
run further tests, varying both the models and parameters under cali-
bration, as well as the algorithm settings. In particular our results that 
favor a balanced mix of SMC and MCMC steps points towards exploring 
more aggressive design principles that mix SMC and MCMC ideas (e.g. 
Zhu et al., 2018) 

Another issue that seems to require urgent attention are robust 
adaptation procedures that would, for example, automatically select the 
SMC settings that we identified as most efficient in Fig. 3, and reliable 
convergence checks that monitor and report potential issues during an 
SMC run. While there is some development in this direction (for example 
our automatic adaptation of the β′ steps), we find that SMCs lack in this 
respect compared to state-of-the-art MCMC algorithms such as the DEzs, 
which is completely self-adaptive under mildly beneficial 
circumstances. 

Although we do provide the posterior parameter estimates in the 
code repository (see section Data accessibility), we stress that the pur-
pose of this study was not to test the ecological plausibility of the fitted 
models or the identifiability of their parameters with real data (for an 
ecologically interpretable calibration of 3-PGN with real forest data, see, 
for example, Trotsiuk et al., 2020). Moreover, the use of synthetic data 
circumvented possible problems that can arise when calibrating models 
with structural error (e.g. Oberpriller et al., 2021). Such problems can 
potentially increase or decrease convergence speed of MCMCs or SMCs 
in practical applications. As we only compare across MCMC and SMCs 
with different settings in a fixed scenario, however, we do not see this as 
a potential limitation for our results. 

5. Conclusions 

In conclusion, our paper demonstrates that SMC algorithms should 
be considered as an alternative to MCMC samplers by modelers who 
want to calibrate slow models and have access to appropriate parallel 
computing hardware. For slow models, communication overhead due to 
parallel computing becomes negligible, and SMCs can draw on the op-
portunity provided by their superior parallelizability. Our results also 
suggest that SMCs with a large share of internal MCMC steps work best, 
possibly supporting a broader insight that a mix of both design princi-
ples (as it is already done to a lesser degree in population-based MCMC 
algorithms where several MCMC chains are run in parallel, such as the 
DEzs MCMC that we used as a reference) might actually be the most 
successful strategy for calibrating complex models on modern computer 
hardware. Our study also highlighted various opportunities for further 
research, in particular with regard to further development of robust 
adaptive methods for tuning SMC parameters, and the need to develop 
better tools for monitoring efficiency and convergence issues in SMCs. 

Data accessibility 

The SMC algorithm presented in this paper is based on the Baye-
sianTools R package, which is available on CRAN (Hartig et al., 2019). 
The BayesianTools package is a framework for Bayesian inference that 
includes a several MCMC samplers, as well as plots and diagnostic 
functions for Bayesian computations. The BayesianTools vignette 
(available via https://cran.r-project.org/web/packages/BayesianTools 
/vignettes/BayesianTools.html) explains in detail how to specify likeli-
hoods and prior in the format that is expected by the package . Instal-
lation instructions and code for reproducing the results of this paper are 
available at https://github.com/florianhartig/BayesianTools/tree/mast 
er/Publications/SpeichEtAl-SMCForModelCalibration. 
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stochastic volatility models via adaptive sequential Monte Carlo: lévy-driven 
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