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may also lead to dependence between species (phylogenetic 
structure) or populations of species (genetic structure) with 
more recent divergence will tend to be more similar than 
those which diverged longer ago (Harvey and Pagel 1991).

While such underlying structures in the data are not 
fundamentally problematic for statistical analyses, they tend 
to create two undesirable outcomes. First, model error, as 
well as neglected processes and variables connected to these 
structures, often leads to dependence structures in the model 
residuals, which violates the critical assumption of indepen-
dence present in many models and methods (Legendre and 
Fortin 1989, Miller et al. 2007). Second, because predictor 
variables are often correlated with underlying dependence 
structures (e.g. climate with space), models may use predic-
tors to overfit the residual dependence structure and thereby 
remove it, partially or completely.
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The problem of structured data

Ecological data often show internal dependence structures: 
the tendency for values of nearby observations to be more 
similar than distant observations is widespread, if not perva-
sive. It can be found within every spatial scale from micro-
habitats to continents (spatial structure; Legendre 1993, 
Koenig 1999, Dormann et al. 2007), or within sequentially 
timed observations (temporal structure), such as in animal 
telemetry data (Rooney et al. 1998, Otis and White 1999) or 
population size estimates (Lundberg et al. 2000, Bjørnstad 
and Grenfell 2001). In behavioural ecology, individuals may 
form groups (herds, flocks, schools, packs) with synchro-
nised activity or movement (hierarchical structure; Wu and 
David 2002, Sumpter 2006). In multi-species analyses or 
in analyses of genetic populations, evolutionary relatedness 
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Ecological data often show temporal, spatial, hierarchical (random effects), or phylogenetic structure. Modern statistical 
approaches are increasingly accounting for such dependencies. However, when performing cross-validation, these structures 
are regularly ignored, resulting in serious underestimation of predictive error. One cause for the poor performance of 
uncorrected (random) cross-validation, noted often by modellers, are dependence structures in the data that persist as 
dependence structures in model residuals, violating the assumption of independence. Even more concerning, because often 
overlooked, is that structured data also provides ample opportunity for overfitting with non-causal predictors. This problem 
can persist even if remedies such as autoregressive models, generalized least squares, or mixed models are used. Block cross-
validation, where data are split strategically rather than randomly, can address these issues. However, the blocking strategy 
must be carefully considered. Blocking in space, time, random effects or phylogenetic distance, while accounting for 
dependencies in the data, may also unwittingly induce extrapolations by restricting the ranges or combinations of predictor 
variables available for model training, thus overestimating interpolation errors. On the other hand, deliberate blocking in 
predictor space may also improve error estimates when extrapolation is the modelling goal. Here, we review the ecological 
literature on non-random and blocked cross-validation approaches. We also provide a series of simulations and case studies, 
in which we show that, for all instances tested, block cross-validation is nearly universally more appropriate than random 
cross-validation if the goal is predicting to new data or predictor space, or for selecting causal predictors. We recommend 
that block cross-validation be used wherever dependence structures exist in a dataset, even if no correlation structure is 
visible in the fitted model residuals, or if the fitted models account for such correlations.
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The standard statistical answer to this problem is the use 
of appropriate parametric models that include the respec-
tive dependence structure (Table 1), such as spatial or tem-
poral autoregressive models, mixed models, or phylogenetic 
least squared regressions. In principle, these models solve 
the problem of independence and should allow the use of 
standard parametric methods for evaluating model fit and 
model selection (Dormann et al. 2007, Miller et al. 2007). 
In practice, however, specification errors as well as the prob-
lem of structural overfitting, as described above, can lead to 
a poor performance of these parametric model evaluations. 
Moreover, many popular machine-learning methods such as 
random forest or neural networks do not allow accounting 
for such dependence structures. For all these reasons, it is 
crucial that we have robust nonparametric methods for vali-
dation, selection, and assessment of predictive accuracy of 
models when used on ecological data with internal depen-
dence structures.

Ideally, model validation, selection, and predictive errors 
should be calculated using independent data (Araújo et al. 
2005). For example, validation may be undertaken with data 
from different geographic regions or spatially distinct subsets 
of the region, different time periods, such as historic spe-
cies records from the recent past or from fossil records. Most 
commonly, however, either no such independent data exist 
or they do not meet assumptions of independence (Araújo 
et al. 2005). Further, changes in biological relationships, 

community structures, or evolutionary changes may affect 
species responses in different regions or time periods (Fielding 
and Bell 1997, Maguire et al. 2015). Because of these difficul-
ties, predictive error on new data is commonly approximated 
by cross-validation, in which data are (repeatedly) split into 
two subsets, one used for model training and the other for 
model testing (see Supplementary material Appendix 1 Table 
A1.1 for an overview of specific approaches and Table A2 
for compiled references). This principle of data splitting is 
central to many of today’s statistical algorithms and work-
flows, in particular for all predictive modelling frameworks 
in ecology (Hastie et al. 2009). The central assumption here 
is that training and evaluation data are independent. If not, 
error estimates will be too optimistic, and model selection 
will favour too complex models.

Early in their development, statistical models were typi-
cally assessed on their fit to the data alone (euphemistically 
referred to as ‘resubstitution’), representing an extreme 
case of non-independence of the hold-out. Of course, any 
such dependence of the validation with the training data 
will favour overfitted models (Larimore and Mehra 1985, 
Hawkins 2004), resulting in artificially small error esti-
mates and thus overly optimistic estimates of model per-
formance (Mosteller and Tukey 1977, Olden et al. 2002, 
Arlot and Celisse 2010). A similar situation occurs when 
there are dependence structures in the data. When data 
held-out for validation are drawn from nearby in the depen-
dence structure (e.g. close in space or time, from the same 
herd, etc.) the independence of evaluation data can be 
compromised (Dormann et al. 2007, Kuhn 2007, Hastie  
et al. 2009, Telford and Birks 2009, Bahn and McGill  
2013), again producing overly optimistic estimates of 
prediction error (Mosteller and Tukey 1977, Picard and 
Cook 1984), and potentially leading to erroneous scientific 
conclusions (Kuhn 2007, Hastie et al. 2009, Telford and 
Birks 2009).

In other words, non-independence of hold-out data from 
the training data erroneously makes models appear more 
reliable than they are, enticing us to have more faith in their 
predictions than is actually warranted. Comparative studies 
of model validations for ecological applications have consis-
tently demonstrated this e.g. (Olden et al. 2002, Reineking 
and Schröder 2003, Araújo et al. 2005, Veloz 2009, Lieske 
and Bender 2011, Roberts and Hamann 2012a, Wenger and  
Olden 2012, Bahn and McGill 2013). Problematically, 
modellers often partook (and frequently still do) in what 
Stone (1974, p. 111) labels “controlled division” of data, 
wherein “the cautious statistician … sets aside a randomly 
[our emphasis] selected part of his sample without look-
ing at it and then plays without inhibition with what’s 
left, confident in the knowledge that the set-aside data  

Table 1. Guidelines for achieving reliable error estimates in consideration of modelling objectives (extrapolation vs. interpolation) and  
cross-validation approaches that may block in predictor space, structure, both predictor space and structure, or neither.

Cross-validation structure

Random Blocked

Cross-validation 
predictor space

Random Correct interpolation error without 
random structure

Correct interpolation error with 
random structure

Blocked Correct extrapolation error without 
random structure

Correct extrapolation error with 
random structure

 

Dependence
structure

Parametric
solution Blocking

Blocking
illustration

Spatial Spatial models
(e.g. CAR,
INLA, GWR)

Spatial

Temporal Time-series
models
(e.g. ARIMA)

Temporal

Grouping GroupMixed effect
models
(e.g. GLMM)

Hierarchical /
Phylogenetic

HierarchicalPhylogenetic
models
(e.g. PGLS)

Figure 1. Examples of dependence structures, parametric solutions 
to parameter estimation, and the associated blocking approaches 
for cross-validation to increase reliability of prediction error 
estimates.
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will deliver an unbiased judgment on the efficacy of his  
analysis.” Of course, such random data splitting does not 
provide independent validation when a dependence struc-
ture is present and, thus, “unbiased judgment” is compro-
mised.

In response, statisticians have introduced a smorgasbord 
of cross-validation approaches in an effort to achieve unbi-
ased error and parameter estimates (Stone 1974, Picard 
and Cook 1984, Shao 1993, Kohavi 1995), many of which 
have been incorporated into ecological studies (Mankin 
et al. 1977, Verbyla and Litvaitis 1989, Power 1993, Rykiel 
1996). Early solutions were leave-n-out cross-validation 
approaches (Stone 1974, Picard and Cook 1984) that run 
iteratively, each time withholding a small randomly selected 
subset of the data for testing. Because these approaches have 
also been shown to produce biased error estimates (Shao 
1993, Kohavi 1995, Telford et al. 2004, Amesbury et al. 
2013), further corrections have been proposed, for example 
by incorporating distance-based buffers around hold-out 
points (Bahn 2009, Telford and Birks 2009, Le Rest et al. 
2014).

A general strategy to increase independence in cross- 
validation is to split data into ‘blocks’ at some central point(s) 
of the dependence structure, such as in time or space. There 
are some examples of block cross-validations in the eco-
logical literature, implemented with a wide variety of stated 
objectives: most often for identifying non-transferability or 
the general inability to extrapolate, but also for increasing 
independence, avoiding overfitting, providing more reli-
able error estimates, or selecting better predictive models 
(Supplementary material Appendix 1 Table A1.2–A1.3). 
When systematically compared with random data splits,  
they consistently demonstrate larger errors in predictions 
(Burman et al. 1994, Arlot and Celisse 2010, Lieske and 
Bender 2011, Roberts and Hamann 2012a, Wenger and  
Olden 2012, Bahn and McGill 2013, Radosavljevic  
and Anderson 2014). It should be noted, however, that 
few studies have explicitly demonstrated that the estimates 
resulting from blocked cross-validations are indeed closer to 
the ‘true’ error that would be expected for a truly indepen-
dent dataset (but see Trachsel and Telford 2016).

However, there is also reason to be cautious about 
reported block cross-validation errors. While block cross-
validation addresses correlations, it can create a new valida-
tion problem: if blocking structures follow environmental 
gradients, blocking may hold out entire portions of the 
predictor space (i.e. ranges and/or combinations of pre-
dictor variables), introducing extrapolation between cross-
validation folds (Kennard and Stone 1969, Snee 1977). 
Consequently, when predicting to the hold-out data, 
the model has to predict outside the ranges or into new 
combinations of predictor values of those included in the 
training folds. This could occur, for example, with spatial 
data splits, as climatic environments tend to be geographi-
cally structured (e.g. latitudinal gradients of temperature), 
or in temporal splits, as some periods will not have expe-
rienced certain predictor conditions (Zurell et al. 2012). 
In some cases, one may make a virtue of necessity, using 
this to test a model’s extrapolation error. In general, how-
ever, the concern remains that unwanted blocking of the 

environmental space could lead to an overestimation of 
interpolation errors.

Our objective for this article is to examine the utility and 
application of block cross-validation. We review existing 
approaches, clarify the reasons for their use and their poten-
tial implementations, and discuss their shortcomings and 
challenges. We believe a better understanding of blocking 
and its relevance is highly important. Currently, blocking is 
not widely used in biogeographical studies and, when it is, 
the motivations for doing so are often not clear. This is a con-
cern when so many studies now involve prediction to new 
times and/or places. However, we also demonstrate compel-
ling reasons for using block cross-validation even for model 
predictions to the same time and same region. Moreover, the 
majority of applications in our review come from the species 
distribution modelling literature, block cross-validation has 
broad applicability to virtually any ecological analysis per-
formed on structured data. We illustrate this point through 
simulations and case studies across a range of ecological 
questions. Specifically, we look at four block cross-validation 
scenarios: spatial blocking, blocking by hierarchical groups, 
phylogenetic blocking, and blocking in predictor space. Via 
these analyses, we demonstrate that:

random cross-validations, even with models that 1) 
should correct for dependence structures, yield error 
estimates that are too low;
block cross-validation does not only increase error 2) 
estimates but actually provides estimates that are closer 
to true values;
blocking in structured data often restricts the predictor 3) 
space and controlling this tendency may be neces-
sary, depending on whether inter or extrapolation in 
predictor space is the goal.

Cross-validation with structured data

Ecological variables (observations of biota) commonly con-
tain four types of internal structure: autocorrelation in time, 
autocorrelation in space, group dependence structures, and 
phylogenetic structure (i.e. relatedness). These can lead to 
two issues in statistical models: 1) non-independence of 
residuals, and 2) overfitting to the dependence structure of 
the data. The first issue arises, for example, when a model 
misses a structured variable, or if it does not describe its 
effect on the response perfectly. Non-independence of 
residuals violates a central assumption of regression models 
and other statistical methods, typically leading to over-
optimistic confidence intervals and incorrect p-values (Ives 
and Zhu 2006). The second issue, overfitting to the depen-
dence structure of the data, describes the phenomenon that 
the model may absorb structured residual variation with 
another predictor (e.g. time or space themselves or another 
covariate that correlates with them). This can mask both 
the first problem and the underlying model misspecifica-
tion, creating an overfitted model that does not predict well 
to new data.

To clarify these two issues, we provide four ecological 
examples where both issues could emerge:
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post-glacially from a single ice-age refugium, structuring 
genetic relatedness in space). In this case, the model may 
attribute part of the effect of the unmeasured covariates to 
coastal distance, which would result in biased parameter 
estimates and reduced autocorrelation of residuals (over-
fitting). Coastal distance is confounded with phylogenetic 
dissimilarity. The same type of situation could apply when 
considering multiple species that are phylogenetically 
related.

Non-independence of residuals may be addressed by explic-
itly modelling correlation structures, such as with autoregres-
sive models (for space and/or time), hierarchical models (for 
describing nested structures), or phylogenetic contrasts (Ives 
and Zhu 2006; Table 1). For example, in parametric models, 
such problems are addressed by moving from simple regres-
sion models with independent random error assumptions 
to more complex model structures such as conditional spa-
tial autoregressive models (CAR; Cressie 1993), integrated 
nested Laplace approximations (INLA; Rue et al. 2009), or 
geographically weighted regressions (GWR; Fotheringham 
et al. 2002), time series methods such as autoregressive 
integrated moving averages (ARIMA; Brockwell and Davis 
1996), methods that include random effects such as gen-
eralised linear mixed models (GLMM; Breslow and Clayton 
1993), or phylogenetic comparative methods such as phy-
logenetic generalised least squares (PGLS; Grafen 1989). 
These model structures can account for correlations among 
data points, yielding unbiased estimates, at least in theory.

Overfitting is a more insidious problem because it can 
easily escape detection unless cross-validations are care-
fully implemented. Here, structure in observations (e.g. 
space, time, groups) is being explained by the model 
through some other non-causal covariate. This is partic-
ularly common in ecology because covariates themselves 
can be structured in the same way as the residuals (i.e. 
in space, time, phylogeny, etc.). Thus, covariates need not 
be orthogonal to model structure, as assumed implicitly 
by methods in the previous paragraph. Resulting model 
predictions may perform fine in a situation where the 
correlation structure between non-causal and the “true” 
predictors (i.e. underlying structures) remains unchanged 
(Bahn and McGill 2007), but they could completely fail 
when predicting to novel situations. Methods that directly 
target residuals (e.g. spatial variograms, or regression mod-
els with structured errors; Table 1) may fail to detect this 
problem because overfitting may hide the structure of the 
residuals. This can occur even when using models that 
account for dependence structures, such as those discussed 
above (and listed in Table 1).

As a consequence of both problems, cross-validation on 
random data splits (all of which will be largely consistent 
in underlying structure) as well as the various parametric 
modelling options (Table 1) will tend to underestimate 
predictive error (Araújo et al. 2005, Veloz 2009, Bahn 
and McGill 2013), leading to false confidence in model 
predictions. We show in our later examples that this prob-
lem persists, although to a lower extent, even if appropri-
ate parametric models (e.g. spatial models, mixed models, 
PGLS) are used. To address these issues associated with 
dependence structures, whether or not we know they are 

1) Temporal structure - Imagine that we have annual time 
series data of antelope population size, which fluctuates over 
time but always tends to be similar to a previous year’s size. 
Also imagine that we have annual rainfall in each relevant 
year as a covariate. Population size may be partly driven by 
rainfall but is also affected by other covariates which we 
have not measured but that may also be structured in time, 
leading to model residuals that are temporally autocorre-
lated (non-independence of residuals). However, because 
the missing covariates are also likely to correlate with rain-
fall, and that they all follow similar temporal structure, the 
model may attribute part of the effect of these other covari-
ates to rainfall itself, which would result in biased parameter 
estimates and reduced autocorrelation of residuals (over-
fitting). Rainfall and demographically induced temporal 
autocorrelation are confounded.
2) Spatial structure - Imagine the distribution of an anolis 
lizard across an island archipelago, which likely dispersed 
gradually throughout the individual islands from a single 
source, so their populations are spatially structured (i.e. 
data from nearby islands are likely to be more similar). If 
we model lizard distribution with climate, we will certainly 
end up with spatial autocorrelation in model errors due to 
the historic dispersal pattern of populations. However, these 
residuals will be reduced because we also certainly (and 
unintentionally) alias part of the geographic space via spa-
tially structured environments. Thus, even if climate was 
immaterial to the species, it would be used by the model as 
a trend-surface-regression to reduce residual spatial autocor-
relation (overfitting). Geographic space and climate space 
are confounded.
3) Hierarchical or group structure - Imagine we have recorded 
observations of hyena movements paired with tree cover 
classes. While hyena movement may be partly driven by tree 
cover, they are also driven by movements of other hyena indi-
viduals in the same cackle. A habitat selection model based 
on tree cover will then result in residuals autocorrelated 
by individual animals or even by groups themselves (non-
independence of residuals). Further, each cackle likely moves 
within different tree covers, particularly if the cackles tend to 
avoid one-another (i.e. tree cover correlates with individu-
als or groups). Therefore, other variables that correlate with 
individuals or groups, and thus also with tree cover, may be 
partly accounted for in the model by tree cover itself (over-
fitting), further reducing model residuals. We are unable to 
separate the contribution to the model of tree cover and the 
underlying random structure that tree cover represents, thus 
confounding individual or grouping structures.
4) Phylogenetic or genetic structure - Imagine that we have 
drought tolerance data for a tree species, which tends to 
vary across several genotypes. Also imagine that we use 
distance from the coastline as a covariate, knowing that 
interior populations can survive drier conditions. Drought 
tolerance may be partly driven by the distance from the 
coast, but is also affected by other, unmeasured covariates, 
leading to model residuals that are autocorrelated by phy-
logenetic relatedness (non-independence of residuals). It is 
possible that these missing covariates correlate both with 
coastal distance (say, if they are environmentally driven) and 
with genetic relatedness (especially if the species migrated 
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We present an example in Box 2, in which we estimate 
resource selection functions (RSFs; Manly et al. 2002) with 
repeated movement observations of individual ungulates. In 
this case study, blocking for cross-validation by individual 
animals circumvents the problem of the underlying ran-
dom structure and delivers a more realistic error estimate for 
predictions onto new individuals. This case study also illus-
trates that, while a including random effects in a regression 
approach (i.e. a mixed model) might yield unbiased model 
parameter estimates, it cannot offer a reliable uncertainty for 
those estimates and, further, does not address the problem 
of underestimation of predictive error from cross-validations 
with random data splits.

Blocking to account for phylogenetic correlations

Species properties are often phylogenetically conserved, 
meaning that closely related species tend to be more similar 
to each other than distant relatives. Consequently, analyz-
ing data across species can lead to phylogenetically correlated 
residuals, resulting in individual observations that are not 
independent (Felsenstein 1985). Just as in time, space, or 
individuals and groups, phylogenetic structure can be overfit 
by the model when covariates correlate with phylogenetic 
structure. It has therefore become common in ecological 
analysis to fit regression models that include phylogenetic 
structure in their residuals (PGLS; Table 1; Revell 2010). 
To ensure independence in cross-validation, it may also be 
necessary to block observations by phylogenetic distance. 
To our knowledge, such an approach to cross-validation 
has not been undertaken in the phylogenetic literature. We 
demonstrate in Box 3 that this greatly improves inference for 
phylogenetically structured data.

Disentangling blocking and extrapolation

So far, we have discussed block cross-validation as a means 
for model selection (Box 3) and calculating a corrected inter-
polation error in the presence of correlation structures within 
data or residuals (Box 1, 2). Blocking, however, can also be 
used to estimate extrapolation error. Extrapolations into 
new predictor space are different from changes in underly-
ing structure of the data: the latter only changes correlations 
between predictors, while the former requires the model to 
predict a response in an area of predictor space about which 
they are uninformed. Models typically show larger error when 
extrapolating into these no-analogue conditions (Pearson 
2006, Elith and Graham 2009). Consequently, if our mod-
elling goal is extrapolation, we are likely to underestimate 
prediction errors with standard cross-validation approaches 
(Heikkinen et al. 2012). On the other hand, blocking may 
inadvertently restrict the predictor space for model training, 
especially as data structures are often collinear with clines in 
predictor variables (e.g. spatial temperature clines), creating 
overly pessimistic error estimates when model extrapola-
tion is of no interest. Thus, when making decisions about  
cross-validation approaches, model objectives must be 
carefully considered (Table 1).

present, we can introduce blocking across the given correla-
tion structure into our cross-validations (Table 1). Different 
modelling objectives and different underlying data struc-
tures will necessitate different blocking approaches. When 
models are intended only to predict within the same spatial 
and temporal ranges or on the same individuals or groups 
by which they were trained, random cross-validation may 
yield fair error estimates because the model’s condition-
als do not change. When models are intended to only to 
predict on the same data structure, without the desire to 
make causal inferences, random cross-validation may yield 
fair error estimates. However, if the goal is to infer causal 
predictors, or predict into new dependence structures 
(i.e. new locations, new time periods, new individuals or 
groups, or for new species within a phylogeny), blocking is 
required. Moreover, blocking can also be used to estimate 
errors under extrapolation in predictor space, which will be 
discussed in the next section.

Blocking to account for spatial and temporal 
autocorrelation

When validation data are randomly selected for cross- 
validation from the entire spatial domain, training and 
validation data from nearby locations will be dependent 
(spatial autocorrelation). Consequently, if the objective is 
to project outside the spatial structure of the training data, 
error estimates from random cross-validations will be overly 
optimistic. To address this, blocks can be designed across 
the spatial structure itself (i.e. in contiguous geographic 
space). This effectively forces testing on more spatially dis-
tant records, thus decreasing spatial dependence and reduc-
ing optimism in error estimates (Trachsel and Telford 2016). 
We demonstrate this via a simulation in Box 1. Temporal 
autocorrelation, which is functionally similar to spatial auto-
correlation in a single dimension, presents the same depen-
dence challenges. When models are intended to predict in 
time, blocks may be drawn in the same manner (i.e. blocks 
of contiguous time) to better ensure independence between 
cross-validation folds (Burman et al. 1994, Racine 2000, 
Bergmeir and Benitez 2012).

Blocking to account for random effect structures

A somewhat different structure is presented by hierarchical 
data, such as blocked or nested experimental designs, data 
replicated by individuals in groups, or repeated measure-
ments such as animal telemetry data. In these cases, data are 
structured by units such that observations within the same 
block, individual, or group will tend be more similar in 
quality and more dependent in response. Just as with spa-
tial or temporal autocorrelation, models parameterised on 
such data may be fitted to the grouping structure itself via 
covariate predictors and consequent optimism in error esti-
mates would be expected from random cross-validations (i.e. 
that predict only on the same grouping structure) relative 
to the error expected when predicting to new individuals or 
groups.
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Box 1. Spatial blocking

Spatial structure in data can lead to the underestimation of model prediction error when covariate predictors allow 
models to fit these structural patterns. In this simulation we investigate the ability of spatial blocking strategies to 
minimize this problem. We simulated data of species abundances on a 50  50 grid that depended in complex ways 
(interactions, non-linear combinations, limiting effects, and exclusion by disease) on four spatially autocorrelated 
‘environmental’ variables. We modelled the data using Random Forest (Breiman 2001) and compared the root mean 
squared errors (RMSE) among evaluation strategies. The results are based on 100 replicated landscapes (Supplementary 
material Appendix 2 for details).

Evaluation strategies tested included 1) using the same data for training and evaluation (resubstitution), 2) randomly 
splitting data into training and test data (random), 3) splitting the data into training and test data blocked in space 
with block sizes 10  10, 20  20 cells and half of the grid (25  50 cells), and 4) a leave-one-out cross validation 
(LOO) with spatial buffering , in which the cell held-out for evaluation is buffered by a circle of cells (radius 5, 8 or 
10), which are also omitted from the training set. We either used all test sites resulting from the evaluation strategies, 
even if they were environmentally non-analogous to training data (no-analogues included), or restricted testing sites to 
analogue ones (minimal environmental extrapolation). Cross-validations were compared to an ‘ideal’ RMSE, which was 
estimated by producing a model for each of the 100 landscapes and predicting to the remaining 99 then averaging the 
errors to achieve a single RMSE per landscape.

Our results show that ignoring dependence between training and test sites (resubstitution and randomly drawn 
folds) lead to artificially low error estimates, while block cross-validation and the buffered LOO produce error estimates 
much closer to the true error as determined by predicting on new, independent data, particularly when test sites are 
forced to be environmentally analogous to training sites. We also find that the size of the blocks needs to be substantially 
larger than the range of the spatial autocorrelation in the model residuals (∼10 units) to provide a good error estimate, 
while a buffer size equivalent to distances at which residual autocorrelation is reduced to zero suffices for the buffered 
LOO (Supplementary material Appendix 2 Fig. A1.1).

Complete R scripts for this simulation are provided in Supplementary material Appendix 6.
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included while dashed lines show RMSE distributions with test locations non-analogous to training locations removed.
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and more local extents (Mackey and Lindenmayer 2001). 
When models are intended to interpolate (i.e. predict only to 
similar predictor space), blocking may induce extrapolation 
in cross-validation when unnecessary. While it’s unlikely that 
this can be avoided entirely, these effects can be minimised 
by 1) using blocks no larger than necessary considering the 
grain and extent of analysis and the spatial scale of patterning 
of environment, 2) using as much data as possible for model 
training, and 3) representing predictors equally across blocks 
or folds.

Extrapolation will generally increase as more data are 
withheld for testing (Box 4). Consequently, predictor 
coverage in training data can be maximised by making blocks 

Avoiding extrapolation

Environments tend to be structured in space and time: cli-
mates tend to be similar in nearby locations just as they tend 
to be similar in consecutive time periods. Therefore, because 
blocking to achieve structural independence in cross- 
validation requires the grouping of similar structural groups 
(e.g. contiguous space or time), such blocking also might 
group similar predictor space together, potentially removing 
all such like space from the remaining data. This effect is 
likely to be more pronounced when simple sets of predic-
tor variables with global effects such as climate are used, in 
contrast to variables that explain distributions at finer grains 

Box 2. Blocking by individual or group

We estimated resource selection functions (RSFs) for 43 female elk Cervus elaphus monitored using satellite telemetry 
in Alberta, Canada. We fitted generalized linear mixed models (GLMM) with a Bernoulli response (1  use by elk; 
0  available, i.e. random points drawn from elk home ranges), environmental covariates as predictors, and elk indi-
vidual as a random intercept. Exponentiated non-intercept parameters estimates of the GLMMs were interpreted as 
relative selection strength in favour of any given predictor (Lele et al. 2013).

RSFs were evaluated using five-fold cross-validation as proposed by Boyce et al. (2002), based on nonparametric 
correlation between RSF bins and area-adjusted frequencies for each withheld sub-sample of the data in turn. A model 
with good predictive performance has a strong positive correlation (Boyce et al. 2002). We evaluated the performance 
of a full resubstitution model (train data  test data) and three five-fold cross-validations, each with a different blocking 
design: 1) random, in which each elk contributed to each fold with 20% of its position fixes (no blocking); 2) randomly 
selected individuals, in which each elk contributed to one fold with 100% of its fixes and home ranges of elk belonging 
to different folds may overlap (blocked by individual); and 3) spatially blocked individuals, in which each elk contrib-
uted to one fold with 100% of its fixes and selected in such a way that home ranges of elk belonging to different folds do 
not overlap (blocked by individuals that behave independently). Extended methods and complete results are provided 
in Supplementary material Appendix 3.

Evaluation by both resubstitution and random cross-validation erroneously suggests outstanding model performance 
(Fig. B2.1a–b). In contrast, both blocked cross-validations (by individual and by spatially blocked individual) showed 
notably lower performances on average and much higher variability in Spearman-rank correlations across folds (Fig. 
B2.1ab). Cross-validation blocked by random individuals resulted in a notable decrease in model evaluation perfor-
mance relative to random splits across all position fixes. Blocking by spatially independent individuals resulted in no fur-
ther decrease in model performance, suggesting that independence between folds was achieved at the level of individual 
animals (or, ecologically speaking: individuals with overlapping home ranges did not behave more similarly than any 
two random individuals). Parameter estimates, while consistent on average across methods, covered a wider breadth of 
values in the blocked cross-validations, providing a measure of uncertainty for their true values (Supplementary material 
Appendix 3).

Both the acceptance of precision in parameter estimates as well as optimism in model validations due to non-inde-
pendent folds are prevalent in RSFs studies (Supplementary material Appendix 1 Table A1.2–A1.3; but see Wiens et al. 
2008, Koper and Manseau 2009, Coe et al. 2011). Block cross-validation can help avoid such overconfidence in model 
performance and foster greater care in the search for sound model structures.

Complete R scripts and data for this case study are provided in Supplementary material Appendix 6.
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Figure B2.1. Summaries of resource selection function (RSF) implementations incorporating several validation approaches including 
resubstitution, cross-validation with random fixes, cross-validation with randomly blocked individuals, and cross-validation with 
spatially blocked individuals, showing (a) the area-adjusted frequency of RSF score bins and (b) Spearman’s rank correlations (rho) 
between RSF bin ranks and area-adjusted frequencies for each cross-validation fold.
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via structural covariates may reduce residual autocorrelation 
while not offering increased independence. Therefore, larger 
blocks than suggested by variograms or other measures of 
autocorrelation may be required to avoid optimistic error 
estimates, though the extent of this effect is unlikely to be 
known by the modeller. While the potential for introducing 
extrapolation is higher when blocks are made conservatively 
large, this can be mitigated through different approaches to 
block fold assignments (Fig. 2b).

While the preferred number of folds in k-fold approaches 
has been suggested to be between 5 and 10 (Kohavi 1995, 
Hastie et al. 2009), such recommendations are perhaps more 
appropriate for random splitting where an ad hoc number 
of folds must be chosen. To include as much data for model 
training as possible in each cross-validation iteration, each 
block should be its own fold. This, of course, maximises 
required iterations of the cross-validation, resulting in a 
potentially computationally expensive procedure, particu-
larly when models are slow to fit or when data sets are very 
large (‘computational limits’ in Fig. 2a). However, while a 

(or leave-one-out buffers) only as large as required. The min-
imum blocking distance should be the extent of autocor-
relation in model residuals (‘autocorrelation requirements’ 
in Fig. 2a). If correlation structures are multidimensional, 
anisotropic analyses of residual autocorrelation (in individ-
ual dimensions) may also allow blocks to be narrower in one 
direction than the other, while still achieving independence. 
For example, a model describing spatial data that is missing 
a key temperature variable may result in residual autocorrela-
tion that extends in the north–south direction (the general 
direction of the temperature gradient) much farther than 
in the east–west direction. Dividing such data into square 
blocks or defining a circular buffer radius for a leave-one-
out approach based on an isotropic autocorrelation distance 
would, in such a case, result in unnecessarily large east–
west block distances, and potentially introduce unnecessary 
extrapolation into the cross-validation. Portrait-oriented 
rectangular blocks might better limit extrapolation.

We state the extents of residual autocorrelation as a 
blocking minimum because, as explained above, overfitting 

Box 3. Blocking to address phylogenetic correlation

To show the use of phylogenetic blocking, we simulate a simple trait-environment relationship (body mass versus lati-
tude) with residual variation structured by phylogenetic distance, then cross-validate regression predictions using three 
approaches: a random k-fold, a k-fold blocked in phylogenetic distance, and a leave-one-out approach with buffering 
by phylogenetic distance. We also use these cross-validations for model selection, as well as considering model selection 
based on AIC of a standard regression (LM) and a geographic least squares regression (GLS).

Trait-environment data were random environmental observations (latitudes between 0 and 90) for 50 hypothetical 
species with a phylogeny created by a standard birth-death process. Body mass response was calculated from a quadratic 
(3 parameter) function, to which we added phylogenetically structured error by sampling from a multivariate normal 
distribution with phylogenetic distance as covariance (Fig. B3.1a–b). Semivariograms indicated that residual autocor-
relation did not extend beyond ∼0.5 units of phylogenetic distance.

Model selection was between eight regressions of increasing complexity (i.e. increasing polynomial order), based 
on minimum AIC for the LM and GLS resubstitution approaches or based on minimum root mean squared error 
(RMSE) for the cross-validations. Three cross-validation approaches were considered. First, we ran 5- and 10-fold 
cross-validations with data assigned to folds randomly. Second, we ran blocked 5- and 10-fold cross-validations with 
folds defined by hierarchical clustering of the phylogenetic distances (Fig. B3.1b). Last, we implemented a phylogeneti-
cally independent leave-one-out cross-validation, in which each data point was withheld in turn for model testing and 
the remaining data used for model training, with the exception of data within a predetermined buffer of phylogenetic 
distance (either 0.00, 0.25, 0.50, 0.75 or 1.00 phylogenetic distance units) around the withheld point. The entire data 
building and cross-validation simulation process was repeated 100 times. Extended methods and complete results are 
provided in Supplementary material Appendix 4.

For model selection (Fig. B3.3c), the GLS was the best model selection tool of any approach (correct structure in 
60% of the simulations), while the blocked cross-validations and buffered leave-one-out approaches also performed 
well. The LM, the random cross-validations, and the unbuffered leave-one-out were the worst (correct structure in 
12–18% of simulations), more often choosing overly complex models. For error estimates, blocked and leave-one-out 
cross-validations resulted in both median RMSE and ranges of RMSE better-approximating the true errors in the data 
generating model, while both the LM and GLS resubstitution as well as the random cross-validations and leave-one-out 
cross-validations with smaller buffers gave optimistic error estimates (Fig. B3.1d). Only the five-fold blocked cross-
validation and the leave-one-out with the largest buffer size (1.0) resulted in RMSE values higher than those of the true 
model (i.e. overly-pessimistic validations).

Generally speaking, GLS reduced overfitting in model selection compared to the non-independent approaches (i.e. 
LM, random cross-validations, and leave-one-out cross-validations with smaller buffer sizes). However, error estimates 
for GLS, while an improvement on the non-independent approaches, were still optimistic. The block cross-validations 
and leave-one-out cross-validations with sufficiently large buffers provided the best combination of model selection and 
reliable error estimation.

Complete R scripts for this simulation are provided in Supplementary material Appendix 6.

(Continued)
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Figure B3.1. Blocking in phylogenetic space. (a) Sample regression (grey line) showing the simulated relationship between a species 
trait (body mass) and the environment (latitude) with phylogenetically structured correlation in the residuals, conforming to the 
assumptions of a PGLS model. Shapes represent random cross-validation folds and colours represent blocked cross-validation folds. 
(b) Sample phylogenetic tree in which 25 tips (species) are assigned to cross-validation folds randomly or assigned to folds by 
hypothetical clades based on phylogenetic distance. Autocorrelation in the phylogenetic structure can be visualised as simulated trait 
residuals structured by genetic distance in the tree. (c) Violin plot showing the distribution of model complexity (number of parameters 
in the selected model) for each cross-validation approach across the simulations. The number of parameters in the true data generating 
model (3 parameters) is shaded in grey. (d) Results of the phylogenetic blocking simulation showing distributions of RMSE in trait 
predictions from the resubstitution, from both the random and blocked cross-validations (with the number of folds, k, shown in 
brackets), and from the buffered leave-one-out (LOO) cross-validation (with the buffer size, b, shown in brackets). The shaded grey 
area represents the 5th to 95 percentile range of the true model RMSE. Horizontal bars below the plot show the 5th to 95th percentile 
range of the RMSE for each approach.

Box 3. (Continued)
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Box 4. Blocking for extrapolation

We examined the effect of blocking in environment on cross-validation, in a typical species distribution modelling 
approach for Douglas-fir Pseudotsuga menziesii habitats in western North America. Species presence–absence records 
were paired with climate data from the 1961–1990 period and divided into groups for k-fold cross-validation using 
several data splitting approaches: random splits, splits in geographic space, splits in predictor space, as well as data 
resubstitution (no splitting). Geographic splits were implemented with a two-fold checkerboard pattern across spatial 
grids of varying size. We also implemented a buffered leave-one-out cross-validation with buffer radii of 100, 500, 1000 
and 1500 km (Box 1).

Correlograms indicated that residual autocorrelation was virtually non-existent past distances of ∼220 km. Modelling 
was done with Random Forest (Breiman 2001) and models were evaluated on predictions to all folds using AUC. 
Extrapolation was quantified by 1) calculating the Euclidean distance across all principal component predictors from 
each point in the withheld fold back to each point in the model training data, 2) for each withheld point, calculating 
the first percentile distance, and 3) calculating the average of the first percentile distances from all points in the withheld 
data. See Supplementary material Appendix 5 for detailed methods and results.

Both spatial and environmental blocking induce extrapolation between folds (Fig. B4.1a). The largest spatial blocks 
(e.g. 1  2 blocking) and the coarsest environmental blocks (e.g. 2-group cluster analysis or splitting only in PC1) result 
in both the largest environmental distances and the lowest estimates of predictive accuracy (AUC), with the effect being 
much stronger for spatial blocks than for purely environmental blocks (Fig. B4.1a). There is a small but visible decrease 
in AUC for environmental blocks relative to spatial blocks at the same geographic distance, suggesting a cumulative 
effect on predictive accuracy when spatial and environmental extrapolation are combined (Fig. B4.1b). The buffered 
leave-one-out approach both minimises extrapolation and increases predictive accuracy relative to other methods at 
similar geographic distances.

While the effect of spatial autocorrelation may account for decreasing accuracy at distances up to ∼220 km, it 
cannot explain the continued decrease in AUC at much larger distances. Also, with only a moderate effect on accuracy, 
environmental extrapolation requirements are also unlikely to be the cause of this decrease. More likely, across larger 
spatial blocks, the underlying spatial structure changes (e.g. competition regimes, disease presences, changes in local 
adaptations of genetic populations, etc.). While some of this structure may be overfit with spatially autocorrelated 
predictors, this overfit is likely to break down across space, thus reducing model predictive accuracy in new regions 
(i.e. into alternative blocks). This overfit also hides these effects from our measurements of spatial autocorrelation, as 
correlograms or semivariograms were built using residuals from a full data model that could be overfit to the complete 
spatial structure.

In summary, while purely environmental splits force extrapolation, they are unlikely to account for spatial 
autocorrelation or structural overfitting because blocks may be spatially intertwined. Further, smaller spatial blocks, 
even those that seemingly account for residual autocorrelation, may be insufficiently large to account for structural 
overfitting.

Complete R scripts and data for this case study are provided in Supplementary material Appendix 6.
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Figure B4.1. Model prediction accuracy (AUC) as function of the minimum (a) environmental distance and (b) minimum 
geographic distance between training and test data in various k-fold blocking approaches. While relationships are drawn as linear, 
the theoretical minimum AUC is 0.5 (for a random model).
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Extrapolation errors are difficult to estimate because no data 
exist in the domain to which the model is predicting. In such 
cases, we may consider cross-validation strategies that try to 
simulate model extrapolation: splitting training and testing 
data so that the domain of predictor combinations in both 
sets is not overlapping. To sensibly interpret the results, we 
require some measure of dissimilarity in predictor space, a 
metric not completely straightforward to quantify. Models 
may include numerous predictors, some of which are auto-
correlated and not all of which are equally important to every 
species. The simplest metrics of dissimilarity are comparisons 
of individual variable ranges (Capinha et al. 2012, Anderson 
2013) that, while identifying extreme values in single variable 
dimensions, do not identify new arrangements of variable 
combinations. A more comprehensive approach involves 
measuring multivariate distances across standardised vari-
ables (Williams et al. 2001, Elith et al. 2006, Roberts and 
Hamann 2012b, Mesgaran et al. 2014) or principal compo-
nents (Broennimann et al. 2012, Eiserhardt et al. 2013; Box 
4) or measurements to multivariate convex hulls around data 
clouds (Cornwell et al. 2006).

There are limited examples of cross-validations imple-
mented with data splits directly in predictor space 
(Supplementary material Appendix 1 Table A1.2) and most 
are a byproduct of spatial data splitting (Fløjgaard et al. 
2009, Roberts and Hamann 2012a, Wenger and Olden 
2012). While Newbold et al. (2015) and Stephens et al. 
(2016) used biome delineations to block, these are also 
inferred extrapolations based on predefined spatial groups. 
Many assessments of model extrapolation fall under tests 
of the ‘transferability’ or ‘generalisability’ of a specific habi-
tat model (Thomas and Bovee 1993, Leftwich et al. 1997, 
Schröder and Richter 2000, Chee and Elith 2012, Schibalski 
et al. 2014). While these studies evaluate model perfor-
mances, they seldom quantify extrapolation requirements 
or analyse links between predictive performance decline and 
dissimilarity between training and prediction data. To date, 
while some ecological studies have linked decreases in predic-
tive accuracy to measures of data dissimilarity (Capinha et al. 
2012), only few have attempted to systematically quantify 
such patterns (Thuiller et al. 2004, Heikkinen et al. 2012, 
Roberts and Hamann 2012a, Bahn and McGill 2013), all 
of which expectedly found decreased prediction accuracy 
with increased dissimilarity between training and testing 
data. In these comparative studies, extrapolation was always 
a byproduct of spatial blocking. Of course, such validations 
assume that assessments of transferability in space to differ-
ent predictor space can mimic assessments of transferability 
in time to different predictor space (Blois et al. 2013), but 
see (Schröder and Richter 2000).

How should blocks in predictor space be constructed?

A key challenge to blocking in predictor space for cross- 
validation is to decide how folds should be defined to inform 
the predictive objectives of the model. The intuitive approach 
may be to measure the dissimilarity between training and 
prediction data, then define blocks in such a way that the 
extrapolation requirements within the cross-validation are 
as similar as possible in magnitude and direction to those 

cross-validation with a large number of folds might be com-
putationally intensive, there is no conceptual barrier to it so 
long as validation data meet the assumptions of indepen-
dence. That said, with small values of k, resulting in limited 
model training data (‘data limits’ in Fig. 2a), bias in cross-
validation folds may become problematic, so the value of 
k may depend strongly on the overall data quantity (Hastie 
et al. 2009). The recycling of training data is, of course, 
maximised in leave-one-out approaches, which are also the 
most computationally intensive, requiring a new model to 
be fitted for each point in the data.

When leave-one-out approaches or k-fold approaches 
with numerous folds are not feasible or not desired, assign-
ments of numerous blocks to fewer folds can be imple-
mented in ways that ensure a greater variability of predictors 
are represented in each fold (Fig. 2b). While random assign-
ment of blocks to folds might result in good representation 
of predictor space in all folds, other approaches may bet-
ter ensure this. For example, blocks can be systematically 
assigned to folds in checkerboard or repeating patterns to 
distribute them evenly across the data (Fig. 2b, ‘systematic’). 
A more directed approach could also be to divide predic-
tors manually between folds (e.g. manually distribute blocks 
with similar values for key environmental values between 
folds). For more complex predictor space (i.e. more vari-
ables), random fold assignments can be repeated many 
times, measuring predictor dissimilarity between folds for 
each iteration, then choosing the optimal assignment result-
ing in lowest dissimilarity between folds (Fig. 2f, ‘optimised 
random’). This approach, of course, only ensures that pre-
dictor space in each fold will be equally different and not 
necessarily different in the same way. We note that whilst 
this is called ‘block’ cross-validation, the implication is not 
that the divisions need to be rectangular. For instance, blocks 
might be based on sampling units themselves (Buston and 
Elith 2011), Box 2, or on distinct geographic features such as 
river catchments (Chee and Elith 2012) or mountain ranges 
(Bulluck et al. 2006).

Deliberately inducing extrapolation

In practice, modellers are often not only interested in the 
accuracy of their model predictions within the domain 
for which data exists (interpolation), but also beyond this 
domain (extrapolation). The need for such estimates is 
apparent in applications such as species habitat projections 
under future climate change, for which the prediction data 
is likely to contain no-analogue predictor space, i.e. condi-
tions not observed within the training data (Williams and 
Jackson 2007). Such extrapolation requirements are rela-
tively straightforward to identify and measure via compari-
sons of training and prediction data, such as by examining 
individual variable ranges or by measurements of multivari-
ate distances such as the MESS maps in Maxent and related 
procedures (Elith et al. 2010, Zurell et al. 2012, Mesgaran 
et al. 2014).

The key question for model extrapolation then is not 
whether a model is still ‘valid’ when applied to new data 
(it almost certainly is not), but rather to what degree the 
violation of assumptions undermines predictive accuracy. 
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are common tools in economics (Ohlson and Zhang 1999), 
and meteorology (Foley et al. 2012) but have also recently 
been considered in ecology (Petchey et al. 2015; Fig. 3b). 
While this approach does not require any ad hoc calculation 
of dissimilarity, it is more computationally intensive in that 
dissimilarity measures and cross-validations must be under-
taken for many blocking structures to determine the range 
of model performance.

To our knowledge, there are no examples in the literature 
of cross-validations using blocks purely defined in predictor 
space. In Box 4, we offer a species distribution modelling case 
study for North American Douglas-fir, in which we compare 
cross-validations based on random splitting, spatial block-
ing, and environmental blocking. Our results demonstrate 
that blocking purely in environment will decrease perceived 
model accuracy in cross-validations, but that estimates may 
remain optimistic if underlying correlation structures are not 
addressed.

Guidance: how to block

In this section, we suggest a workflow for cross-validation 
to clarify when and how to implement different data 
splitting strategies. The focus of this workflow is not on 
providing a fixed recipe for blocking, but rather on high-
lighting the questions a researcher should ask in this con-
text. The exact answers to these questions are necessarily 
dependent on modelling objectives, data structures, com-
putational capabilities, as well as the desire for conserva-
tism in assessments of model forecast errors in the context 
of their results. We have discussed these implications and 
tradeoffs above.

Step 1. Assess dependence structures in the data

Determine the dependence structure in the raw data (temporal/
spatial/phylogenetic autocorrelation using autocorrelation 
plots, variograms, or correlograms; quantify variance con-
tribution in nested data using intercept-only mixed effect 
models). This serves as rough guidance on the scale of block-
ing (at least as many units as the range of autocorrelation; 
at least at the most variable hierarchical level). It should be 
emphasised here that, while modellers are most often con-
cerned with autocorrelation in model residuals, dependence 
structures in this step are assessed on raw data, as this is 
where overfitting of predictor variables may occur.

Step 2. Determine prediction objectives

Will the model predict into new dependence structures 
(spaces, times, groups, etc.), or into new predictor space, or 
both? While extrapolation in predictor space, time, and geo-
graphic space may be straightforward to quantify (Box 1, 4), 
changes in hierarchical structure may necessitate more delib-
eration. For example, while some determinations of what 
constitutes a new ‘group’ of individuals may be obvious, oth-
ers may be more nuanced (e.g. herds with non-overlapping 
ranges vs. individuals in the same herd that move largely 
independently, Box 2).

for the predictions. In k-fold approaches, where every fold is 
used exactly once for testing, this becomes a zero-sum game 
where the more one fold resembles the objective extrapo-
lation, the more the others do not! In these cases, tests of 
predictions to particular folds may be more informative in 
the context of extrapolation than the overall error estimate 
across all folds.

Alternatively, cross-validations could be run several times 
with spatial or other structured blocks defined in a variety 
of sizes and/or orientations. This approach produces a range 
of validation statistics from the cross-validations rather than 
just a single value (Fig. 3a). From this range, it may be pos-
sible to define a limit, either in spatial block size or variable 
dissimilarity, at which the model no longer produces useful 
predictions. Such extrapolation limits, or ‘forecast horizons’, 
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Figure 2. Approaches for choosing appropriate block sizes to 
minimise extrapolation. (a) The tradeoffs in block size selection 
between addressing residual autocorrelation requirements and 
working within the data and computational limits. (b) Sample fold 
assignments of hypothetical spatial blocks for cross-validation, 
which result in different levels of representation of predictor space 
based on combinations of two environmental variables (Variable 1 
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ment based on minimum dissimilarity (Optimised random) can 
ensure lower dissimilarity between folds. While this figure shows  
a spatial example, similar approaches could be used for other 
correlation structures.
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from the blocked cross-validation methods should 
be used. This approach favours final prediction qual-
ity over perfect accuracy of error estimates. It has the 
advantage of using all the data and thus likely being 
the best predictor, particularly for smaller datasets. 
It has the disadvantage that the error estimates from 
the cross-validation no longer apply perfectly to the 
predictions, as they were made with slightly different 
models. However it would be safe to assume that the 
error estimates are conservative (i.e. the final model 
should perform better), so this may not be a major 
disadvantage.
All the individual models from the cross-validation 2) 
can be preserved and predictions from all models can 
be combined (Hastie et al. 2009). For example, in a 
k-fold approach, k different models are fitted, each 
describing a slightly different combination of training 
data. Predictions on the new data can be made with 
each of the k models, then averaged. This approach 
has the advantage of preserving the direct relationship 
between the models and the error estimates (i.e. the 
‘final models’ are exactly those evaluated) as well as 
offering a variance for each prediction in the training 
data. On the downside, predictions are always made 
by models fitted with incomplete training data, com-
promising the sufficiency principle (i.e. that all pos-
sible information has been gleaned from the data) in 
the same way bagging does.

Challenges and limitations

While block cross-validation may helpful in situations with 
non-independent data, there are several instances in which 
spatial, temporal, phylogenetic, or blocking in predictor 
space may not be fruitful. This section aims at raising aware-
ness of these problems and of the general limitations that 
prediction may face.

Step 3. Block according to objectives and structure

When predictions will be made into new dependence struc-
tures, blocks should be drawn so that similar structural 
conditions are grouped together (e.g. spatial blocks when 
predicting to new sites; time-slice blocks of similar duration 
as the one predicting to; herds as blocks when predicting to 
a new herd; clades defined at the same phylogenetic branch-
ing depth as the clade to predict to; Box 1, Box 2, Box 3 
for examples). Blocks can also be designed or arranged (or 
fold assignments or cross-validation methods can be chosen) 
to either minimise extrapolation or to emulate the extrap-
olation required between the training and prediction data  
(Box 4).

Step 4. Perform the cross-validation

Cross-validations may be performed for model comparison 
(and thus selection), error estimation, or both. There can 
be many blocks within each fold of a cross-validation. For 
example, if the block size of a spatial data set is 100  100 
km, then the entire study region of Canada can be checker-
boarded and a random set of blocks is assigned to each fold. 
Or, if within a herd, subgroups of ungulates with similar 
movement exist, these may serve as blocks and be assigned 
to fold across herds.

Step 5. Make ‘final’ predictions

The analyst essentially has two choices of how to determine 
a ‘final model’ or make ‘final predictions’. Both have distinct 
advantages and disadvantages:

All the available training data can be used to fit a new 1) 
model with which to make a single set of final predic-
tions (Kuhn and Johnson 2013). As the error estimates 
from such a model are invalid, error estimates derived 
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Figure 3. (a) Conceptual figure demonstrating the expected relationship between extrapolation requirements (either from dissimilarity 
between model training and prediction data or from blocking in cross-validation) and model accuracy, where accuracy generally decreases 
while dissimilarity increases. (b) Conceptual figure of a ‘forecast horizon’ (blue dashed line), based on repeated cross-validation with differ-
ently sized blocks, resulting from the drawing of a model performance threshold (dashed grey line). Because extrapolation requirements 
may vary at a given prediction performance threshold (e.g. across folds), the forecast horizon may include a range of values (blue shading). 
Extrapolations beyond the horizon would be considered too unreliable to be useful (adapted from Petchey et al. 2015).
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(such as in count or presence–absence data) it affects all 
estimates.

Possible solutions for selecting evaluation blocks when 
data sampling is irregular or unbalanced could be: 1) non-
gridded but consistently shaped blocks (e.g. pie-slices,  
Fig. 4e), 2) stratified blocks with similar mean/prevalence 
(Elith et al. 2008, who suggest a blocking strategy with 
equal number of occupied sites per block, Bahn and McGill 
2013), 3) grouped sets of blocks (e.g. checkerboards; Box 
1, 4) to ensure coverage of both presence–absence, and 4) 
buffered leave-one-out approaches (Bahn 2009, Telford 
and Birks 2009, Le Rest et al. 2014; Box 1, 4). It should be 
noted, however, when using non-regular spatial block shapes 
and arrangements, blocks may address autocorrelation 
inconsistently.

Last, in new predictor space, we might also encounter 
changes in relationships among covariates (changing corre-
lation structures) or among species interactions themselves 
(Fielding and Bell 1997). This can be particularly problem-
atic when predicting over larger time scales, enabling evolu-
tionary changes to violate assumptions of niche conservatism 
(Maguire et al. 2015). Both situations, potentially undetect-
able by the modeller, can result in a loss of predictive power 
(Austin 2002) and are not, unfortunately, addressed through 
blocking in cross-validation.

Final thoughts

In this review and synthesis, we have discussed the role 
of block cross-validation for better estimating prediction 
errors. It addresses prediction optimism, arising from non-
independent hold-out or from overfitting data dependence 
with covariates. We did not, however, attempt to address 
the effect of this overfitting on parameter estimation, or on 
model selection. These topics would benefit from further 
exploration.

When data are scarce, cross-validation approaches that 
require models to be trained with further subset data may 
not be feasible. Similarly, even when data are numerous but 
only cover small spatial or temporal ranges, achieving inde-
pendence between training and test data by blocking may 
not be possible. For example, if spatial autocorrelation per-
sists at distances larger than half the spatial extent of the data, 
achieving independence in folds will be impossible no matter 
how spatial blocks are structured. This may also be the case 
for animal telemetry data when individuals move as a unified 
group. In such cases, no plethora of data records from within 
the same group will accommodate effective cross-validation 
for predictions to new independent individuals. This is more 
likely to occur within opportunistically collected data, than 
in data collected in systematic surveys.

Irregular sampling may lead to data clusters in space, 
time or along other correlation structures, which may lead 
to difficulties in defining effective regular blocks (Fig. 4a). 
In such cases, the models fit on training data may encounter 
highly variable sample sizes and prevalence rates, resulting 
in artificially large error estimates. One solution may be to 
use irregularly arranged but similarly sized blocks (Fithian 
et al. 2015; Fig. 4b) or irregularly shaped blocks (Lieske and 
Bender 2011; Fig. 4c).

Similarly, even when sampling coverage is unbiased and 
regular, in presence–absence data, prevalence of occur-
rences may be highly unbalanced (Fig. 4d), leading to 
blocks entirely lacking either presences or absences (e.g. 
withholding the centre square in Fig. 4d for validation). 
Unbalanced mean values of the response can also make 
cross-validation problematic if, for example, one tries to 
validate predictions using a block with only absence loca-
tions (Fig. 4d). While this may primarily be a presence–
absence design problem, similar arrangements may appear 
in continuous response data. For example, in analyses  
with linear link functions, unequal means only affect esti-
mates of the intercept, but for non-linear link functions 

(a) (b) (c)

(d) (e)

Species absenceSpecies presence

(f)

Figure 4. Conceptual illustrations of challenges for block cross-validation in space. Data may be (a) highly unbalanced in distribution of 
samples, which can be addressed through (b) irregular spacing of blocks of consistent size and shape, or (c) irregularly shaped blocks. Data 
may also be (d) highly unbalanced in prevalence (number of presences versus absences), which can be addressed through (e–f ) non-gridded 
blocks and/or irregularly shaped blocks.
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