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It is widely acknowledged that species respond to climate change by range shifts. Robust predictions of such changes in
species’ distributions are pivotal for conservation planning and policy making, and are thus major challenges in ecological
research. Statistical species distribution models (SDMs) have been widely applied in this context, though they remain
subject to criticism as they implicitly assume equilibrium, and incorporate neither dispersal, demographic processes nor
biotic interactions explicitly. In this study, the effects of transient dynamics and ecological properties and processes on the
prediction accuracy of SDMs for climate change projections were tested. A spatially explicit multi-species dynamic
population model was built, incorporating species-specific and interspecific ecological processes, environmental
stochasticity and climate change. Species distributions were sampled in different scenarios, and SDMs were estimated
by applying generalised linear models (GLMs) and boosted regression trees (BRTs). Resulting model performances were
related to prevailing ecological processes and temporal dynamics.

SDM performance varied for different range dynamics. Prediction accuracies decreased when abrupt range shifts
occurred as species were outpaced by the rate of climate change, and increased again when a new equilibrium situation
was realised. When ranges contracted, prediction accuracies increased as the absences were predicted well. Far-dispersing
species were faster in tracking climate change, and were predicted more accurately by SDMs than short-dispersing species.
BRTs mostly outperformed GLMs. The presence of a predator, and the inclusion of its incidence as an environmental
predictor, made BRTs and GLMs perform similarly.

Results are discussed in light of other studies dealing with effects of ecological traits and processes on SDM
performance. Perspectives are given on further advancements of SDMs and for possible interfaces with more mechanistic
approaches in order to improve predictions under environmental change.

Among the expected consequences of the ongoing climate
change are shifts in species’ geographic ranges, range
expansions and contractions. Robust prediction of these
distributional changes are a prerequisite for dynamic and
sustainable conservation strategies, and thus constitute a
major challenge in present-day ecological research (Guisan
and Thuiller 2005, Vaughan and Ormerod 2005).
Statistical species distribution models (SDMs) have been
widely used to project species range shifts, and to derive
extinction risks for different climate change scenarios
(Bakkenes et al. 2002, Midgley et al. 2002, Thomas et al.
2004, Thuiller 2004). These data-driven models relate field
observations to environmental predictor variables. They
provide an easy-to-use and potentially powerful tool for
ecologists and conservationists because simple spatial
incidence data can be used to derive the statistical models
(Scott et al. 2002). Despite these merits, SDMs also show

particular limitations regarding climate change projections
(Pearson and Dawson 2003, Guisan and Thuiller 2005,
Aratjo and Rahbek 2006, Dormann 2007). Foremost, they
assume equilibrium between the species and its environ-
ment, and aim at predicting a new equilibrium state when
extrapolating. Thus, transient dynamics are essentially
ignored when projecting into the future. Furthermore,
SDM:s do not explicitly incorporate demographic processes
and biotic interactions, and only few attempts have been
made yet to narrow uncertainties due to dispersal assump-
tions (Midgley et al. 2006). All these issues may lead to
substantial uncertainties in climate change projections
(Dormann et al. 2008). To date, there is little knowledge
of the consequences as the accuracy of SDMs in predicting
future species distributions is not easy to evaluate (Thuiller
2004, Aradjo et al. 2005). This is mainly because the events
we aim to project have not yet occurred, and the future
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species’ geographic ranges are therefore unknown (but see
Aratjo et al. (2008) for an application for predicting
current distributions from historical data).

One way to overcome the data limitations are artificial or
virtual experiments (Berger et al. 1999, Austin et al. 20006,
Schroder and Seppelt 2006). Such approaches have the
further advantages of allowing us perfect knowledge and
control over the underlying processes. Previous studies
employing virtual experiments and SDMs have tested
optimal sampling strategies (Hirzel and Guisan 2002, Reese
et al. 2005), compared the performance of different
statistical methods, model selection strategies, or threshold
criteria for binary predictions (Hirzel et al. 2001, Reineking
and Schréder 2006, Jiménez-Valverde and Lobo 2007), and
assessed how good SDMs were at identifying “source”
habitats (Tyre et al. 2001), the effect of diverse occurrence-
environment relationships (Austin et al. 2006, Meynard
and Quinn 2007) or the use of favourability functions
(Albert and Thuiller 2008). To our knowledge, it has not
been tested yet how transient dynamics and ecological
properties and processes affecc SDM accuracy when
projecting into the future.

In this study we propose a virtual experiment to test
SDM prediction accuracy under ongoing climate change by
developing species distribution models on data from a
complex, dynamic population model, which is used to
model transient responses of a species to climate change.
We therefore built a dynamic, spatially explicit muld-
species population model which incorporated species-
specific ecological properties and processes such as the
ecological niche, dispersal ability and intrinsic growth rate,
interspecific interactions such as competition and preda-
tion, environmental stochasticity, and climate change.
Different scenarios were developed by systematically ma-
nipulating model properties. For each modelling scenario
SDMs were estimated by applying two different SDM
methods, generalised linear models (GLMs) and boosted
regression trees (BRTSs). Projected species distributions by
SDM:s were compared to simulated “true” species distribu-
tions by the dynamic population model focusing on the
following questions: 1) do transient dynamics lead to a
decrease in projection accuracy under climate change? 2)
Are modern, flexible statistical modelling techniques (re-
presented in our study by BRT) more capable of projecting
future species ranges than long-established, parametric
methods (represented here by GLM)? 3) Are these effects
confounded by differing ecological properties and pro-
cesses?

Methods
Dynamic population model

The purpose of the dynamic population model was to
mimic scenarios of real-world situations with a complex
virtual world containing a focal species characterised by
species-specific properties and processes, and influenced by
predation, environmental stochasticity, and climate change.
To achieve this, a discrete-generation host-parasitoid system
was set in a real environment. Such host-parasitoid systems
are well suited for simple population models because they
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can have a much simpler structure than many other enemy-
victim interactions due to the tight link between trophic
and reproductive aspects of the parasitoid life history
(Nicholson 1933, Hassell 2000, King and Hastings 2003).

The host was the focal species, a holometabolous insect
with distinct generations which is henceforth referred to as
butterfly. A highly synchronised parasitoid parasitised the
butterfly during its larval stage, and thereby caused the
death of the butterfly (Mills and Getz 1996). Movement
and dispersal were limited to the adult insect stages. In
analogy to real systems the model was tritrophic, i.e. the
butterfly-parasitoid interaction depended on a host plant,
henceforth called plant, which affected the presence and
abundance of the butterfly. A coupled-map lattice model
was used to link the local and regional dynamics (Hassell
et al. 1991, Comins et al. 1992, Bonsall and Hassel 2000).
In each cell of a two-dimensional lattice the local butterfly-
parasitoid population dynamics were mapped annually. The
populations were then connected by dispersal. We thus
obtained a spatially explicit multi-species dynamic popula-
tion model which allowed systematic modifications in
several ways.

Structure, scales and scheduling

Space was represented by a two-dimensional lattice of
148 x 113 sites with a cell size of 1 x1km. Absorbing
boundary conditions were assumed, representing an open
system where butterflies and parasitoids were able to leave
the habitat, but not to (re-)enter it. One time step
represented one year and the whole simulation covered a
period of 150 yr.

During initialisation, the environmental factors elevation
and potential moisture were attributed to each cell in the
lattice, and the climatic factors temperature and precipita-
tion were assigned to each time step. Butterflies and
parasitoids were randomly distributed over the suitable
habitat. During simulation, each time step was characterised
by four processes (Fig. 1). Foremost, climate state and
habitat state were updated. Temperature and moisture were
assigned to each cell by climatological downscaling. The
host plant foliage projective cover was determined by the
prevalent temperature and moisture regime, and induced a
carrying capacity K for butterflies in each lattice cell.
Resource competition at plant level was introduced by
adding a second plant species, the competitor, whose
fundamental niche overlapped with that of the host plant
(Fig. 1), and which did not serve as a host plant for the
butterfly. At the beginning of each time step, butterflies and
parasitoids dispersed throughout the lattice. After colonisa-
tion, butterflies reproduced and the offspring could then be
parasitised by female parasitoids. Detailed descriptions of
the modelled processes are contained in Supplementary
material Text S1, parameter values are given in Table 1.

Input

The environmental data employed in the simulations were
based on real environmental data derived from a digital
terrain model developed by the Swiss Federal Statistical
Office, GEOSTAT. The coordinates of the 148 x 113 km
grid are 607 000-754 000 m E/152 000-264 000 m N
(Swiss grid CH1903). Environmental input layers were
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Figure 1. Process scheduling of the dynamic model is illustrated in the flowchart in the centre. Each simulation started with the input of
elevation and potential moisture distribution (top left) as well as temperature and precipitation time series (top right). After time
initiation, four processes were carried out within each time step: additional ecogeographical information layers were calculated, i.e. actual
temperature and moisture distribution (Process 1) as well as local host carrying capacities (Process 2). Then dispersal of hosts and
parasitoids was simulated (Process 3) and reproduction and parasitism took place (Process 4). The figure in the centre right depicts the
fundamental and realised niche of the host plant. Temperature dependency of host growth rate is shown in the bottom right figure.

elevation, drainage area above each cell, slopes and aspects.
Altitude in the study region ranged from 269 to 3854 m
a.s.l. Main climate variables in the virtual world were energy
and water, in particular mean summer temperatures and
mean summer precipitation. Time series were calculated
manually by drawing for each time step a random number
from a normal distribution with a characteristic mean
(temperature T =21°C at 0 m a.s.l; precipitation Prec =
640 mm) and standard deviation (o1 =0.5°C; Opec =
30 mm). A generalised climate change scenario was derived
for the period 2001 to 2050. Rates of change approximately

followed the projected changes of the IPCC SRES scenario
A2 for central and northern Europe (Houghton et al.
2001). Mean temperature was increased by 3°C in 50 yr,
mean precipitation decreased by 50 mm; mean values
within the 50 yr were linearly interpolated.

Scenarios

A standard simulation run lasted 150 yr. The model
“spinned up” for 100 yr, running with average climate,
thereby ensuring a long-term equilibrium between butterfly

Table 1. Constants in the process-based dynamic model. Respective equations are contained in Supplementary material Text S1.

Function Symbol Value Unit Description
Grid w 1 km Cell width
Climate state Tiapse 7 °C km~' Adiabatic gradient
Habitat state max 5000 ind Maximum carrying capacity of a cell
I plant 15.5 °C Mean of host plant’s temperature utilisation function
Hw, plant 5.5 - Mean of host plant’s moisture utilisation function
W, comp 12 °C Mean of competitor’s temperature utilisation function
OT,comp 1 °C Standard deviation of competitor’s temperature utilisation function
Hw, comp 7 - Mean of competitor’s moisture utilisation function
Ow,comp 1 - Standard deviation of competitor’s moisture utilisation function
oF 0.008 Standard deviation for environmental stochasticity
Dispersal Boutterfly 1.5 - Butterfly’s shape parameter in eq. 4
Hbutterfly 0.75 - Fraction of local butterfly population emigrating
Uparasitoid 2 - Parasitoid’s scale parameter in eq. 4
Bparasitoid 1.5 - Parasitoid’s shape parameter in eq. 4
Hparasitoid 0.75 - Fraction of local parasitoid population emigrating
Reproduction Toptr 16.5 °C Optimal temperature for butterfly growth rate,
and parasitism location parameter of Gumbel distribution
oy 1.4 °C Scale parameter of Gumbel distribution
Nerit 50 ind Critical population size for Allee effect
c 1 ind Parameter in eq. 5
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population and environment which was usually reached
after five years. Scenarios were applied over the last 50
model years.

Scenarios were derived in which ecological properties
and processes as well as climate were systematically
manipulated in a factorial simulation experiment of five
factors with two levels each (Table 2). Climate change and
parasitism were either turned on or off, the latter by
adjusting the area of discovery, i.e. the attack rate by the
parasitoids. Butterfly growth rate was either low or high
through manipulation of the maximum growth rate A,
Plant niche width was either narrow or wide, which was
achieved by varying the standard deviation of the plant’s
resource utilisation functions. Finally, butterfly dispersal
distance was either short or long through manipulation of
the scale parameter o in eq. 4. A value of o0 =4 resulted in a
maximum dispersal distance of one cell, ®=0.5 in a
maximum dispersal distance of five cells, while the para-
sitoids dispersed with a fixed maximum dispersal distance of
two cells (o =2). All possible parameter combinations
resulted in 2° =32 scenarios. For each scenario we ran 10
replicate simulations.

Sampling by virtual ecologist

Similar to real field studies, a virtual ecologist sampled the
butterfly population with the same strategy as an ecologist
might choose in reality. A random stratified sampling
strategy was applied (Hirzel and Guisan 2002), with
temperature as the stratifying variable. The quantiles (0.2-,
0.4-, 0.6- and 0.8-quantiles) of the temperature distribution
were taken to split the data into five ordinal classes,
generating five homogenous environmental strata with
respect to temperature. An equal number of cells (replicates)
were chosen in each stratum. In a selected cell, the incidence
of the butterfly and the prevailing environmental conditions
were recorded. In order to reduce spatial autocorrelation in
the response variable, samples were not taken in adjacent
cells. The virtual ecologist made no errors in detection, i.e.
butterfly occurrence and environmental conditions were
recorded exactly as given in the dynamic model. This way,
the performance of the statistical model could be directly
related to the underlying demographic and stochastic
processes (Tyre et al. 2001). Training data were sampled
directly after “spin up”, i.e. after 100 model years, with a
sample size of 1000. For each simulation run, five training
data sets were sampled to capture the variability introduced
by snapshot data; SDM accuracies for these five training
data sets were averaged later. Independent (test) data sets
(sample size =1000) were sampled in the year 100, and in
every subsequent 10 yr until year 150.

Statistical modelling

Model formulation

Butterfly occurrences were analysed by generalised linear
models (GLMs) and boosted regression trees (BRTs) using
a binomial error distribution and a logistic link function.
GLMs have been traditionally used in species distribution
modelling, and fit parametric terms. BRTs were developed
within the machine-learning community, and are an
ensemble-prediction method combining regression trees
and boosting. They are very flexible, but at the same time
resistant to overfitting, and are able to automatically model
complex interactions between predictor variables (Ridgeway
1999, Leathwick et al. 2006, Thuiller et al. 2006, Elith
et al. 2008).

Before the application of GLMs and BRTs, the predictor
variables were tested for multicollinearity by calculating
Spearman’s rank correlation coefficient ps. Following
Fielding and Haworth (1995), if two variables had a
correlation pg>0.7 the predictor with less ecological
importance in respect to butterfly occurrence was removed.
GLMs were estimated for the remaining predictor variables
by applying an Akaike information criterion (AIC)-based
stepwise variable selection procedure (Akaike 1974, Harrell
2001). According to the ecological knowledge we had (from
the “virtual” reality), we included linear (e.g. host plant
cover) and quadratic terms (e.g. temperature and soil
moisture) in the GLMs as well as an interaction term
between temperature and soil moisture. The linear term was
forced into the model each time the quadratic term or the
interaction term was selected in the final model. BRT's were
estimated with a tree complexity of 2, a bag fraction of 0.75
and a learning rate of 0.005 which ensured that the models
were fitted with at least 1000 trees (cf. Elith et al. 2008).

Extrapolation in space and time

The resulting SDMs were used to make predictions to
independent (test) data sets (sample size = 1000) for the year
100, in which the models were fitted, and for every
subsequent 10 yr until year 150 where the simulation ended.
Thus, SDMs were fitted under average climate where the
butterfly population was in long-term equilibrium with its
environment, and, in the case of climate change, the
occurrence of butterflies was projected to differing time
slices under gradually ongoing climate change.

Model transferability: validation

For each prediction in space and in time, three different
measures of accuracy were calculated in order to get a multi-
facetted view of how good the SDM predictions were. The
proportion of deviance explained by the final models was

Table 2. Range of parameter values in the process-based dynamic model. Please note that low values of a,erty correspond to long dispersal
distances and high values to short dispersal distances. Respective equations are contained in Supplementary material Text S1.

Function Symbol Values Unit Description
Habitat state GT/wplant 1.5 2.5 °C Standard deviations of host plant’s temperature
and moisture utilisation functions
Dispersal Oputterfly 0.5 4 - Butterfly’s scale parameter in eq. 4
Reproduction and Amax 35 70 ind Maximum butterfly population growth rate
parasitism a 0 0.01 ind Area of discovery in eq. 6
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quantified by the explained deviance 17, a logistic regression
equivalent to the coefficient of determination > (Menard
2000). We derived the deviance by applying eq. 1.10 in
Hosmer and Lemeshow (2000). The models’ ability to
discriminate between occupied and non-occupied sites was
assessed by calculating AUC, the area under the ROC-curve
(Fielding and Bell 1997). AUC is independent of classifica-
tion thresholds and typically assumes values between 0.5
and 1, with AUC =0.5 for models with predictive ability
no better than the null model and AUC =1 for perfectly
discriminating models. Values of AUC > 0.7 indicate useful
predictions according to Hosmer and Lemeshow (2000).
Additionally, the calibration curve was calculated, to
determine the agreement between observations and pre-
dicted values, i.e. the goodness-of-fit (Pearce and Ferrier
2000). It was derived from a logistic regression of the
observed values on the logit of the predicted values (Harrell
2001, Reineking and Schréder 2006). A perfectly calibrated
model would exhibit a calibration curve with a slope of one
and an intercept of zero. Departures from these values
indicate bias and spread, respectively, in the predicted
values.

Results
Dynamic population model

Not all suitable cells were occupied by butterflies. This was
a consequence of local extinctions caused by predation or
stochastic processes, or due to dispersal limitation. The
relative proportion of occupied habitat, the prevalence,
became greater when the plants had wider niches resulting
in more available habitat for the butterflies, and when the
butterflies were able to travel farther distances which
allowed them to spread throughout more of their geogra-
phical niche and to reach even more distant patches (Fig. 2).
Prevalence was also greater for scenarios without parasitism,
as extinction then only occurred due to stochastic processes
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Figure 2. Effects of ecological properties on mean abundances and
prevalences of butterflies in the virtual world in year 100 when
butterflies were in long-term equilibrium with their environ-
ment. Open and filled boxes indicate low and high values for a
given ecological parameter, respectively (Table 2). Sample size is
n=160.

in the environment. Although high butterfly growth rates
caused higher butterfly abundances, prevalence was not
affected, and did not differ considerably between scenarios
of high and low butterfly growth rates.

In all scenarios under climate change the butterfly
population moved southwards, not gradually, but rather
in distinct steps which corresponded to distinct steps in the
temperature trajectory (Fig. 3). After 115 yr, the butterflies
started to shift their geographical range southwards which
was accompanied by a small range contraction. Then after
135 yr, distinct range contractions took place accompanied
by ongoing southwards movements. The northernmost
patches which formerly supported intermediate relative
butterfly abundances became unoccupied after year 140.

Statistical models

Under average climate, both BRTs and GLMs achieved
high prediction accuracies. According to the rules of thumb
given by Hosmer and Lemeshow (2000) the average
discrimination ability could be considered as outstanding
with (mean and median) AUC >0.9. Furthermore, models
were transferable in space without noticeable loss in
predictive power (Fig. 4a). Under climate change, the
distinct steps in the range dynamics were reflected in the
prediction accuracies achieved for the different time slices
(Fig. 4b). The range shift after year 115 caused only a slight
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Figure 3. Range dynamics under climate change. The shift in
relative butterfly abundances in north (N) -south (S) direction is
depicted in the top panel. It is the average butterfly abundance of
all (16) scenarios and replicate runs under climate change, and in
each 1-km wide N-S transect in years 100 to 150, when climate
change took place. The bottom panel shows the temperature
trajectory under climate change for the years 100 to 150 (red) and
the 3-yr moving average (black). Range shifts took place after year
115, after year 135 distinct range contractions occurred. These
steps coincided with steps in the temperature trajectory.
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difference, namely a wider range of prediction accuracies
for the year 120 while for the year 130 the pattern seen in
Fig. 4a was retrieved. Thus, abrupt range shifts caused a loss
in predictive power in some scenarios, but, after a small
time lag, predictive power was resumed. After year 140
which corresponded to the distinct range contractions, there
was a profound difference between the prediction accuracies
achieved by BRTs and GLMs. While the mean discrimi-
natory power of BRTs even increased and the range
decreased, the opposite was true for prediction accuracies
of GLMs with a decrease in mean performance and a much
wider range. Still, all scenarios yielded AUC >0.7 indicat-
ing that for all scenarios both BRT's and GLMs were able to
make useful predictions.

The effects of different ecological properties on the mean
prediction accuracies achieved under climate change are
shown in Fig. 5. Accuracies for the year 100 correspond to
accuracies the SDMs would achieve under average climate.
When the butterflies were not influenced by a parasitoid-
interaction (Fig. 5a—) differing butterfly population growth
rates caused the only considerable effect on prediction
accuracies, with higher AUC:s for lower growth rates. There
were trends that long butterfly dispersal distances and wide
plant niche widths led to higher prediction accuracies. BRT
prediction accuracies slightly decreased for year 120, except
for scenarios with far butterfly dispersal distances where
mean AUCs remained constant, and then increased and
achieved even higher values in the year 150 than at the time
of model estimation. GLM prediction accuracies exhibited
the same pattern up to the year 130 but than strongly
decreased for the years 140 and 150 where the distinct range
contractions occurred. The exception were the scenarios
with wide plant niche widths which only showed slight
decreases in prediction accuracies under range contractions.
Both BRT and GLM prediction accuracies for the year 120
only decreased for scenarios with short butterfly dispersal
distances and there was this aforementioned time lag until
predictive power was retrieved. Thus, butterflies with short
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dispersal distances did not track the range shift instanta-
neously but with some time lag.

When parasitoids attacked the butterflies, the resulting
prediction accuracies for the different time slices looked
completely different (Fig. 5d—f). There were only minimal
differences between BRTs and GLMs, and when the BRT
prediction accuracies increased with range contractions,
those of GLMs did as well. The virtual ecologist had perfect
knowledge of the occurrence of parasitoids at all times. In
the presence of a parasitoid-interaction the inclusion of this
parasitoid incidence as predictor in the SDMs put GLMs
on a par with BRTs. In contrast to scenarios without
parasitism, butterfly population growth rates now did not
show a remarkable effect on prediction accuracies anymore,
and the effects of plant niche widths and butterfly dispersal
distances were reversed. Butterfly dispersal ability exhibited
the most pronounced effect with much higher prediction
accuracies for short dispersal distances up to the year 130.
When range contractions occurred this effect was smaller
but still noticeable.

While for the year 150 under climate change even the
lowest prediction accuracies achieved by GLMs still
indicated useful predictions, they had alarmingly low
explanatory power in some scenarios (Fig. 6). Without
any parasitoid-interaction BRT's explained at least 50% of
the deviance and achieved even values up to 90%. GLMs,
on the other hand, did not even explain 20% of the
deviance in five out of eight cases. Only in scenarios with
wide plant niche widths and low butterfly population
growth rates and in the scenario with high plant niche
width, high butterfly population growth rate and far
butterfly dispersal distance did GLMs have explanatory
power above 40 up to 60% explained deviance. Explained
deviance achieved intermediate values between 30 and 70%
in scenarios with parasitism assumed, and were similar for
BRTs and GLMs.
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Figure 5. Effects of ecological properties on mean prediction
accuracies (AUCs) of BRTs and GLMs achieved under climate
change for all time slices, and for cases without parasitism (a—)
and with parasitism (d—f), respectively. Open and filled symbols
indicate low and high values for a given ecological parameter,
respectively (Table 2). Error bars indicate 95%-confidence inter-
vals. Sample size is n =40.



Calibration statistics allowed us to judge the bias and
spread in the predicted probabilities of occurrence com-
pared to observed occurrences. The calibration curves
obtained for BRTs and GLMs under climate change and
without parasitism are shown in Fig. 7. Both BRTs and
GLMs slightly underestimated the probability of butterfly
occurrence in the year 120 when the butterflies started to
shift their geographical range. This was true for all scenarios
regardless of dispersal ability, indicating that the butterflies
persisted at the trailing edge of the range shift for some time
whereas the SDMs predicted unsuitable habitat. When
range contractions took place, the probability of occurrence
was overestimated, only slightly by BRTs but consistently
by GLMs which showed a strong bias in their predictions
(Fig. 8). Overall, predictions made by BRTs fitted the
observations well even under ongoing climate change. Bias
and spread in the predictions differed for the different
scenarios, i.e. for different ecological properties (Fig. 8). For
instance for the year 150, short butterfly dispersal distances
and wide plant niche widths caused BRTs to be slightly
biased towards overestimating the probability of butterfly
occurrence while low butterfly population growth rates
caused no bias, and all other scenarios caused bias towards
underestimating the probabilities of occurrence. All scenar-
ios resulted in calibration slopes greater than one indicating
that higher predicted values were underestimating the
occurrence of butterflies while lower predicted values were
overestimating the occurrence of butterflies. Nevertheless,
for BRTs differences to the ideal calibration curve were
small and in no way alarming. The strong bias in GLM
predictions led to consistent overestimation of butterfly
occurrence for all scenarios (Fig. 8a). Here, differing
calibration slopes only determined whether this overestima-
tion was more extreme for very low or very high predicted
values (Fig. 8b). Overall, due to consistent overestimation
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Figure 6. Effects of ecological properties on explained deviance
achieved by BRTs and GLMs under climate change for year 150.

GLMs were not able to accurately predict the absences
under range contraction which, in contrast, was the major

strength of the BRTs.

Discussion
Prediction accuracies under climate change

The main outcome of this study was that the ways in which
species respond to climate change lead to quite different
projection accuracies achieved by SDMs. As one might
expect, prediction accuracies initially decreased when
species started to shift their geographic range due to climate
change. The calibration statistics helped to explain how this
mismatch between simulated true species distribution and
forecasts made by SDMs was determined on one hand by
the dispersal ability of the species and on the other hand by
the ability of the species to endure, at least for some time,
suboptimal conditions at the trailing edge of the range shift
where habitat became gradually unsuitable (Morin and
Thuiller 2009). Both mechanisms led to a time lag after the
range shift where the predictive performance of SDMs was
decreased, although the mechanisms at the trailing edge
were of minor importance. The uncertainty in prediction
accuracies introduced by the unlimited dispersal assump-
tion strongly depended on the dispersal ability of the species
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Figure 7. The mean calibration curves achieved by BRTs and
GLMs under climate change without parasitism for all time slices.
Sample sizes are n =80.
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Figure 8. Effects of ecological properties on calibration statistics of
BRTs and GLMs under climate change without parasitism for the
year 150. (a) Open and filled symbols indicate low and high
magnitudes, respectively (Table 2). The reference is the fit in year
100. Error bars (a) and shading lines (b) present the 95%-
confidence interval. Sample sizes are n =40, respectively n =80
for the reference (a).

(Thuiller et al. 2005, Midgley et al. 2006). As soon as the
species’ potential geographic range remained static long
enough for the species to fill its entire range, i.e. as a new
equilibrium situation was realised, prediction accuracies
increased again to values the SDMs would achieve under
average climate. This also implied that rates and intensity of
climate change are of utmost importance for the predictive
performance of SDMs. If the potential geographic range of
the species were to shift continuously, or if climate change
were accelerated for periods of time, this would cause
greater discrepancies between predicted and true species
occurrences. Somewhat counterintuitively at first sight, the
predictive performance of SDMs increased when species
geographic ranges contracted. At second sight however, we
saw that this happened because the absences were predicted
more accurately. Thus, range contractions and consequently
refugia could be modelled quite accurately by SDMs, and
thus may allow identification of core areas for nature
conservation. The results also highlight the benefit and
importance of using different performance measures for
SDMs. Models performing well in terms of predicting
climate-change induced distributional shifts from a dis-
crimination perspective (measured using the popular AUC
statistic) may nevertheless perform poorly in terms of
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calibration, with significant implications for estimates of
extinction risk and colonisation success.

Model comparison

As one might have expected, BRTs outperformed GLMs
both when making predictions under both average climate
and climate change. The high flexibility of BRTs and their
ability to model thresholds in species’ occurrence made
them superior to GLMs. Surprisingly, in the presence of a
parasitoid interacting with the butterfly this effect vanished
and BRTs and GLMs were equivalent, highlighting the
importance to include biotic interactions as predictors. It
was striking that the mean discriminatory power of BRTs
increased when range contractions took place while the
mean performance of GLMs decreased. But can we
generalise these results and, thus, can we expect BRTs to
generally better perform under climate change than GLMs?
The answer is no, because attention should be paid to the
circumstances where the models were estimated. As BRT's
model thresholds in species’ occurrences and extrapolate
beyond the parameter range by predicting the mean
response of the parameter region closest to the newly
encountered parameter space, the prediction accuracy
strongly depends on the extent to which the recorded
occurrences cotrespond to the entire niche of the species.
Ideally, the full range of a species should be used for
estimating SDMs because then the probability is reduced to
extrapolate to environmental conditions the species has
never encountered before (Thuiller et al. 2004, Dormann
2007), examples are given by Pearson et al. (2002) and del
Barrio et al. (20006). If this is met, then BRTs will probably
always outperform parametric methods as GLMs, simply
because they allow a highly non-linear threshold-like fitting
of presence-absence data, rather than relying on monotone
approximations such as the logistic curves of binomial

GLMs.

Effects of ecological properties and processes

Several studies reported decreasing spatial prediction ac-
curacies with increasing range sizes and niche breadth, i.e.
more accurate predictions could be made for specialists than
for generalists (Pearce et al. 2001, Stockwell and Peterson
2002, Segurado and Aratjo 2004, Seoane et al. 2005,
Hernandez et al. 2006, Brotons et al. 2007, McPherson and
Jetz 2007). This however, is not beyond controversy as e.g.
Garrison and Lupo (2002) reported better model perfor-
mances for species with larger range sizes. We encountered
both effects: when butterflies were interacting with a
parasitoid, specialists were modelled more accurately. In
contrast, when no parasitoid-interaction was present there
was no considerable effect for spatial predictions but under
ongoing climate change the distributions of generalists were
modelled more accurately than of specialists. There is no
easy biological explanation for this. To explain why
specialists can be modelled more accurately than generalists
Stockwell and Peterson (2002) suggested that widespread
species may show local ecological adaptations. Modelling all
these subpopulations together would effectively overesti-
mate the species’ niche, and therefore reduce model



performance. However, our dynamic model did not
incorporate any local adaptation and we may thus rule
out this explanation. A likely explanation why in the
presence of a parasitoid-interaction SDMs performed better
for specialists than for generalists is that the relationship
between butterfly and parasitoid occurrence might be
noisier for wide-ranging butterflies. Without parasitism a
remarkable difference between model performances for
generalists and specialists only occurred when the species
started to shift their geographic range and in the case of
GLMs increased noticeably when range contractions oc-
curred. A reason might be that suitable habitat became
more isolated with ongoing range shifts and contractions,
and that this isolating effect was severer for specialists. Thus,
butterflies were not able to reach all suitable habitat patches,
this effect being more pronounced for narrow-ranging than
for wide-ranging butterflies.

Without parasitism lower butterfly population growth
rates led to higher predictive performances of both BRTs
and GLMs under average climate and for range shifts.
There was no considerable effect when range contractions
occurred and when the butterflies were interacting with
parasitoids. Higher growth rates caused higher abundances
and because of local dispersal also higher prevalences, but
only in particular regions where the temperature was near
the optimum growing temperature. This may have resulted
in biased habitat selection patterns and therefore response
surfaces, obscuring the true species-habitat relationship.
These findings are in contrast to the results of Seoane et al.
(2005) who obtained better models for species that can
reach high densities. They, however, predicted abundances
instead of probabilities of occurrence, and for accurate
predictions of species abundances other ecological factors
may be of importance.

Under average climate and without parasitism, model
performances did not differ between short and far-disper-
sing butterflies. This is consistent with results found by
Garrison and Lupo (2002) and Stockwell and Peterson
(2002). Pearce et al. (2001) on the other hand reported
poorer prediction accuracies for mobile species though this
effect was not significant. As mentioned before, when the
species started to shift their geographic range due to climate
change short-dispersing butterflies were initially outpaced
by climate change. When butterflies were interacting with
parasitoids prediction accuracies were much better for
short-dispersing butterflies. This is an effect of parasitoids’
dispersal ability. When parasitoids were worse dispersers
than the butterflies then the relationship between butterfly
and parasitoid occurrences was much noisier. Thus, not
only the dispersal ability of the focal species is of
importance but also the dispersal behaviour of species it is
interacting with.

Limitations and extensions

Creating a virtual world is fraught with difficulties. Our
spatially explicit tricrophic system and companion virtual
ecologist represent only one possible implementation, but it
enabled us to manipulate important biotic interaction and
dispersal effects on SDM accuracy. One caveat of our study
is the assumption that our virtual ecologist acts flawlessly

and under optimum conditions: the virtual species is
detected perfectly and the spatial samples are complete in
coverage and instantaneous in time. In studies of real data
ecologists have to deal with false negatives in the data,
incomplete coverage of environmental predictors, more
complex species-habitat relationships, etc., the effects of
which clearly remain to be explored by future extensions of
our approach.

Additionally, several other effects can be explored with
this approach, which lie outside experimental manipulation
in the real world. First the effect of other types of ecological
processes can be investigated, such as spatial dependency of
biotic interactions (i.e. some taking place only at the edge of
a species distribution) or changing biotic interactions under
environmental change, the effects of changing disturbance
regimes or local ecological adaptation. Secondly, several
statistical and sampling issues can be addressed, such as the
usefulness of proxies (e.g. NDVI as surrogate for host plant
abundance); effect of missing important variables (e.g.
omitting incidence of parasitoids from SDMs); or den-
sity-dependence in detection probability of the focal species
(a problem that underlies the development of efficient
survey designs).

Perspectives and research needs in species
distribution modelling

Several steps must be taken in order to improve predictions
of species distributions under scenarios of environmental
change. Distributional patterns of species in space and time
are determined by environmental variability, and processes
acting at specific spatial scales and times may be crucial for
the occurrence of a species. Climate change may even
increase variability in the environment both spatially and
temporally, and thus this variabilicy must be accounted for
in species distribution modelling. The importance of spatial
scale and hierarchical structure in ecological processes has
long been recognised (Mackey and Lindenmayer 2001), but
only very few studies have so far explicitly dealt with
multiple spatial scales in a hierarchical manner (Graf et al.
2005, Diez and Pulliam 2007, McMahon and Diez 2007,
Albert et al. 2008). Ignoring hierarchical structure in
processes may be fallacious and result in erroneous projec-
tions of future species distributions under environmental
change (Davis et al. 1998, Diez and Pulliam 2007,
Dormann 2007). In real world studies, the underlying
processes are rarely known, making, in our opinion,
consideration of hierarchy in scales and processes indis-
pensable, for example by means of multilevel modelling
(Gelman and Hill 2007). Our results showed that temporal
patterns of climate change and transient dynamics greatly
affect SDM prediction accuracies, and other studies have
suggested that temporal variability increases the probability
of population extinction (cf. Thuiller et al. 2008). Midgley
et al. (2006) showed that even a simple “time-slice”
approach may reveal transient range dynamics which are
obscured by “one-step” projections as commonly applied
when projecting future species ranges by SDMs. We
recommend the use of “time-continuous” approaches
with discrete time steps in which step lengths should be
as small as possible or should at least be determined by
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temporal patterns and rates of expected environmental
change (cf. Schréder et al. 2008 for an example on
landscape-scale). Overlaying the resulting habitat suitability
maps of the different time steps or years may allow the
identification of core areas within a species’ range (cf.
Osborne and Suarez-Seoane 2007) and thus core areas for
nature conservation.

Our study showed that the performance of SDMs
predicting species which experienced range shifts strongly
depended on two processes: dispersal at the leading edge
and extinction or persistence at the trailing edge of the
range shift. The incorporation of these processes into
species distribution modelling is thus of major importance.
Several strategies have already been tested to incorporate
animal dispersal or animal dispersed pollen and seeds into
SDMs, including the simple assumption of maximum
dispersal rates (Midgley et al. 2006), and connectivity
analyses (Graf et al. 2005, del Barrio et al. 2006). More
complex approaches mechanistically modelling dispersal
rely on dispersal kernels (del Barrio et al. 2006) or
individual-based models (Graf et al. 2005). Applying such
mechanistic approaches to range projections under climate
change additionally requires integrated modelling of local
population dynamics. The choice which approach to use
depends on the specific aims of the study in question.
However, for the prediction of species’ responses to climate
change an integration of dispersal and local population
dynamics in a mechanistic manner seems promising (del
Barrio et al. 2006, Keith et al. 2008), on the one hand
because knowledge of local population dynamics is needed
for the prediction of persistence at the trailing edge and
local extinctions within the species’ range. On the other
hand, incorporation of local population dynamics may help
to predict species’ responses to, for example, seasonally
asymmetric climate change or extreme events. Explicit
consideration of dynamic species’ responses may provide
the basis for dynamic and integrated conservation strategies.

Biotic interactions must be included in SDMs. But then,
future projections of species’ distribution then also require
knowledge and thus prediction of the distribution of
interacting organisms (Hawkins and Porter 2003, Schwei-
ger et al. 2008). In cases where the link between predator
and prey is as tight as in our virtual world, where the
parasitoid only foraged on the butterflies and was directly
dependent on them, the temporal distribution of the
predator may be approximated by a simple dispersal model
simulating movement between patches exhibiting a prob-
ability of prey occurrence above a certain threshold. Also,
the distribution of lower trophic levels on which the focal
species forages must be known or predicted at all projection
times introducing further uncertainties in range projections.
There is no simple solution to that, and for now we must be
content with making projections under specific assumptions
regarding the distribution of any interacting organisms.

Conclusion

Different range dynamics may lead to quite different
prediction accuracies of SDMs under climate change. A
species’ ability to track climate change, determined by
dispersal ability and the rate of change, is decisive for SDM
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performance when species shift their geographic range.
Range contractions may be predicted quite accurately as the
absences are predicted well. Flexible methods as BRTs will
probably always outperform parametric methods due to
their ability to fit non-monotone relationships. The study
demonstrates the benefits and capabilities of integrating
dynamic and statistical modelling approaches in different
ways. On the one hand, dynamic population modelling as
virtual playground for testing statistical models allows the
extensive exploration of specific questions. On the other
hand, the integration of dynamic processes into species
distribution modelling may help to improve predictions of
species distributions under environmental change. Here, the
present study provides valuable insights which processes are
of relevance when species undergo transient dynamics and
should hence be incorporated in species distribution
models.
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