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I was amused to read, in a criticism of another publication,
that the criticised authors did not adhere to the ‘‘principles
of ecological niche modelling’’ (McNyset and Blackburn
2006, p. 782). There aren’t any such ‘‘principles’’.
Ecological niche modelling really is statistics on species
distribution data. All methods employed need to be
statistically consistent, i.e. meet the assumptions made.
(It would be a nice bonus if the analysis would also
make ecological sense.) In the case discussed below, the
crucial assumption is independence of data points, and it is
usually violated in spatial distribution data, by spatial
autocorrelation.

Autologistic regression (Augustin et al. 1996), and its
generalisation the autocovariate regression, has up to now
been the most popular way to deal with spatial autocorrela-
tion in biogeographical analysis of species distribution
(Dormann 2007b). In two recent papers analysing simu-
lated data, this method has, however, performed worse than
other methods (Dormann 2007a, Dormann et al. 2007),
calling into question the validity of its use. In a comment,
Betts et al. (2009, this issue) warn that these conclusions
may be incorrect, and that autocovariate regression can be
used when applied and interpreted properly. In the
following paragraphs, I like to draw attention to two issues
relevant in this debate: the use of the word ‘‘space’’, and the
ecological interpretation of the values of the autocovariate
(and other measures of aggregation or separation from
spatial models in general), i.e. what the data tell us about
the species.

I was seriously confused, when I realised that the
autocovariate regression as applied in biogeography may
be biased. In our review (Dormann et al. 2007), auto-
covariate regression was the only method that yielded a
consistent bias in the parameter estimation, an observation
confirmed by further simulations specifically looking at
autologistic regression (Dormann 2007a). However, as
Betts et al. pointed out correctly, all these analyses were
carried out on the same underlying spatial structure, and if
the environmental variable determining the virtual species’
distribution (called ‘‘rain’’) was confounded with its spatial

aggregation (what Betts et al. termed ‘‘collinearity of
environment with space’’), all these results may be
fundamentally flawed. Since several previous studies have
shown autologistic regression to be a reliable method (Wu
and Huffer 1997, Huffer and Wu 1998, Hoeting et al.
2000, Hooten et al. 2003, Wintle and Bardos 2006), this
explanation seems reasonable. So, why don’t I simply
concede my error and let everyone use autocovariate
regression in peace?

There are several lines of argument that indicate that
my results may not, after all, be wrong. A brief list:
1) environment and ‘‘space’’ are not correlated, unless we
accept Betts et al.’s definition of ‘‘space’’. 2) Confirmation
for the method comes only from studies that use an iterative
implementation and missing data (see the studies cited
above). 3) The idea of the autocovariate has an intrinsic
circularity (since the new explanatory variable is constructed
from the data to be explained: Dormann 2007a). 4) Two
other methods using variables to represent spatial effects in
a somewhat comparable way to the autocovariate are
unbiased under the simulated conditions (spatial eigenvec-
tor mapping SEVM: Griffith and Peres-Neto 2006,
Dormann et al. 2007, and a new wavelet method: Carl
and Kühn 2007, Carl et al. 2008). Here, I shall only address
the first topic, which I regard as most important to the
differences between my view and that of Betts et al. (2009).

Spatial models attempt to correct for the non-indepen-
dence of data points near each other, which may be
connected through ecological and non-ecological processes
(yielding spatial autocorrelation). To do so, they usually
work through some quantification of spatial distances
between sites (even if the model formula uses locations,
i.e. longitude and latitude as inputs). Location, as one
might have naively suspected, is thus not the same as
‘‘space’’ in the sense of spatial models. To avoid confusion, I
prefer to use ‘‘neighbourhood’’ instead of ‘‘space’’ to refer to
distance-related influences, irrespective of their location.
The effect of a point’s neighbourhood on this point can
thus be referred to as the effect of ‘‘space’’ (in the words of
Betts et al.) or of the neighbourhood. How can this be
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measured? Betts et al. use the autocovariate to quantify this
neighbourhood effect, and find it highly correlated with the
environmental variable (‘‘rain’’). That is, in my view,
problematic. When simulating the data, I had the following
scenario in mind: the environment (‘‘rain’’) determines
habitat suitability and hence occurrence probability. How-
ever, aggregation between individuals (e.g. by limited
dispersal or colonial breeding) increases occurrences near
presences, and decreases occurrences near absences (the
effect of neighbourhood). Hence, the realised occurrence
pattern is the result of both, habitat suitability and
neighbourhood effects. The autocovariate, calculated from
the occurrence pattern around the focal point, incorporates
both of these effects, it is a compounded variable. Hence, I
do not regard the autocovariate as a suitable measure of
neighbourhood effects, as Betts et al. do: ‘‘including
aggregation in statistical models directly via autocovariates
allows researchers to uncover, and further investigate such
mechanisms’’, (p.). A better measure of neighbourhood
effects is the spatial error I used for simulating the data �
which is not correlated with ‘‘rain’’ (Table 1). Furthermore,
the autocovariate and the spatial error are uncorrelated
(Table 1), also illustrating that the autocovariate encom-
passes more than only the neighbourhood effect.

So, where does that leave us? While I have to concede
that I was negligent of the issue of collinearity of
environment and neighbourhood when simulating the
data, luckily they were not collinear, as claimed by Betts
et al. What is indeed collinear is the autocovariate and
environment, but I disagree that the autocovariate is a valid
representation of neighbourhood effects. Because the auto-
covariate was constructed from the response, all processes
affecting the response will also contribute to the auto-
covariate (e.g. environment, aggregation/separation, non-
random noise such as observer bias, etc.).

I do not fully comprehend why MCMC implementations
of the autocovariate method are apparently unbiased (Wu
and Huffer 1997, Huffer and Wu 1998, Hoeting et al. 2000,
Hooten et al. 2003). One crucial aspect is that in these cases
the autocovariate is not estimated from occurrence data and
then used as a new variable, but that the estimation of the
autocovariate is part of the iterative model building process
due to many missing data, for which the autocovariate has to
be estimated. As such, it will be (initially) calculated

from model residuals, which are (slightly) less correlated
with the environment (Table 1). Thus, it may only be the
inappropriate one-step-autocovariate that is in my view
biased, which, however, is the standard way the autocovariate
approach is applied in biogeographical research.

The second topic I would like to briefly touch upon is
the ecological meaning of the autocovariate. Ecologically,
spatial models contain information that non-spatial models
cannot: an estimation of the range of aggregational or
segregational processes. The ‘‘range’’ given in generalised
least square models and, even more striking, the maps of
spatial eigenvectors or spatial wavelets depict nicely at which
spatial resolution clustering appears (Diniz-Filho and Bini
2005, Carl et al. 2008). Let us briefly reflect on what these
ranges and maps actually mean (see also the discussion in
Diniz-Filho and Bini 2005): any important (and in itself
usually autocorrelated) explanatory environmental variable
omitted from the model may cause spatial autocorrelation
(due to model misspecification: Haining 2003). Also,
incorrect description of the functional relationship can
cause spatial autocorrelation (e.g. representing a non-linear
effect only by a linear term in the model), and there may be
various other mechanisms of model misspecification (Hastie
et al. 2001, Dormann 2007c). Thus, the range of GLS and
the maps of SEVM describe the combination of omitted
variables and spatial ecological processes. That is the
primary reason, why I have yet to see a study that
convincingly extracts a meaningful ecological scale para-
meter from a species distribution analysis (which so far have
been carried out on real data with necessarily unknown
‘‘true’’ parameters). While the studies of Betts et al. (2006,
2008) and Bourque and Desrochers (2006) are excellent
examples of the importance of aggregational processes at the
landscape scale, they do not show that quantitative
information of the autocovariate is reliable. I do not share
the optimism of Betts et al. that ‘‘including aggregation in
statistical models directly via autocovariates allows research-
ers to uncover, and further investigate such mechanisms’’, at
least not beyond a qualitative level. One study that claims to
be able to do so uses four different specifications of the
autocovariate, and a combination of abundance and
occurrence data: only the rather intricate way in which
these four analyses are interpreted in concert allows the
identification of the underlying aggregation mechanism
(van Teeffelen and Ovaskainen 2007); there is a reason why
this study has a question mark at the end of its title: ‘‘Can
the cause of aggregation be inferred from species distribu-
tions?’’ The jury is still out.

In conclusion, my questioning of the validity of the
autocovariate regression has sparked criticism, which I can
only partly quench. Betts et al. may well be right in
their underlying criticism that these specific simulations
were confounding the autocovariate approach with other
problems, even though the claimed collinearity of environ-
ment and ‘‘space’’ is not existent. Also, while the simulated
data may be flawed in various aspects, they may well be
representative of real world data, where environmental
variables are highly correlated with latitude and longitude.
Given the other critical features of the autocovariate
approach (listed in the fourth paragraph), I think the
burden of proof now falls onto the proponents of this
approach. They need to illustrate how we should use

Table 1. Correlation coefficients (Pearson’s r, n�10)91 standard
error, and mean level of significance, for the environmental variable
rain, spatial error (err), the autocovariate (in this case calculated with
a size-2-neighbourhood and inverse weighting: ac) and an auto-
covariate calculated from the residuals of the regression on rain
(rac). The residual autocovariate (rac) is reminiscent of the first step
of an iterative procedure for calculating the autocovariate used, e.g.
by Augustin et al. (1996). Although not very different from ac, a
model with rain and rac is much less biased than a model containing
rain and ac (coefficient for rain: true value: �0.002; ordinary GLM:
�0.0021590.00038; ac: �0.0004390.00005; rac: �0.002949
0.00047). Data are the binary occurrences in the ‘‘snouter’’ dataset
of Dormann et al. (2007).

err ac rac

rain 0.13790.038n.s. 0.68690.018*** 0.62890.011***
err 0.12290.061n.s. 0.11590.065n.s.

ac 0.92290.018***
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autocovariate regression to yield as unbiased estimates as
possible, and provide evidence that this method can give
ecologically meaningful information on the spatial scale of
ecological processes, ideally using simulated data. Since
most analyses are carried out on atlas data, proposed
methods need to be applicable to this type of data, too.
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