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ABSTRACT

 

Aim

 

Spatial autocorrelation (SAC) in data, i.e. the higher similarity of closer
samples, is a common phenomenon in ecology. SAC is starting to be considered in the
analysis of species distribution data, and over the last 10 years several studies have
incorporated SAC into statistical models (here termed ‘spatial models’). Here,
I address the question of whether incorporating SAC affects estimates of model
coefficients and inference from statistical models.

 

Methods

 

I review ecological studies that compare spatial and non-spatial models.

 

Results

 

In all cases coefficient estimates for environmental correlates of species
distributions were affected by SAC, leading to a mis-estimation of on average 

 

c

 

. 25%.
Model fit was also improved by incorporating SAC.

 

Main conclusions

 

These biased estimates and incorrect model specifications have
implications for predicting species occurrences under changing environmental
conditions. Spatial models are therefore required to estimate correctly the effects of
environmental drivers on species present distributions, for a statistically unbiased
identification of the drivers of distribution, and hence for more accurate forecasts of
future distributions.
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INTRODUCTION

 

Ecologists have long been aware of spatial autocorrelation in

their ecological data (Sokal & Oden, 1978a,b; Legendre, 1993;

Koenig, 1999) and statistical methods for handling such com-

plications have been available for almost as long (summarized in

Cressie, 1993). However, these statistically correct methods have

only recently been incorporated in distribution analyses. Still,

most (i.e. > 80%) publications dealing with the analysis of spatial

data in the ecological literature do not attempt to explicitly

model spatial autocorrelation (SAC).

The effect of spatial autocorrelation on the interpretation of

ordinary statistical methodology 

 

in general

 

 has been assessed

several times (e.g. Liebhold & Sharov, 1998; Lennon, 2000; Dale

& Fortin, 2002). It has been shown to influence both coefficients

(for case studies see, e.g. Jetz & Rahbek, 2002; Lichstein 

 

et al

 

.,

2002) and inference in statistical analyses (e.g. Chou & Soret, 1996;

Fortin & Payette, 2002). For example, Tognelli and Kelt (2004)

found a considerable change in the importance of explanatory

variables after incorporating SAC: the second and third most

important variables (vapour pressure and wind speed) in their

non-spatial model dropped to become the least important in the

spatial model.

The regression models employed for species distribution ana-

lyses model the expected value for a given set of environmental

variables. The observed data points are the expected value

plus an additional, unexplained noise — the variance. In truly

independent data, the variance around the expected value is

modelled as . In the spatially autocorrelated

case, however, this variance has an additional component which

specifies the covariance between values of 

 

x

 

 at locations 

 

i

 

 and 

 

j

 

:

(Haining, 2003; p. 275). This means that the larger the spatial

autocorrelation the larger the covariance and the larger also the

true variance around the expected value. Ignoring the second

term in the above equation will lead to a downward-biased

Var( )  /(   )x = −σ2
1n

Var Cov( )  /(   )  [ /(   ) ]   ( , )
( )

x = − + −
<
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estimate of 

 

σ

 

2

 

 and accordingly incorrect tests of the significance of

 

x

 

 in regression models. The statistical point thus is unambiguous

(Griffith & Lagona, 1998): the statistical analysis of spatial data

needs to incorporate spatial autocorrelation to avoid the pitfalls

of spatial pseudoreplication (Hurlbert, 1984; Legendre, 1993),

similar to a nested experiment requiring a mixed-model analysis

to be structurally correct.

However, from the ecological point of view, spatial autocorre-

lation contains information one might not want to ‘correct for’ in

the analysis. The most obvious ecological cause of spatial auto-

correlation in species distribution data is dispersal (e.g. Austin,

2002; Epperson, 2005; Karst 

 

et al

 

., 2005; Lloyd 

 

et al

 

., 2005; Jones

 

et al

 

., 2006). No species has globally dispersing offspring, and

the density of propagules and progeny is usually decreasing

with distance. Hence, the observed distribution pattern is the

result of environmental factors as well as dispersal, competition

and other ecological factors. Guisan and Thuiller (2005, p. 1002)

have argued that predictive distribution models therefore need to

explicitly model processes responsible for spatial autocorrelation

(see also González-Megías 

 

et al

 

., 2005). Along a different line of

argument, Diniz-Filho 

 

et al

 

. (2003) see the use of spatial auto-

correlation analysis as important at a different spatial scale,

insofar as large-scale analyses (e.g. continental scale) may not

need to incorporate SAC, since spatial variation occurs at a

much larger scale than the ecological processes of dispersal and

biotic interactions. However, from an ecological point of view

spatial autocorrelation needs to be incorporated to account

for dynamic ecological processes such as dispersal in static,

statistical models (Austin, 2002).

Finally, several studies have analysed species distributions in a

standard, non-spatial way, and found no evidence for spatial

autocorrelation in model residuals (e.g. Higgins 

 

et al

 

., 1999;

Hawkins & Porter, 2003; Bhattarai 

 

et al

 

., 2004; Flinn 

 

et al

 

., 2005;

Warren 

 

et al

 

., 2005). The argument here is that ‘A properly

parametrized model (i.e. a model with the correct covariates)

would reduce the need for the CAR [conditional autoregression]

spatial structure’ (B. D. Ripley, comment in Besag 

 

et al

 

., 1991).

Legendre 

 

et al

 

. (2002) called this ‘spatial dependency’ (i.e. SAC

introduced into the response variable due to its dependence on

an autocorrelated explanatory variable) as opposed to true spatial

autocorrelation arising from ecological processes (e.g. dispersal).

Therefore it has been argued that models with a high autocorre-

lation load in their residuals simply miss important ecological

variables (Guisan & Thuiller, 2005). While this may be true, most

of the time the ‘correct’ environmental variables will not be

available for the analysis at the required spatial resolution (e.g.

prey densities, pesticide application intensity, abundances of

competitors, parasites and/or hosts) or at the necessary biological

accuracy (e.g. temperature dependence of reproduction rate,

habitat quality). So, for the time being, we have to manage with

surrogate variables for such factors [climate, land use coverages,

normalized difference vegetation index (NDVI), distances to

specific habitats, etc.]. As a result, model residuals will probably

display spatial autocorrelation.

In this review, I draw together evidence from the published

literature on the effect of incorporating SAC into the analysis of

spatial ecological data. I focus on species distribution data, together

with spatial pattern in species richness or species performance. Two

main questions shall be addressed: (1) does spatial autocorrela-

tion influence the parameter estimates for species distribution

data, or does intrinsic variability overshadow the problem;

(2) does incorporating SAC lead to better-fitting statistical models?

 

METHODS

 

I searched for studies comparing a traditional distribution analysis

with those incorporating a correction for spatial autocorrelation.

As appropriate methods to deal with SAC I considered the

following: autologistic regression (Augustin 

 

et al

 

., 1996; Gumpertz

 

et al

 

., 1997; Wu & Huffer, 1997), generalized least square (GLS)

regression (including simultaneous and conditional autoregressive

models: Cliff & Ord, 1981; Anselin, 1988; Cressie, 1993; Anselin

& Bera, 1998; Haining, 2003) and correction of significance levels

(Clifford 

 

et al

 

., 1989; Dutilleul, 1993). Inclusion criteria for

studies to this review were: (1) the distribution of organisms or

ecological attributes (such as occurrence, abundance, biomass,

species richness, etc.) was analysed; (2) both a traditional analysis

[usually a generalized linear model (GLM) or generalized

additive model (GAM)] and a spatial model were employed; and (3)

results of this comparison were presented (although in some cases

only in a qualitative way). Further restrictions (e.g. coefficients for

the two model types need to be given; the analysis of residuals needs

to be quantified) would have led to an even smaller set of studies.

Web of Science hits on the search phrase ‘“spatial autocorre-

lation” AND (ecology OR distribution)’ were scanned for relevant

studies. Additionally I searched for papers citing the benchmark

study by Lichstein 

 

et al

 

. (2002) and specifically for SAC-methods

(‘generalized least squares’, ‘autoregressive model’ and ‘autologistic

regression’). Finally, I examined studies cited in each of the studies

I used for this review. My search yielded 21 studies satisfying

the inclusion criteria (Table 1). From each study I extracted the

following information: (1) arrangement of samples (lattice/

points), (2) spatial extent/grain, (3) species/group, (4) response

variable (presence/absence, richness, yield), (5) statistical methods,

(6) size of neighbourhood, (7) type of autoregressive function,

(8) quality of removal of SAC judged by semivariance, etc.,

(9) coefficients, SE and 

 

P

 

-values of covariates, and (10) importance

of spatial correction [

 

R

 

2

 

, deviance, Akaike information criterion

(AIC)]. These data form the basis of the further analysis and

review. In publications dealing with more than one species or

group (e.g. Sanderson 

 

et al

 

., 2005) all modelled independent

species were included as separate cases.

To quantify the effect of correcting for SAC on model coeffi-

cients, I used the following formula to transform spatial and

non-spatial model coefficients (

 

β

 

s

 

 and 

 

β

 

ns

 

, respectively) into a

‘relative SAC effect’ [rSACe, comparable to the relative neighbour

effect (RNE) in competition studies; Markham & Chanway, 1996]:

This formula allows for a direct comparison of coefficients from

different studies: the larger rSACe is, the greater is the difference

rSACe ns s

ns s

  
    

max( , )
=

−β β
β β
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Table 1

 

Details of studies comparing spatial and non-spatial models in the analysis of distribution data

 

St
u

dy

Sa
m

pl
in

g*

R
eg

io
n

A
re

a 
(k

m

 

2

 

)

D
at

a 
po

in
ts

R
es

ol
u

ti
on

 (
km

)

O
rg

an
is

m
 g

ro
u

p†

R
es

po
n

se
 v

ar
ia

bl
e‡

SA
C

 m
et

ho
d§

SA
C

 r
an

ge
 [

ce
lls

]

W
ei

gh
ti

n
g 

fu
n

ct
io

n
¶

C
oe

ffi
ci

en
t e

ff
ec

t

 

r

 

2

 

 (
n

on
-s

pa
ti

al
)

 

r

 

2

 

 (
sp

at
ia

l)

C
om

m
en

ts
$

1 l Europe 1.1 

 

× 

 

10

 

7

 

4419 50 p PA al [1] ? ? ? ? Means across 174 species 
models; neighbourhood set 
to 1, not tested or derived 

2 p Grampian 1300 1277 1.0 m PA al 7 ? ? ? ? SE of coefficients much 
higher in spatial model 

3 p California 2.7 

 

× 

 

10

 

5

 

34 ? p r SAR ? ? ? ? ? Tables are wrong (S. Dark, 
pers. comm.)

4 l Germany 4000 125 5.5 p r Dut ? ? ? ? ?
5 l Europe 1.2 

 

× 

 

10

 

7

 

250 220 b r GLS ? exp 0.699 858 821 AIC
6 l South America 1.8 

 

× 

 

10

 

7

 

374 220 b r GLS 7 sph 0.677 1974 1809 AIC
7 p Reserve, NY 0.005 200 0.025 p PA Dut ? ? ? ? ? Effective sample size 

decreased to 4.5–85% (of 
200)

8 l Iberian peninsula 6.0 

 

× 

 

10

 

5

 

240 50 p r GLS ? sph 0.286 1655 1588 AIC
9 p ? 8.8 

 

× 

 

10

 

−

 

4

 

64 0.0037 p y GLS 3 sph 0.083 ? ?
10 l Africa 2.6 

 

× 

 

10

 

7

 

2605 100 b r CAR 2 ? 0.250 0.76 0.66
11 p Norway 0.045 71 15 m c CAR 2.25 exp 0.266 269.4 268.1 AIC, difference n.s.

p Norway 0.045 71 15 m c SAR 2.25 exp 0.301 269.4 267.7 AIC, difference n.s.
p Quebec 2.6 

 

× 

 

10

 

−

 

5

 

70 2.0 

 

× 

 

10

 

−

 

4

 

a c GLS 0 exp 0.000 ? ? LR test for spatial 
dependence: 

 

P

 

 = 0.71
p Quebec 2.6 

 

× 

 

10

 

−

 

5

 

70 2.0 

 

× 

 

10

 

−

 

4

 

a c GLS 11 Gau 0.192 ? ? LR test for spatial 
dependence: 

 

P

 

 = 0.02
p Quebec 2.6 

 

× 

 

10

 

−

 

5

 

70 2.0 

 

× 

 

10

 

−

 

4

 

a c GLS 30 exp 0.785 ? ? LR test for spatial 
dependence: 

 

P

 

 < 0.01
p Quebec 2.6 

 

× 

 

10

 

−

 

5

 

70 2.0 

 

× 

 

10

 

−

 

4

 

a c GLS 4 Gau 0.691 ? ? LR test for spatial 
dependence: 

 

P

 

 < 0.01
12 p Pennsylvania 2500 90 0.64 b PA al 3 inv 0.308 ? ? Commision and omission 

errors for spatial and non-
spatial models given 

13 p Appalachians 600 1177 0.2 b c CAR 3 inv 0.083 0.53 0.55
p Appalachians 600 1177 0.2 b c CAR 3 inv 0.200 0.22 0.25
p Appalachians 600 1177 0.2 b c CAR 3 Inv 0.155 0.39 0.46

14 p Sweden 3750 313 2500 b PA al ? 1 0.316 144.8 141.2 AIC
P Sweden 3750 313 2500 b PA al ? 1 0.163 169.8 171.7 AIC

15 p England 3 76 0.005 i PA al 2 inv ? 0.12 0.14 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 i PA al 2 inv ? 0.09 0.12 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 i PA al 2 inv ? 0.08 0.13 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 i PA al 32 inv ? 0.23 0.32 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 i PA al 4 inv ? 0.14 0.34 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 i PA al 5 inv ? 0.20 0.26 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 mo PA al 7 inv ? 0.21 0.34 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 mo PA al 20 inv ? 0.13 0.15 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 c PA al 10 inv ? 0.16 0.25 Deviance-based pseudo-

 

R

 

2

 

p England 3 76 0.005 c PA al 1 inv ? 0.47 0.54 Deviance-based pseudo-

 

R

 

2

 

16 l Portugal 99,000 993 10 r PA al 2 inv ? ? ? Data are prediction quality 
across 44 species 

17 p Tunisia 45,000 53 0.4 b PA al ? inv 0.326 53.4 26.9 AIC
p Tunisia 45,000 53 0.4 b c al ? inv 0.274 39.1 37.2 AIC

18 l Colorado 0.001 256 0.002 p c CRH 7 ? ? ? ? Only change in 

 

P

 

-value is 
given, which is significant in 
4/9 cases 

19 l South America 1.8 

 

× 

 

10

 

7

 

1828 100 m r CAR 3 inv 0.096 0.79 0.84
l South America 1.8 

 

× 

 

10

 

7

 

1828 100 m r SAR 3 inv 0.438 0.79 0.93
20 p Ontario 0.08 6811 0.001 p s GLS 4 exp ? 0.76 0.96
21 l Spain 10,000 152 10 b PA al [1] 1 0.252 0.87 0.87 nb. size set to 1, not tested or 

derived 
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l Spain 10,000 152 10 b PA al [1] 1 0.348 0.80 0.83 nb. size set to 1, not tested or 
derived 

l Spain 10,000 152 10 b PA al [1] 1 0.663 0.88 0.90 nb. size set to 1, not tested or 
derived 

?, No information given.
Studies: 1, Araújo and Williams (2000); 2, Augustin 

 

et al

 

. (1996); 3, Dark (2004); 4, Deutschewitz 

 

et al

 

. (2003); 5, Diniz-Filho 

 

et al

 

. (2003); 6, Diniz-Filho 
and Bini (2005); 7, Fang (2005); 8, Ferrer-Castán and Vetaas (2005); 9, Gotway and Stroup (1997); 10, Jetz and Rahbek (2002); 11, Keitt 

 

et al

 

. (2002); 12, 
Klute 

 

et al

 

. (2002); 13, Lichstein 

 

et al

 

. (2002); 14, Mörtberg and Karlström (2005); 15, Sanderson 

 

et al

 

. (2005); 16, Segurado and Araújo (2004); 17, Selmi 

 

et al

 

. (2003); 18, Thomson 

 

et al

 

. (1996); 19, Tognelli and Kelt (2004); 20, Zhang 

 

et al

 

. (2005); 21, Chou and Soret (1996).
*l, lattice; p, points.
†a, acari (mite); b, bird; c, crustacean; i, insect; m, mammal; mo, mollusc; p, plant; r, reptile/amphibian.
‡c, counts of abundance; PA, presence/absence; r, richness; s, size; y, biomass yield.
§al, autologistic regression; CAR, conditional autoregressive model; CRH, Clifford/Richarson/Hémon correction; Dut, Dutilleul’s correction; GLS, 
generalized least squares; SAR, simultaneous autoregressive model.
¶1, non-weighted; exp, exponential; Gau, Gaussian; i, inverse of Euclidean distance; sph, spherical.

[] indicates that values were set  

 

a priori

 

, rather than explored iteratively.

$AIC, Akaike Information Criterion; LR Test, likelihood-ratio test, nb site, neighborhood site.
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Table 1

 

Continued

 

between coefficient estimates from the spatial and non-spatial

model. Calculation of effect sizes (Gurevitch & Hedges, 1999,

2001) as in a meta-analysis would have been preferable, but in

only six studies were estimates of variance, standard deviation or

standard error given. The rSACe should hence be interpreted

cautiously, since the error on the coefficient estimates may be so

large as to make differences insignificant.

Several parameters were log normally distributed (spatial

resolution of study, area of study, rSACe). To summarize these

values parametrically, I log

 

10

 

-transformed them before analysis

and back-transformed them afterwards. Error bars were calcu-

lated on log

 

10

 

-transformed data as well, and back-transformed

from log mean 

 

± 

 

log SE.

The effect of correcting for SAC on overall model quality can

be quantified by AIC, 

 

R

 

2

 

 or deviance-based pseudo-

 

R

 

2

 

 values

given in the publications. However, AIC and 

 

R

 

2

 

 values are not

directly comparable without the deviance of the intercept-only

(null) model. Hence these values should be interpreted mainly

qualitatively. All analyses were carried out using R version 2.1.1

(R Development Core Team, 2004).

 

RESULTS

 

Because 13 studies report on single species (e.g. their occurrence,

abundance or some measure of their performance such as yield)

while eight recorded species richness (see Table 1), I first

analysed whether there was a systematic difference between these

response types in terms of relative spatial autocorrelation effect.

 



 

 results (

 

F

 

1,22

 

 = 0.91, 

 

P = 0.351) indicate that there was no

difference in rSACe. Additionally, in all analyses presented below,

response type was included both as a main and an interacting

factor, and was not significant in all cases. I therefore present the

studies together, irrespective of the type of response assessed.

Study regions ranged in size from 1000 m2 (a field experiment:

Gotway & Stroup, 1997) to 26 million km2 (sub-Saharan Africa:

Jetz & Rahbek, 2002). Accordingly resolution (or grain) ranged

from approx. 25 m2 (Sanderson et al., 2005) to 220 km2 (Diniz-

Filho et al., 2003; Diniz-Filho & Bini, 2005).

There was a highly significant correlation between the range of

spatial autocorrelation (also called ‘neighbourhood size’, i.e. the

distance over which spatial autocorrelation was taking effect),

and spatial resolution of a study (Fig. 1). Phrased differently,

when correcting for the differences in spatial resolution of the

studies, neighbourhood size in terms of multiples of resolution

was relatively constant across the entire range of study areas

(back-transformed mean of log10-transformed data = 4.29, mean

± 1 SE = 5.00 and 3.68, respectively) and significantly different

from 1 (t1,29 = 9.48, P < 0.001). This clearly shows that spatial

autocorrelation was apparent in all cases. Among the vertebrates,

mammals (three studies) and birds (seven studies) showed no

difference in slope ( of log-transformed data; interaction

between resolution and group: F1,6 = 0.004, P = 0.951).

Effects of spatial autocorrelation on coefficient 
estimation

Across the 24 cases analysed the mean effect of spatial auto-

correlation on regression coefficients (rSACe) was 0.25 (back-

transformed mean of log-transformed data; mean + 1 SE = 0.31

and mean − 1 SE = 0.21). In all cases where comparisons between
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spatial and non-spatial models had been made, coefficients were

biased.

There was no evidence for a change of rSACe with region size

or resolution of the study (Kendall’s correlation τ = 0.210, P =

0.162 and τ = 0.252, P = 0.094, respectively). Nor was there a

significant difference in rSACe with respect to the separation into

plants and animals or further into plant, vertebrates and inver-

tebrates (in all cases Kruskal–Wallis and  P > 0.4; see Fig. 2).

Effects of spatial autocorrelation on model quality

Across the 20 cases which provide model R2 values (or pseudo-R2

in the case of non-normal errors) incorporating SAC increased

the mean from 0.43 for non-spatial models to 0.49 for spatial

models (Fig. 3). The average increase in adjusted model R2 was

0.060 (min. = −0.10, max. = 0.20), with only one of the 20 spatial

models performing worse than its non-spatial counterpart.

Studies only giving AICs for spatial and non-spatial models

report a significant decrease in AIC by incorporation of a SAC

correction in six of nine cases.

In addition to those studies that have been quantitatively

summarized above some studies provide strong evidence for the

importance of SAC for modelling species distributions, but

do not give the investigated parameters in the publications.

Augustin et al. (1996) report R2 values for four different spatial

models, but not for the non-spatial. Araújo and Williams (2000)

present a summary of 174 models for European tree species. Their

analysis shows, without further quantification, a strong effect of

incorporating a correction term for spatial autocorrelation.

Kaboli et al. (2006) showed that the spatial autocovariate

remained significant in all three of their models on richness,

abundance and composition of bird communities in Iran. The

Figure 1 Neighbourhood size is related to the spatial resolution of 
a study: y = x0.88 (± 0.055) − 0.70 (± 0.119). R2 = 0.90, P < 0.001, n = 30. 
Note that values on both axes were log10-transformed. Grey points 
represent freshwater organisms, all belonging to the data set of 
Sanderson et al. (2005). Note that the three rightmost points 
represent analyses of species richness, not species occurrence, 
abundance or performance.

Figure 2 Relative effect of incorporating 
spatial autocorrelation into models on the 
model coefficients for different species groups. 
Bars (± 1 SE) represent back-transformed 
means of log-transformed relative SAC 
effects, error bars are hence asymmetric. 
The difference between plants and vertebrates 
is not significant (P = 0.223,  on 
log(x + 0.01)-transformed data).

Figure 3 Difference in model fit between non-spatial and spatial 
models. This difference is significant in a paired Wilcoxon 
signed-rank test (V = 15, P < 0.01).
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Dutilleul correction employed by Deutschewitz et al. (2003), Fang

(2005) and Rodríguez et al. (2006) only corrects the significance

value of a correlation (in both cases the effect was pronounced),

but cannot be applied to model R2. The same holds true for

Thomson et al. (1996), who use a correction proposed by Clifford

et al. (1989; see also Haining, 2003). These four studies together

find a pronounced change (loss) in correlation significance in 18

of 35 correlations. Keitt et al. (2002) give likelihood-ratio tests for

spatial dependence (significant in two of three cases), but not the

deviances of the models. Klute et al. (2002) assess their model

quality in terms of commission and omission errors (which were

reduced by 50% and 30%, respectively, in spatial models), but

not the fit as such. Segurado and Araújo (2004) give model qual-

ity across 44 different species being modelled. The spatial ver-

sions of their GLMs were significantly better (in terms of Kappa

index). This did not hold true for GAMs, which were similar for

both spatial and non-spatial types.

For the eight studies that presented both model coefficients

and adjusted R2 values no correlation between these two

parameters was detectable (Kendall’s τ = −0.028, P = 0.917). This

indicates no systematic relationship between model fit and bias

in coefficients with respect to the comparison of spatial and

non-spatial models.

DISCUSSION

Ecological causes of spatial autocorrelation

In this review I have considered both single-species distribution

and performance data as well as species richness pattern.

Obviously the causes of spatial autocorrelation are not necessarily

the same for these two types of responses. Since composite

measures of assemblages are also affected by the spatial auto-

correlation in each of the contributing species, I will first discuss

the mechanisms, both endogenous and exogenous (see review by

Liebhold et al., 2004), that introduce spatial autocorrelation into

the distribution data for a single species.

Exogenous factors, such as climate, soil type, stochastic

disturbances or even solar activity (Ranta et al., 1997), may lead

to a similar occurrence probability in neighbouring sites, simply

because the external factors show a specific autocorrelation

pattern. These exogenous factors can ideally be included

into the statistical model as environmental covariates, reducing

and even removing the residual spatial autocorrelation (e.g.

Besag et al., 1991; Higgins et al., 1999; Fisher et al., 2002; Hawkins

& Porter, 2003; Bhattarai et al., 2004; Flinn et al., 2005; Warren

et al., 2005). If omitted, residuals are likely to display spatial

autocorrelation.

Endogenous factors are due to the biology of the species under

consideration: dispersal, colonial breeding, home-range size,

competition, host availability, predation or parasitization risk,

and so forth. Van Horne (2002) showed that mapping eagle

occurrences at a spatial scale of 1 km caused a high level of spatial

autocorrelation because these birds roam distances of tens of

kilometres (see Scott et al., 2002; for further examples). These

causes of SAC are usually much more difficult to quantify, and

data are often scarce (e.g. Cain et al., 2000). Most of these (most

noticeably the interaction with other species) occur at small

spatial scales (e.g. less than 1 km), and dispersal for plants and

insects becomes extremely rare events at larger scales.

For species assemblage data (such as species richness, percent-

age of endemics, proportion of Red Data Book species, etc.)

additional processes may introduce spatial autocorrelation. Most

prominent among them is the omission of a variable relevant

at the community scale (such as disturbance or management).

Also possible are artefacts due to species-specific bias or different

recorder density. Taxonomic specialists may, for example, sub-

divide plant species into more ‘species’ than a common botanist,

or a recording team may sample one region more intensively

than another, producing a bias unrelated to the environment.

Because it is not always possible to correct for such artefacts, they

may still show up as residual spatial autocorrelation. Spatial

autocorrelation may also be introduced as a consequence of the

sampling scheme (Fortin & Dale, 2005), when the regions of a

known occurrence are sampled with higher intensity than

regions of unclear occurrence (e.g. for Red List species). Finally,

ecological interactions between species (competitive replace-

ment) or founder effects in isolated habitat patches (fragmented

landscapes, lakes) will add to SAC in assemblage data that is

absent from the individual species distribution data.

Endogenous causes of SAC (dispersal, interspecific inter-

actions, disturbance) can be expected to operate at smaller spatial

scales (Guisan & Thuiller, 2005), and should hence be relevant

for studies with a higher resolution. The present study shows that

the range of spatial autocorrelation was very constant across

seven orders of magnitude and various groups of organisms.

This result suggests that various processes (biological and other)

may contribute to spatial autocorrelation and that we cannot

assume SAC to be a small-scale problem. As another consequence,

resampling data at a coarser spatial scale, as a recommended

treatment against SAC (Qi & Wu, 1996; Aubry & Debouzie, 2000;

Guisan & Theurillat, 2000; Rossi & Nuutinen, 2004), will not

necessarily solve the problem (see also Fortin & Dale, 2005;

p. 248 et seq., for other reasons why sampling at coarser scales

may not be adequate).

As can be concluded from the limited set of studies available so

far, there is no evidence that models for plants and different ani-

mal groups differ in their susceptibility to SAC. The effect of SAC

on regression coefficients was similar for all groups investigated.

However, several studies found no spatial autocorrelation in the

model residuals, and hence would not find an effect of including

a SAC correction. These were mainly plant distribution analyses

(e.g. Higgins et al., 1999; but see Fisher et al., 2002; Hawkins &

Porter, 2003; Williams et al., 2005), suggesting that plant dis-

tributions are less spatially autocorrelated than those of animals.

The data analysed here were too sparse to assess differences

between organism groups with respect to the range of SAC

(Fig. 1). The large interval of study sizes and resolution is

founded mainly on mammal and bird studies, while plants and

invertebrates were only available for a much smaller spatial

resolution interval. Only one study reported the effect of SAC for

insects at the country scale (Luoto et al., 2005).
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Effects of spatial autocorrelation on model 
parameters

Ignoring SAC leads to two kinds of possible errors: biased

parameter estimates and overly optimistic standard errors (for

examples see Albert & McShane, 1995; Keitt et al., 2002). The

latter is important when model results are used for predicting

species distributions for environmental change scenarios since it

is another intrinsic problem adding to prediction uncertainty.

The studies reviewed here are unambiguous with respect to the

bias introduced by neglecting spatial autocorrelation: in all cases

coefficients were affected. The large difference of close to 25%

between the spatial and non-spatial models indicates that this

effect is not only common, but also strong. To use spatial auto-

correlation in the prediction is extremely difficult: Augustin et al.

(1996) used a Gibbs sampler to iteratively recalculate occurrence

probabilities using the autocovariate signal they detected in their

data. Such an approach is very sensitive to starting conditions and

may in many cases not converge (J. McPherson, pers. comm.).

However, not all previous studies which did not incorporate

spatial autocorrelation are fundamentally flawed. Models may be

wrongly specified because they contain the ‘wrong’ explanatory

variables (e.g. they ignore environmental factors that are impor-

tant), which may lead to far worse models than ignoring spatial

autocorrelation (Haining, 2003, p. 273). Hence spatial auto-

correlation is only one more potential problem of which ecologists

should be aware. This review hopes to have shown that, based on

currently available evidence, spatial autocorrelation is relevant

across all groups of organisms and all spatial scales. The state of

the art simply demands spatial models if residuals are spatially

autocorrelated.

Effects of spatial autocorrelation on model building 
and fit

Why bother with better models? Usually the model fit of the

non-spatial version was already good, and the improvement with

the SAC correction term was only moderate (Fig. 3). In a so-far

unique study, Chou and Soret (1996) demonstrated that models

may still change qualitatively after accounting for SAC. They first

simplified a non-spatial model, then added an autologistic term,

and finally eliminated insignificant model terms again. These final

models differed qualitatively from the final non-spatial model,

and therefore hint that non-spatial models for autocorrelated

data may be inadequately ‘well fitting’. To date, no study has

attempted to evaluate whether the more sophisticated ‘true’

spatial models are actually less biased than ‘wrong’ but simple

non-spatial models (e.g. on artificial data with known causal

relationships and controlled spatial autocorrelation). This is

clearly a question deserving future research, since model pre-

dictions depend strongly on the bias introduced by the model

structure (Reineking & Schröder, 2006).

At present, no standard approach to model construction and

simplification under spatial autocorrelation has been established.

Most commonly, a non-spatial model is constructed, simplified to

contain only significant variables (usually using information-

theoretical methods: Burnham & Anderson, 2002) and eventually

the spatial version is employed. This is the case both for ordinary

least square (OLS) models that in the final step are reformulated

as GLS or conditional/simultaneous autoregressive model,

and for GLMs employing an autocovariate (e.g. autologistic

regression). Non-spatial OLS and GLM are much faster to run

and hence to simplify than their spatial counterparts. Dale and

Fortin (2002) argue that autologistic regression corrects the

coefficient estimates for the presence of SAC, but does not correct

the degrees of freedom employed. This result suggests that models

may be wrongly specified, as model simplification will be based on

incorrect likelihood ratios. The results of Chou and Soret (1996)

illustrate how the autocovariate alters the model structure,

but whether this is due to false degrees of freedom or due the

‘true’ effect of SAC remains obscure.

Outlook

Will species distribution models need to go spatial? Guisan and

Thuiller (2005) claim that SAC models are barely transferable

in space, because the spatial configuration of the landscape will

usually be different in a new site, hence making the SAC correc-

tion (which is based on a neighbourhood size) inappropriate.

This may be so. However, non-spatial models suffer the same

deficiency, since their estimates are biased due to the same

landscape configuration issue, only it is not captured by one spatial

coefficient but rather influences all coefficient estimates. Land-

scape configuration is a variable worth considering as a covariate

in species distribution models, especially if the landscape metric

employed is based on ecological reasoning. This should alleviate

some of the problems Guisan and Thuiller foresee. If, however,

SAC is due to biological processes such as dispersal or species

interactions, spatial models will be transferable (reusing

their covariance structure or with Gibbs sampling) and more

accurate because the spatial component represents some relevant

biological process that cannot be accounted for by environmental

covariates.

Some of the studies reviewed here were intended to investigate

the effect of correcting for spatial autocorrelation as part of their

study design. However, most of them needed to present their

findings for both spatial and non-spatial models because the need

to incorporate spatial autocorrelation is not yet generally

perceived to be an important issue (e.g. it is not even mentioned

in the excellent methodological review by Elith et al., 2006). Only

very recently studies have used corrections for spatial autocorrelation

without having to justify their effect on model quality (e.g. Kühn

et al., 2003; Luoto et al., 2005; Newbury & Simon, 2005; Orme

et al., 2005; Warren et al., 2005; Worm et al., 2005; Kaboli et al.,

2006; Stephenson et al., 2006). The significance of the correction

terms in their analyses is evidence that the residuals of their models

were indeed spatially autocorrelated. These authors certainly

represent a minority of spatial ecologists who have taken SAC

matter-of-factly into consideration and included it in their

models. For the time being, both spatial and non-spatial models

should be presented to aid future comparisons on the effect of

incorporating spatial autocorrelation on model estimates.
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