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. Projections of species’ distribution under global change (climatic and environ-
Conservation man-

mental) are of great scientific and societal relevance. They rely on a proper

Eﬁs?:s:r:{en tal understanding of how environmental drivers determine species occurrence patterns.

. This understanding is usually derived from an analysis of the species’ present
EZ?:]agec;lation' distribution by statistical means (species distribution models). Projections based on
Predicption; ’ species distribution models make several assumptions (such as constancy of limiting

factors, no evolutionary adaptation to drivers, global dispersal), some of which are
ecologically untenable. Also, methodological issues muddy the waters (e.g. spatial
autocorrelation, collinearity of drivers). Here, | review the main shortcomings of
species distribution models and species distribution projections, identify limits to
their use and open a perspective on how to overcome some current obstacles. As a
consequence, | caution biogeographers against making projections too light-
heartedly and conservation ecologists and policy makers to be aware that there
are several unresolved problems.
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Zusammenfassung

Die Auswirkungen von Umweltveranderungen (Klima und Landnutzung) auf die
zukunftige Verbreitung von Tier- und Pflanzenarten ist ein aktueller und
gesellschaftlich relevanter Forschungsgegenstand. Solche Vorhersagen fuBen auf
einer sicheren Kenntnis der fiir die Verteilung relevanten Umweltfaktoren,
gewonnen aus der statistischen Analyse der gegenwartigen Verbreitung. Vorhersagen
auf Grundlage einer Verbreitungsanalyse unterliegen verschiedenen Annahmen
(z.B.: limitierende Faktoren bleiben limitierend; keine genetische Anpassung an
veranderte Umweltbedingungen; keine Ausbreitungsbeschrankung), von denen
einige okologisch unhaltbar sind. Zudem gibt es eine Vielzahl statistischer Probleme
(z.B.: raumliche Autokorrelation; Kollinearitat von Umweltparametern). In diesem
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Beitrag stelle ich die wichtigsten Probleme von Verbreitungsanalysen und Verbrei-
tungsvorhersagen vor, zeige die Grenzen dieser Methodik auf und weise auf
Losungsansatze hin. Schlussfolgerung dieser Erorterung ist, dass wir es uns mit
Vorhersagen nicht zu leicht machen sollten, und dass Umweltschiitzer und Politiker
sich der methodischen Unsicherheiten bewusst sein sollten.

© 2006 Gesellschaft fiir Okologie. Published by Elsevier GmbH. All rights reserved.

Introduction

The publicity triggered by the publication of
Thomas, Cameron, Green, Bakkenes, and Beau-
mont (2004) revealed the enormous public interest
in projections of species extinctions due to global
climate and land-use change. They use statistical
matches of climate with present species distribu-
tions in combination with climate change scenarios
to predict the future range of species distributions.
Although Thomas et al. were the first to acknowl-
edge the potential shortcomings of their approach,
their conclusions have been challenged for con-
ceptual and statistical reasons (Buckley & Rough-
garden, 2004; Harte, Ostling, Green, & Kinzig,
2004; Thuiller et al., 2004): they assume that
species distributions are affected overwhelmingly
by climate, that species will have the same climate
niche in the future, i.e. not adapt to climate and
that the statistical methods are robust. Their
projections, and those of others (e.g. Thuiller,
Lavorel, Araljo, Sykes, & Prentice, 2005), are also
contingent on the uncertainty attached to future
climate and land-use. Regional climate and land
use change projections and their problems were
addressed elsewhere (Dockerty, Lovett, Appleton,
Bone, & Slinnenberg, 2006; IPCC, 1998; Millennium
Ecosystem Assessment, 2003).

Projections of species distributions are not
merely generating hypotheses to be tested by later
data. They are presented as predictions of tomor-
row’s diversity and policy makers and the public
will interpret them as forecasts, similar to fore-
casts about tomorrow’s weather. Hence, future
projections based on species distribution models
should show the same robustness as meteorological
forecasts and not merely serve as hypothesis
generators for future generations of ecologists.
Here, | argue that the problems associated with the
analysis of present distribution of species are so
numerous and fundamental that common ecologi-
cal sense should caution us against putting much
faith in relying on their findings for further
extrapolations.

The backbone of Thomas et al.’s extinction risk
projections are species distribution models (also
known as ‘habitat suitability models’, ‘niche-based

models’ or ‘predictive habitat distribution models’:
Guisan & Zimmermann, 2000). They describe the
spatial distribution of a species — and in a wider
sense also of species groups, traits, richness,
performance - as a function of environmental
predictors such as climate, land-use type, resource
availability, topography, soil conditions, geographic
isolation, landscape structure and so forth. Here, |
want to evaluate the assumptions of this approach
and point out some potential misuses (see also
Davis, Jenkinson, Lawton, Shorrocks, & Wood,
1998; Van Horne, 2002; Vaughan & Ormerod,
2003). | do not intend to comprehensively review
the state of the art (for this, see e.g. Guisan &
Thuiller, 2005; Guisan & Zimmermann, 2000;
Latimer, Wu, Gelfand, & Silander, 2006), nor do |
wish to cover all types of organisms addressed with
species distribution models (for a glimpse at the
wide range of approaches, contexts and problems
see Scott, Heglund, Morrison, Haufler, & Wall,
2002). Rather, this paper is intended to call on
the scientist employing species distribution models,
for extrapolation or otherwise, to reflect more
thoroughly on their merits and limitations (Table 1)
than is often done.

Which explanatory variables to choose?
Issues of surrogates, equilibrium and
scale

One key issue in species distribution models is the
selection of explanatory variables. Candidate en-
vironmental factors are entered into the analysis
and the best model is selected as the most likely
driver of a species’ distribution. Which environ-
mental factors we chose depends largely on data
availability and to a regrettably lesser extent on
our understanding of the causal mechanisms behind
species distributions. Because the most important
causal mechanisms are often not readily quantifi-
able, we have to resort to substitutes and proxies.
For example, when modelling kestrel occurrence,
the abundance of voles, their primary prey,
may not be known, so instead we may resort to
using vegetation height as a surrogate for vole
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Table 1.

Overview of problems associated with species distribution models

General species distribution model issues:

Extrapolation issues:

Statistical issues:

Causal drivers are rarely quantifiable.

Species may not be at equilibrium with environmental drivers

Limiting factors may differ throughout a species’ range

Distribution patterns are governed by processes at multiple spatial scales

Identity of limiting factors may change with environmental change

Biotic interactions are probably affected by environmental changes

Genetic structure of species is likely to be affected by environmental changes
Trends may not be valid beyond the range of present data

Environmental change scenarios are spatially uncertain

Drivers have non-linear effects on species distribution patterns
Drivers interact in their effects

Causal drivers may be correlated with each other

Data points in space are non-independent (spatial autocorrelation)
Presence-absence data have low information content

Low sample size and parsimony may lead to inadequately simple models

For details and examples see text.

abundance. Similarly, the distribution of specific
ecto-mycorrhizal fungi has never been quantified at
a scale relevant for the distribution of their
symbiontic trees, but we may hope that soil
moisture correlates with mycorrhization and hence
we can use this as a proxy.

Many researchers have chosen to employ only
climate variables as explanatory variables. The
argument being that at large spatial scales climate
is ultimately determining the fundamental, physio-
logical niche (Pearson & Dawson, 2003). The
caveats of this approach were recognise’ early
(Brereton, Bennett, & Mansergh, 1995, p. 343):

1. “The realised niche of a species can be much
less because other environmental attributes
characterising a species’ habitat were not
included ...”

2. “The distributional data used may not represent
the full geographic range of each species and
thus climatic profiles may be underestimates of
realised or realisable distributions.”

3. Uncertainty about the local projections for
future climate will necessarily render species’
distributions inaccurate, too. Microclimate (and
“micro” here refers to anything finer than the
grain of the distribution analysis) may differ
substantially from regional climate, and hence
give some species habitat to hang on to for
(potentially long) transient periods. Demo-
graphic stochasticity will mean the inevitable
extinction of any non-connected population,
however.

Opinions differ if climate is by itself sufficient or
even the most important factor for explaining
species distributions (Thuiller, Aradjo, & Lavorel,
2004). Even for species long considered limited by
climate, where distribution models seem to be very
well suited, later range expansion may prove the
statistical model wrong (as shown by Kanda, 2005
for Virginia Opossum Didelphis virginiana). Also,
different factors may limit a species’ occurrence in
different parts of the investigated range (Graf,
Bollmann, Sachot, Suter, & Bugmann, 2006; Huston,
2002; Schroder & Richter, 1999; Svenning & Skov,
2004). If land use precludes the presence of a
species in parts of its range, it may appear not to be
filling its climatic niche, while in fact it does.

Another crucial aspect of selecting the explana-
tory variables concerns their ability to proxy for
infrequent catastrophic checks of populations that
may not have occurred during the time period
sampled. A species may not be in equilibrium with
its environment (as discussed in Aradjo & Pearson,
2005; Vellend et al., 2006), for the reason that
since the last parasite outbreak or destruction by
fire, the population has not fully recovered. Hence
any model constructed on, say, climate parameters
alone may not be able to capture the distribution
appropriately (see Araujo & Rahbek, 2006, for an
example of the potentially gross inadequacy of
climate-only models).

Finally, species distribution analyses are carried
out at only one spatial resolution and extent.
Environmental drivers differ in their variability and
relevance with scale (Wiens, Addicott, Case, &
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Diamond, 1986): climate varies more on the
continental, land use more on the regional scale.
Hence, large-scale studies will find climate more
important than soil properties (Bjorholm, Svenning,
Skov, & Balslev, 2005; Borcard, Legendre, Avois-
Jacquet, & Tuomisto, 2004). Land cover impacts
become apparent at smaller scales than climate
(Pearson & Dawson, 2003; Pearson, Dawson, & Liu,
2004).

In summary, hypothesis testing with species
distribution models is often hampered by the lack
of ecologically relevant data at the required spatial
or temporal resolution.

Extrapolating from here and now to
there and then

Can we extrapolate to values beyond the
observed parameter range and present spatial
distribution? The assumptions of species distribu-
tion models for extrapolation are (e.g. Austin,
2002):

1. The factors that limit a species’ occurrence/
abundance under observed conditions will also
be the limiting factors under the extrapolated
conditions.

2. Biotic interactions (competition, predation,
symbiosis) will be the same under extrapolated
conditions.

3. Genetic variability, phenotypic plasticity and
evolutionary changes are negligible.

Any extrapolation is burdened with hugely
increasing uncertainty the further we leave the
observed data range behind us. A simple and ad-hoc
rule of thumb, not to extrapolate further than 1/10
of the parameter range, may serve as guidance. Far
more problematic is the projection of a species’
range under a combination of environmental con-
ditions it has never encountered before (Thuiller,
Brotons, Araljo, & Lavorel, 2004).

Even more problematic is the projection of a
species’ range under a combination of environ-
mental conditions it has never encountered before.
Thuiller et al. (2004) recommend to use a large
(ideally the full) range of a species for modelling,
even if only a regional subset is of interest (see
Pearson, Dawson, Berry, & Harrison, 2002, for
an example). Thereby the entire niche can be
modelled and the probability of encountering
novel combinations of environmental conditions is
reduced.

In addition to encountering novel combinations
of abiotic conditions, also the biotic environment is

likely to change (Lawton, 2000). As an example,
consider how the effects of increased CO, on plant
distributions will be modified by other factors: on a
species’ ability to acclimate or adapt to the new
conditions (Ainsworth & Long, 2005; Jump &
Penuelas, 2005); on the changes in the plant-plant
interactions due to altered water use efficiency and
hence shifts from competition for nutrient to
competition for water (Hely & Roxburgh, 2005;
Joel, Chapin, Chiariello, Thayer, & Field, 2001); on
the way humans manage the habitat in response to
altered plant community composition (Polley, 1997;
Rosenberg & Scott, 1994; Passioura, 2006). Another
example is the climate-change induced mistiming
of breeding and food abundance in a migratory
songbird (Both, Bouwhuis, Lessells, & Visser, 2006),
which would have been near-impossible to predict
with a static statistical model. The semantic
‘solution’ employed by species distribution mod-
ellers is to call the extrapolation ‘potential
distribution under altered environmental condi-
tions’. But even this rather vague term is not
correct, since the probability derived from the
model is conditional on the correctness of the three
above assumptions. So far, our understanding of
species’ responses to altered environmental condi-
tions in its community context is too limited to
even allow a ranking of the three assumptions. A
better phrase for extrapolated distribution would
therefore be ‘potential distribution under altered
environmental conditions and unaltered species’
ecological and physiological behaviour’. Now, that
would restrict the use of such an extrapolation to
long-lived organisms, relative to the changes
modelled. However, even for long-lived species,
extrapolations can be very poor, as shown for birds
of prey (Fielding & Haworth, 1995).

Relying on present day analysis for projecting
species distributions into the future can be falla-
cious (Davis et al., 1998). Even if a species moves
further North in its distribution following climate
change, we have no way of knowing if it will ever
occur there, because small-scale environmental
factors have been neglected. For example, a
calcicole forest understorey plant species cannot
extend its range into low-pH Siberia, no matter
what the climate will be like (Skov & Svenning,
2004).

How much phenotypic plasticity or the evolution
of species traits matters to a species’ ability to
maintain a population under new environmental
conditions is largely unclear. Although rapid evolu-
tionary change has been documented (Endler, 1986;
Thompson, 1998), there are only few known case
studies where species evolved in response to new
physical conditions (Reznick & Ghalambor, 2001).
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If species display high genetic or phenotypic
plasticity, the projected range of distribution under
altered environmental conditions may well be
larger than forecasted under the assumption of
genetic and phenotypic constancy (see Rehfeldt,
Wykoff, & Ying, 2001, for an example).

A brief and final thought on extrapolation shall
be devoted to future climate and land-use scenar-
ios. While our understanding of climatic forcing
yields relatively consistent projections of future
climate at the global scale, regionalisation, i.e.
downscaling, of these global scenarios is very
difficult (e.g. Schroter et al., 2005). Hence,
projections at a spatial scale of several square
kilometres will be burdened with considerably
larger uncertainty than those at several thousands
of square kilometres. Even more problematic are
scenarios for land use, since they have to embrace
political, economic, demographic, technological
and climatic developments (e.g. Holman, Nicholls,
Berry, Harrison, Audsley et al., 2005; Holman,
Rounsevell, Shackley, Harrison, Nicholls et al.,
2005). Changing one law, e.g. subsidies for sugar
or oil crops, may affect farming over huge areas
(Rounsevell et al., 2006). Uncertainty in environ-
mental change scenarios propagates through to
projections of future species distributions.

Statistical stumbling stones

Several statistical issues provide obstacles for
species distribution analysis. The first and foremost
must be data availability. Data will be collected at
different resolutions, during different time inter-
vals, with different taxonomic concepts and for
different purposes. To merge several data sources
into one homogenous data set is an enormous
challenge that usually dwarfs the time required to
analyse these data (Graham, Ferrier, Huettman,
Moritz, & Peterson, 2004). Nonetheless, | will here
focus on a few statistical issues, once the data are
ready for analysis.

The first point concerns the observation that in
most analyses of species distributions (as well as
other ecological data), only linear predictors are
used (Austin, 2002). For most environmental
drivers, we can expect a non-linear effect on
species abundance or performance (Austin, 2002).
Most plants have both upper and lower limits to
how moist the soil may be and all animals have
upper and lower bounds for the temperature they
can tolerate. It seems strange to assume that all
environmental variables in an analysis fall exactly
on that stretch of the relationship where it is
approximated linearly (see also Vaughan & Ormer-

od, 2003, for implications of ignoring non-linear-
ity). As a first step, a quadratic term can be
included, but sigmoidal or saturation transforma-
tions could also be employed if a specific causal
mechanism (e.g. Michaelis-Menten kinetics) can be
assumed. Using more flexible models, non-linearity
can easily be incorporated in the analysis (e.g.
GAM, neutral networks or other ‘novel’ methods:
Elith et al., 2006).

Similarly, few analyses of species distributions
have investigated interactions among environmen-
tal drivers (again see Austin, Nicholls, & Margules
(1990) for raising and reviewing this problem and
Thuiller, 2003 for a systematic improvement). Some
argue that including interactions precludes a
transfer to new regions because of the highly
specific way that variables interact in a specific
region (Beerling, Huntley, & Bailey, 1995; Gavin &
Hu, 2006). Even so, to identify the causes of
present distributions their present ecological de-
mands should be the focus of the analysis. For
example, the ecological expectation would be that
a plant will tolerate low precipitation as long as the
soil retains moisture. Hence the interaction of
precipitation and soil texture should be crucial for
many plant species. Similarly, a soil-breeding
solitary bee will not occur in the best climatic
conditions as long as the soil does not offer the
right consistency for its nest. More importantly,
without-interactions between main effects become
unduly emphasised, because they take over some of
the interactions’ importance (Harrell, 2001). While
this may suit mono-factorially minded policy
makers, it will not help unravel the causes of
species distributions.

Another problematic issue is posed by inter-
related drivers. Soils, climate and land use are
historically related in that climate shapes soils and
soil determines land use. Environmental drivers
will, therefore, often be correlated. In mountains,
topography drives precipitation, exposition drives
temperature and slope determines soil depth.
Correlated environmental drivers cannot readily
be dealt with in species distribution analysis (as is
true for all fields of ecology: Mac Nally, 2002;
Graham, 2003). Obviously, an organism does not
respond to altitude as such, but rather to tem-
perature or rainfall. Therefore, biological knowl-
edge may help us to discard some of these variables
(Poff, 1997). But how about soil pH and percentage
of forest affecting the diversity of carabid beetle?
Which of the two factors should we retain, and
which should we discard? One solution is to
construct uncorrelated dummy variables, e.g. by
means of a principle component analysis, but they
are difficult to interpret and hence unsuitable for
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hypothesis-testing models. A better approach
would be to use residual regression (Graham,
2003), where correlated variables are regressed
with each other and the residuals are used instead
of the raw values. Alternatively, averaging the
projections from different models reduces the
model-specific uncertainty (Aratjo, Whittaker, La-
dle, & Erhard, 2005; Hoeting, Madigan, Raftery, &
Volinsky, 1999), but they are still burdened with the
fundamental uncertainty of which drivers were
used in the first place.

A particularly worrying case is the high correla-
tion between mean, minimum, maximum and
standard deviation of climate variables. Their
ecological implications are vastly different: model-
ling palm trees in Europe using mean annual
temperatures will give a very low probability for
Ireland, where palms merrily grow because winters
are warm. Means are appealing in predictive
models because climate models are relatively
consistent in predicting means and extremely poor
and incomparable in variation around them (Cess
et al., 1993). What if climate change leads to a new
relationship between the mean and variance (as is
predicted for temperature in Europe: little change
in mean annual temperature, but increased sum-
mer and decreased winter temperature, with larger
variability within weeks: IPCC, 1998)? Then a model
employing means is useless because the plants and
animals actually experience very different tem-
perature conditions compared to those used for
statistical analysis.

More recently, the non-independence of adjacent
data points in space has raised statistical concerns
(Lennon, 2000). Data points closer to each other in
space are usually more similar to each other than to
those farther away (Tobler, 1970), even after taking
into account the dependence on spatially auto-
correlated environment drivers (Legendre, 1993;
Legendre et al., 2002). The main ecological reason
is distance-related dispersal: the farther, the fewer
propagules. The statistical implication is that data
points are not truly independent replicates and
hence should be treated as correlated. The
statistical methods are available, but not even
20% of species distribution studies reviewed use
them (Dormann, 2007). Surprisingly, none of the
statistical tools presented in either Guisan and
Thuiller (2005) or Elith et al. (2006) is able to
incorporate spatial autocorrelation. In conse-
quence, both the identification of environmental
drivers and the estimation of their coefficients —
and hence projection by these models — may be
severely biased (Kihn, 2007).

Let us turn to the issue of the low information
content of occurrence data. When a species is

correctly recorded in a grid cell as present, we
know it is there. If it is recorded as absent, we
cannot be sure: it might have been overlooked or
misidentified (McArdle, 1990). Abundance data
usually give much better ecological information,
allowing us to estimate population sizes and so
forth (Cushman & McGarigal, 2004). And what is the
ecological implication of knowing that pine has
been recorded in a quadrat? We still do not know
(and cannot infer) whether there is a forest. We
still have no idea if loss of a species from a quadrat
will affect the ecosystem in that cell.

Also the methods of choice to analyse presen-
ce-absence data, Generalised Linear or Additive
Models with binomial error distributions, intrinsi-
cally yield far worse likelihood values for binary
data than for Poisson-distributed abundance data.
This is due to the low information content of 0/1
data. Overall, occurrence data are often the best
we have, but that does not make them necessarily
adequate for the problems they are being used to
address.

Finally, we have to address the limits of
parsimony, i.e. the philosophic principle of shaving
every model to its barest minimum (““Occam’s
razor”: Burnham & Anderson, 2002). Low preva-
lence poses a problem (Schwartz, Iverson, Prasad,
Matthews, & O’Connor, 2006) since few data points
allow only for very simple — probably too simple —
explanatory models. Commonness of a species
impacts model performance in unpredictable ways
(Manel, Williams, & Ormerod, 2001). In any case a
model’s predictive ability is likely to be a function
of the target species’ prevalence (Karl, Bomar,
Heglund, Wright, & Scott, 2002; Luoto, Poyry,
Heikkinen, & Saarinen, 2005; McPherson, Jetz, &
Rogers, 2004; Segurado & Araujo, 2004). Reducing
model complexity too far may yield very crude
models that do not do justice to the species’
environmental requirements. As famously said by
Einstein (although not strictly about species dis-
tribution models): ““The supreme goal of all theory
is to make the irreducible basic elements as simple
and as few as possible without having to surrender
the adequate representation of a single datum of
experience” often paraphrased as ‘‘Theories
should be as simple as possible, but no simpler”.

What problems can be tackled by species
distribution analyses?

The above paragraphs may leave a bleak impres-
sion and, | believe, rightly so. Species distribution
analysis has potential for both, science and
environmental management, but not as generally
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as it is presently employed. There are some
brilliant and insightful studies on species distribu-
tions (e.g. Bonn & Schroder, 2001; Graf, Bollmann,
Suter, & Bugmann, 2005; Lichstein, Simons, Shriner,
& Franzreb, 2002; Ozesmi & Ozesmi, 1999; Schadt
et al., 2002; Tognelli & Kelt, 2004). These studies
show that several fields of research will profit from
the analysis of species distributions. In these
research fields, several of the above problems do
not occur, simply because they do not try to
extrapolate, because at smaller spatial scales more
detailed and quantitative information is available,
or because the distribution analysis is only one tool
amongst many to solve ecological riddles.

1. Small-extent, decision-support for conservation
biology (such as Biological Action Plans: Zabel
et al., 2003, and numerous others).

2. Testing specific hypotheses, e.g. on the spatial
scale of habitat selection (Graf et al., 2005;
Mackey & Lindenmayer, 2001), the species-
energy hypothesis (Lennon, Greenwood, & Turn-
er, 2000) or range-size effects on diversity
pattern (Jetz & Rahbek, 2002).

3. Generating hypotheses, e.g. on correlation of
species traits with environmental variables
(Kiihn, 2006), which can then be tested experi-
mentally.

4. Identifying hierarchies of environmental drivers
(Borcard & Legendre, 2002; Bjorholm, Svenning,
Skov, & Balslev, 2005; Pearson et al., 2004).

5. Prospective design of surveys, e.g. optimising
sampling schemes for rare species (Guisan et al.,
2006).

6. Spatial interpolation/regionalisation, where the
species distribution model can improve inverse-
distance interpolation (Binzenhofer, Schroder,
Biedermann, StrauB, & Settele, 2005; Ozesmi &
Mitsch, 1997).

How can species distribution models be
interpreted, and to which policy advice
do they lead?

| acknowledge that in many cases we are
constrained by the quality of available data, in
particular for large-extent studies. At the same
time, there is huge pressure from policy to provide
estimates of species’ future distributions (Thuiller
et al., 2005), guide reserve selection (Araljo &
Williams, 2000) or forecast ecosystem impacts of
climate change (Schroter et al., 2005). However, |
believe that many papers reporting on species
distribution have not provided the scientific rigour

to serve science or management. Methodological,
technical and data shortcomings severely constrain
the usefulness of extrapolations, but the most
problematic issue is the unfeasibility of incorporat-
ing genetic flexibility and complex interactions
between organisms into static, statistical models.

Species distribution analyses are no easy game:
they require intimate knowledge of the species, of
the statistics and a lot of thought about the
question to which they are applied. Here, in short,
and in no particular order, are the main thoughts
one should have in mind when reading through a
species distribution study offering advice on spe-
cies management or contributing to the under-
standing of a species’ ecology:

1. Only factors that were investigated can be
interpreted and missing factors may be of over-
ruling importance.

2. Many incorporated environmental parameters
are proxies for some causal ecological mechan-
ism we do not yet understand.

3. Confounded variables require disentangling
before interpretation.

4. Interactions need to be considered as more
important than main effects.

5. Management advice is restricted to the scale of
analysis.

6. Ecosystem function cannot be inferred from
occurrence data.

7. Biotic interactions act at a very small (spatial
and temporal) scale compared to most distri-
bution data.

8. We have (generally) little idea to what extent a
species is able to adjust to new environmental
conditions through either phenotypic plasticity
or evolutionary change.

9. Extrapolated ranges are potential ranges and
contingent on the assumption that limiting
factors remain limiting factors.

10. All analyses are correlative and ideally require
manipulative confirmation. Do not trust the
results if you cannot identify a causal mechanism
behind it. E.g. altitude (an indirect factor sensu
Austin, Nicholls, & Margules, 1990) cannot in
itself affect species occurrence; but the unavail-
ability of forage (resource factor) due to perma-
nent snow cover or permanently frozen soils can.

Overall, the phrasing employed by Guisan and
Thuiller (2005, p. 994) gives the correct emphasis
on the use of species distribution models. They may
serve to ‘‘support appropriate management plans
for species recovery” and ‘‘support conservation
planning and reserve selection”. The emphasis is
on support, rather than guidance.
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Conclusion: How to improve species
distribution forecasts?

| consider the following three steps as vital to a
further development of species distribution model-
based projections. Firstly, we need to identify
where the largest contribution to projection
uncertainty comes from. In other words, which of
the following links in the forecast chain introduce
most variability: quality of raw data, choice and
collinearity of explanatory variables, type of
statistical modelling approach, or regional land-
use and climate change scenarios? Once these more
statistical questions have been addressed, we need
to move forward, beyond statistical sophistication.
A second step is a critical comparison and parallel
construction of static statistical and dynamic
individual-based species distribution models. We
should ask, under which (if any) circumstances can
ecological processes such as biotic interactions and
movement be neglected? And finally, validation of
model projections must play a more prominent
role, especially with data sets from different
time periods becoming available now, but also by
using manipulative field experiments in various
parts of a species’ range to assess which drivers are
acting. Thomas et al. (2004) may well be right with
their forecast of high extinction risks within the
next 50 years. However, it is their considerable
ecological experience, not their models, that | put
my faith in.
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