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ABSTRACT

Aim The species–area relationship (SAR) is a prominent concept for predicting

species richness and biodiversity loss. A key step in defining SARs is to accu-

rately estimate the slope of the relationship, but researchers typically apply only

one global (canonical) slope. We hypothesized that this approach is overly sim-

plistic and investigated how geographically varying determinants of SARs affect

species richness estimates of vascular plants at the global scale.

Location Global.

Methods We used global species richness data for vascular plants from 1032

geographical units varying in size and shape. As possible determinants of geo-

graphical variation in SARs we chose floristic kingdoms and biomes as biogeo-

graphical provinces, and land cover as a surrogate for habitat diversity. Using

simultaneous autoregressive models we fitted SARs to each set of determinants,

compared their ability to predict the observed data and large-scale species rich-

ness patterns, and determined the extent to which varying SARs differed from

the global relationship.

Results Incorporating variation into SARs improved predictions of global spe-

cies richness patterns. The best model, which accounts for variation due to bio-

mes, explained 46.1% of the species richness variation. Moreover, fitting SARs to

biomes produced better results than fitting them to floristic kingdoms, support-

ing the hypothesis that energy availability complements evolutionary history in

generating species richness patterns. Land cover proved to be less important than

biomes, explaining only 36.4% of the variation, possibly owing to the high uncer-

tainty in the data set. The incorporation of second-order interactions of area,

land cover and biomes did not improve the predictive ability of the models.

Main conclusions Our study contributes to a deeper understanding of SARs

and improves the applicability of SARs through regionalization. Future models

should explicitly consider geographically varying determinants of SARs in order

to improve our assessment of the impact of global change scenarios on species

richness patterns.
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INTRODUCTION

The species–area relationship (SAR) is one of the most inten-

sely studied patterns in ecology and has profound importance

for conservation biogeography (Ladle & Whittaker, 2011).

Applications of this concept range from mapping global

species richness patterns (Kier et al., 2005) and estimating

future extinction rates (Thomas et al., 2004; Sala et al., 2006;

van Vuuren et al., 2006) to supporting conservation decision-

making (Ladle & Whittaker, 2011). The theory underlying
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SARs is fundamental to both our understanding of biodiversity

and our ability to conserve it (Turner & Tjørve, 2005; Drakare

et al., 2006; Dengler, 2009), yet questions of how various fac-

tors at the global scale influence the parameterization of SARs

are not completely understood (Turner & Tjørve, 2005; Whit-

taker & Fern�andez-Palacios, 2007).

The most prominent way to relate species richness (S) to

sampling area (A) is to apply the power law model (Arrhenius,

1921), because it has been shown to describe SARs appropri-

ately under most conditions (Connor & McCoy, 1979; Den-

gler, 2009; Triantis et al., 2012). The equation takes the form of:

S ¼ c � Az (1)

or its linear function in the log–log space:

logðSÞ ¼ logðcÞ þ z logðAÞ: (2)

The intercept c can be interpreted as the average number

of species per unit area (e.g. A = 1), and z describes the

slope of the log–log relationship. Regardless of which mathe-

matical model is used to construct the SAR curve, accurate

estimation of the slope is a key step in defining the relation-

ship. Although a wide range of z-values has been reported

(e.g. Drakare et al., 2006), a restricted range of values has

been used for extinction estimates, typically ranging from

z = 0.15 to z = 0.25 or 0.35 (e.g. Pimm et al., 1995; Brooks

et al., 2002; Thomas et al., 2004). The use of these restricted

values is based on several theoretical assumptions (Preston,

1962; Harte & Kitzes, 2012), but is not empirically validated.

In fact, the z-values of SARs strongly depend on the pro-

cesses establishing species richness and composition patterns,

and thus should reflect the spatial and temporal scale of the

studied system (Rosenzweig, 1995; Turner & Tjørve, 2005).

Three determinants might explain the slope for species

richness versus area (Rosenzweig, 1995; Turner & Tjørve,

2005). First, larger areas harbour more individuals, leading

to more species being recorded (sampling artefact); second,

larger areas cover more types of habitat and land cover (hab-

itat diversity); and finally, larger areas contain more biogeo-

graphical provinces (evolutionary independence). However,

factors determining SARs might differ among spatial scales

(Shmida & Wilson, 1985; Rosenzweig, 1995; Turner &

Tjørve, 2005; Triantis et al., 2012). While the sampling arte-

fact is relevant at small spatial scales (100–104 m²), Turner &
Tjørve (2005) suggest that habitat diversity influences species

richness at all spatial scales (up to 108 km²) and biogeo-

graphical provinces at large scales (104–108 km²).
At the macroscale, not only area but also evolutionary his-

tory and ecosystem productivity are the most important corre-

lates of species richness patterns (Blackburn & Gaston, 2003;

Storch et al., 2007; Kisel et al., 2011). Because area is already

captured in SAR models we need to account for its interactions

with history and productivity. Specifically, history and produc-

tivity drive differences in diversification rates, i.e. the rates at

which speciation, immigration and extinction operate, now

and in the past (Rosenzweig, 1995; and see Storch et al., 2007;

for review). For rates of speciation and extinction two general

explanations are commonly suggested (Mittelbach et al., 2007;

Kisel et al., 2011): time for speciation and net rate of diversifi-

cation. For instance, historical processes such as plate tecton-

ics, glaciation and climate change set the scene for speciation

processes (Blackburn & Gaston, 2003). Furthermore, higher

productivity may lead to higher speciation rates and/or lower

extinction rates, and thus to the latitudinal decline of species

richness (Mittelbach et al., 2007; Storch et al., 2007). In the

more recent past and at a smaller scale, humans started to

transform land and, hence, established new environmental

conditions and habitats promoting extinction and immigra-

tion of non-native species. Thus land use might also influence

SARs.

Several studies have attempted to incorporate variation

into SAR models at the global scale using surrogates for the

mechanisms behind species richness variation (Rosenzweig,

1995; Kier et al., 2005; van Vuuren et al., 2006). Their results

suggest that biogeographical units, in particular biomes or

floristic kingdoms, are likely to influence SAR parameteriza-

tion for vascular plants. However, a quantitative comparison

with a global SAR regarding predictive accuracy is needed.

Floristic kingdoms represent regions of similar evolutionary

history. They share a similar history of isolation and evolu-

tion (because of climate change and catastrophes) that may

have caused differences in diversification rates and, hence,

variation in SARs. Biomes are generally defined as major

types of natural vegetation originating from a particular mix

of climatic and edaphic conditions (Olson & Dinerstein,

1998; Ladle & Whittaker, 2011). Because biomes vary widely

in per-area measurements of plant biomass and net primary

productivity (Millennium Ecosystem Assessment, 2005), they

may serve as a surrogate for ecosystem productivity. Further,

evolutionary history and ecosystem productivity influence

SARs for vertebrate taxa (Hurlbert & Jetz, 2010; Kisel et al.,

2011). However, biomes also have an origin in time and

their characteristics depend on both ecological and phyloge-

netic constraints (Pennington et al., 2004). On that account,

the hypotheses of evolutionary history and ecosystem pro-

ductivity as determinants of differing SARs are not mutually

exclusive (Qian & Ricklefs, 2004).

Previous studies that account for geographical variation of

habitat or land cover in SARs have typically focused on rela-

tively limited spatial extents. For example, the meta-analysis

of Drakare et al. (2006) and the review by Watling & Don-

nelly (2006) reveal that SAR slopes strongly reflect the latitu-

dinal gradient of species diversity and greatly differ among

different habitats and matrix types. These syntheses of small-

scale studies underpin the hypothesis that spatial variation of

habitat diversity and land cover affects SARs, but our under-

standing of how these determinants influence the estimation

of SARs at the global scale is limited. Land cover is deter-

mined by the physical and biological cover of the land sur-

face, which in turn depends on climate, topography and soil,

and partly on human land use. Thus, land cover is closely

related to biome classification and serves as a proxy for

land use, which may be primarily responsible for global
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biodiversity loss (Sala et al., 2000). Previous studies aiming

to estimate future species loss consider the effects of land

cover only in the form of habitat loss caused by agricultural

expansion, thereby assuming zero species after conversion

(Sala et al., 2006; van Vuuren et al., 2006). However, land-

scape transformation does not imply that habitat becomes

completely inhospitable, but rather that there will be taxon-

specific changes in the slope of SARs (Koh & Ghazoul, 2010).

The aim of this study was to identify the importance of dif-

ferent drivers in determining SARs of vascular plants at large

scales (101 to 6 9 105 km²). Using species richness data of vas-
cular plants in 1032 geographical units differing in size and

shape (Kreft & Jetz, 2007), we examined the effects of floristic

kingdoms, biomes and land cover as determinants of SAR vari-

ation. In contrast to other studies that consider habitat hetero-

geneity by accounting for the number of different habitats (the

choros model; Triantis et al., 2003), we adopted a novel

approach of fitting SARs to habitat classes separately similar

but not identical to the habitat–unit model of Buckley (1982).

Moreover, we considered interactions between biomes and

land cover. We hypothesized that geographical regionalization

of SARs considerably improves the prediction of global species

richness patterns and their applicability. Specifically, both

over- and underestimation of species richness would be

reduced compared to a single global relationship. Further-

more, since biomes capture both evolutionary history and eco-

system productivity (Pennington et al., 2004), biomes should

better explain species richness than do floristic kingdoms.

Finally, we tested whether incorporating land cover and human

uses, which comprise small-scale properties other than ecosys-

tem productivity (see above), leads to improved predictions,

and whether land-cover effects on SARs vary between biomes.

MATERIALS AND METHODS

Species data

We used global species richness data of vascular plants derived

from floras, checklists and other literature sources for 1032

geographical units representing natural or administrative

units, such as countries or protected areas (Fig. 1; for details

see Kier et al., 2005; Kreft & Jetz, 2007). We excluded oceanic

islands because isolation and geology dominate species rich-

ness patterns there (Rosenzweig, 1995; Whittaker & Fern�an-

dez-Palacios, 2007; Kreft et al., 2008). The sampling units in

our data set differed substantially in size and shape (areas ran-

ged between 13.5 km² and 575,440 km²). Thus, we based our

analysis on type IV SAR curves, derived from independent

units (cf. Scheiner, 2003). Although large gaps existed in the

data (e.g. Brazilian Amazon), the data set covered almost the

full spectrum of global variation in abiotic conditions.

Environmental data

In order to examine the impact of the driving factors behind

species richness variation reflected in SARs, we examined

four determinants. First, we chose floristic kingdoms (Good,

1974), which represent regions of similar evolutionary his-

tory in which species originate by speciation. In total, there

are six floristic kingdoms (Fig. 2a). Second, we examined the

species–area effect in biomes, which are characterized by

similar environmental conditions and unique collections of

ecosystems and species assemblages (Olson & Dinerstein,

1998). Olson & Dinerstein (1998) defined 14 biomes

(Fig. 2b). However, we excluded mangroves from our

analysis owing to the lack of sampling units in this biome.

Third, in order to identify the effect of different land-

cover classes on SARs, we chose the HYDE 2.0 database

(Goldewijk, 2001), which consists of 16 land-cover classes

(Fig. 2c) and provides models of past, present and future

land cover. Two of these land-cover classes describe the use

of land by humans (i.e. cultivated land and pastures). How-

ever, the species richness data used in our study did not rep-

resent a snapshot of a single year but rather incorporated

knowledge that was accumulated over decades or centuries.

Although species data were collected from areas with mini-

mal human involvement, humans have had an impact on the

world’s land cover for hundreds of years, and the human

presence should not be completely disregarded. Thus, we

decided to test land-cover data from three different time

steps: 1700 (i.e. before the onset of industrialization and

large-scale transformation of agricultural areas), 1800 and

1900. Owing to scarce species richness data in regions cov-

ered with ice, tundra and wooded tundra, we decided to

exclude these classes from the analysis, resulting in a total of

13 land-cover classes.

Fourth, because of regional variation in species richness

(e.g. the latitudinal gradient), we hypothesized that the

effects of area per land cover class also vary among regions.

We chose biomes to test for this regional variation. However,

biomes and land cover are reasonably well correlated in the

sense that in most biomes only a subset of land-cover classes

appears. For this reason, and in order to reduce degrees of

freedom, we simplified biomes and land-cover classification

by aggregating similar classes. Using regression tree analysis

(De’ath & Fabricius, 2000), biomes were aggregated with

respect to the ratio of log(species richness) per log(area). We

divided the data into four regions of aggregated biomes to

ensure that each had enough data for the analysis and the

HYDE 2.0 land-cover classes were reorganized into four clas-

ses: forest, grassland, cropland, ice and deserts (see Appendix

S1 in Supporting Information for more details). We assigned

each sampling unit to the prevailing floristic kingdom; how-

ever, we computed the percentage coverage for each biome

and land-cover class per sampling unit.

Statistical analyses

We log10-transformed species richness and area to linearize

the power-law relationship and allow the use of simple

linear regressions. The power law is generally the most

appropriate for describing SARs (Connor & McCoy, 1979;
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Dengler, 2009; Triantis et al., 2012) and its parameters are

comparable among the majority of SAR studies (Dengler,

2009). In addition to the power law, we also tested the

logarithmic model (Gleason, 1922). In line with the litera-

ture (Connor & McCoy, 1979; Dengler, 2009; Triantis

et al., 2012), this model had worse fits and is discussed

only in Appendix S2.

Because spatial autocorrelation was present in the data,

we employed simultaneous autoregressive models assuming

spatial autocorrelation in the error term and using the R

2.15.2 statistical analysis software package (R Development

Core Team, 2012), function spautolm in the package spdep

(Bivand et al., 2012). This method includes a second error

term that explicitly models spatial dependence in the resid-

uals (Dormann et al., 2007; Bivand et al., 2008) and has

been shown to be a robust method to account for spatial

autocorrelation (Kissling & Carl, 2008; Beale et al., 2010).

We defined a weighted neighbourhood structure that best

modelled the spatial structure in the residuals, thus mini-

mizing spatial autocorrelation in the independent error

term (cf. Kissling & Carl, 2008). Based on minimization of

the Akaike information criterion (AIC), which in our case

also minimized residual spatial autocorrelation (RSA), we

concluded that a neighbourhood distance of 700 km

accounted best for the spatial structure in the data

(Appendix S3: Fig. S3.1).

We compared nine different models. The first model fitted

the species–area effect globally, and the second and third

model fitted the effect into biogeographical regions sepa-

rately. We considered biogeographical regions of floristic

kingdoms as dummy variables while considering biomes as

percentage cover of sampling units. Three models considered

the species–area effect per land-cover class for the three dif-

ferent time steps. Analogous to biomes, all land-cover classes

were calculated as percentage cover of sampling units and

treated as additional predictors. We performed weighted

regressions between area and region, and between area and

land cover, and included first-order interactions. Finally,

three models fitted the SARs to aggregated land-cover classes

and aggregated biomes, again one for each of the three time

steps. Here, we fitted both first-order interactions between

area and region, and between area and land cover, and we

fitted second-order interactions between area, regions and

land-cover classes. We selected the best model for each set of

variables based on the lowest AIC.

We ranked the resulting models by AIC because the num-

ber of predictors varied greatly between each model. We

report DAIC (i.e. the difference between model AIC and the

minimum AIC relating to the best model) and AIC weights

(Burnham & Anderson, 2002). To account for overfitting, we

compared the ability of each model to predict independent

data (i.e. not used during the fitting process) via 10-fold

cross-validation (see Harrell, 2001).

For the purpose of comparing the predictive ability of

the various models, we plotted observed versus predicted

log(species richness) and the histogram of the prediction

errors [i.e. log10(pred) � log10(obs)]. Prediction errors are

similar to the residuals of the SAR model but do not

account for spatial autocorrelation. Prediction errors can

be interpreted as the percentage of over- or underestima-

tion in log-space, where positive values indicate overesti-

mation and negative values indicate underestimation of the

observed richness.

To determine the extent that various SARs differ from the

global relationship, we plotted the SAR curves and calculated

95% confidence intervals of the model forecast uncertainty

for each SAR (Neter et al., 1996), i.e. the confidence limits

around the mean Yh using the standard deviation of the

forecast:

s2 ¼ MSE� X T
h ðXTXÞ�1Xh

� �
; (3)

where MSE is the mean square error of prediction and X is

the model matrix with intercept and predictor variable area.

We considered differences compared to the global SAR to

be significant when the corresponding 95% confidence

intervals did not intersect with the 95% confidence intervals

15000

1500

80

(b)(a)

Figure 1 (a) Geographical distribution of richness data for vascular plants used in the analysis (n = 1032, after Kreft & Jetz, 2007).

Dots represent centres of geographical units. Geographical units differ in size, and species counts have not been standardized; (b)
observed relationship of log10(species richness) against log10(area).
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Neotropic
Nearctic
Australian

Capensis
Palaeotropic
Palaearctic

Tropical and subtropical moist broadleaf forests
Tropical and subtropical dry broadleaf forests
Tropical and subtropical coniferous forests
Temperate broadleaf and mixed forests
Temperate coniferous forests
Boreal forests/taiga
Tropical and subtropical grasslands, savannas, and shrublands
Temperate grasslands, savannas, and shrublands

Flooded grasslands and savannas
Montane grasslands and shrublands
Tundra
Mediterranean forests, woodlands, and scrub
Deserts and xeric shrublands
Mangroves
Lakes and ice 

Cultivated land
Pastures/Land used for grazing
Ice
Tundra

Wooded tundra
Boreal forest
Cool conifer forest
Temperate mixed forest

Temperate deciduous forest
Warm mixed forest
Grassland/Steppe
Hot desert

Scrubland
Savanna
Tropical woodland
Tropical forest

(a)

(b)

(c)

Figure 2 Maps of potential factors causing variation of species–area relationships (SARs) for vascular plants analysed in this study: (a)

floristic kingdoms (following Good, 1974), (b) biomes (following Olson & Dinerstein, 1998), (c) modelled land cover of the year 1700
(based on data from the HYDE 2.0 database; Goldewijk, 2001). The maps are projected using the Robinson projection.
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of the global model over the entire range of the sampling

area.

Owing to our spatially explicit modelling approach,

parameter estimates depended on the spatial arrangement of

the fitted data. In order to quantify the impact of spatial

configuration of samples on parameter estimates, we

repeated the fitting process 1000 times using bootstrap re-

sampling from the original data. Finally, we compared the

means and standard errors of parameter estimates using the

entire data set and the bootstrap samples to fit model

parameters.

In addition to an overall improvement of different SARs

compared to the global SAR (explained as AIC and R²), we
investigated model performance in a spatially explicit man-

ner. First, we applied different SAR models to predict the

species richness pattern based on a 100 km 9 100 km grid.

Second, we calculated and plotted the prediction errors based

on the raw data points.

RESULTS

During model selection, none of the biogeographical regions,

floristic kingdoms and biomes was excluded. This consider-

ation means that separately fitting the SAR parameters for

each region improved model performance, i.e. exclusion of a

particular effect would have led to a higher AIC. First-order

interactions with area in the land-cover model (LC) were

selected for the land-cover classes cultivated land, boreal and

cool conifer forest, warm mixed forest, scrubland, savanna

and tropical forest. The model that fitted the area effect to

aggregated land-cover classes and biomes (LCcombstrat)

included all variables (interactions between regions and the

land-cover class ‘ice and desert’ were not modelled).

Apart from model improvement indicated by lower AIC

values, we found evidence that models with data separately

fitted to each biogeographical region considerably improved

the explanation of species richness patterns (R², Table 1).

The global SAR explained only 6% of the variability in spe-

cies richness; however, SARs based on biomes explained

46.1%. Hence, SARs fitted to biomes performed better than

those fitted to floristic kingdoms (16.2%) or land cover

(36.4%). However, combining biomes and land cover in sec-

ond-order interactions did not considerably outperform

models with only first-order interactions. Because models

built using land cover for the year 1700 or biomes as predic-

tors produced the best results, we limited the following

report to their investigation.

We found that SARs differ in their intercept and slope

(Fig. 3, Table 2). Thus, modelling according to one global

relationship would lead to over- or underestimation of spe-

cies richness, depending on the compositional characteriza-

tions of the area of interest. In the biome model, intercepts

of the SARs ranged between 19.4 species per km² in the

flooded grasslands and savannas biome and 364.8 species per

km² in the boreal forests/taiga biome. Note that these inter-

cepts resulted from extrapolation beyond the ranges of poly-

gon area in our species data (Fig. 3a). The boreal forest/taiga

biome also had the lowest slope estimate (0.078), which indi-

cates little effect of area. The maximum slope of 0.454 was

found in the tropical and subtropical coniferous forests

biome.

Land-cover specific SARs also displayed a large range in

their parameters (Fig. 3, Table 2). The intercepts in the LC

model ranged from 64.7 species per km² for deserts to 578.1

species per km² for cool conifer forests, which also have the

shallowest slope (0.065). For some land-cover classes, we did

not find significant interactions with area, and the area effect

was reduced to 0.177 to match the global slope of the LC

model.

Within the range of polygon area, biomes of deserts, tun-

dra and boreal forest/taiga contained fewer species, while

tropical, mediterranean and temperate forest biomes con-

tained far more species than estimated by the global SAR

(Fig. 3). Land-cover classes in the LC model behaved simi-

larly to the corresponding biomes: the desert contained the

lowest number of species, and the tropical forest contained

the highest number of species.

The specific differences in the biome- and land-cover

SAR curves versus the global SAR curve were significant

within the given area range in all cases except for the

biome tropical and subtropical dry broadleaf forests

(Appendix S3: Fig. S3.3). Outside a particular area range,

species richness estimates from the global SAR became

worse. Furthermore, most SAR curves showed significant

differences from the global SAR curve over the entire area

range. Thus, the application of a global SAR for these bio-

mes and land-cover classes resulted in consistent and partly

substantial over- or underestimation across the entire area

range.

Table 1 Species–area relationship (SAR) models for vascular

plants compared by degrees of freedom, DAIC values with
respect to the best model, AIC weights and mean predictive

ability R² computed by 10-fold cross-validation. Variation of
SARs improves prediction of the species richness pattern. Model

names refer to determinants used to account for variation in
SARs: global SAR, varying SARs by floristic kingdoms, biomes,

land cover for baseline years 1700, 1800 and 1900, and
combined land-cover classes and aggregated biomes for baseline

years 1700, 1800 and 1900.

Model d.f. DAIC AIC weights R²

Global 1 220.41 0.000 0.059

Floristic Kingdoms 11 184.87 0.000 0.162

Biomes 25 0.00 1.000 0.461

LC1700 20 36.72 0.000 0.364

LC1800 19 48.40 0.000 0.348

LC1900 16 50.49 0.000 0.346

LC1700combstrat 30 32.23 0.000 0.377

LC1800combstrat 30 33.91 0.000 0.371

LC1900combstrat 30 43.14 0.000 0.372

AIC, Akaike information criterion.
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Figure 3 Differences in species–area relationship (SAR) curves for vascular plants among (a) biomes and (b) land-cover classes. Axes

delineate ranges of original data (see Fig. 1b). The thick black line indicates the global relationship. The lengths of SAR curves reflect
the range sizes of sampling units used to fit the relationship. Note that the SAR curve for land-cover grassland/steppe is not visible

because it differs only marginally from the global SAR.

Table 2 Differences in species–area relationship (SAR) parameters for vascular plants for three models: the intercept log10(c) and slope

z of SARs in log–log space (parameters refer to equations (1) and (2)), and the number of samples (n) used to fit effects of predictors,
i.e. the number of sampling units that contain a particular biome or land-cover class. Equal parameter values imply the exclusion of

interactions during model selection. The remaining columns provide information about the species richness estimates per 10,000 km²
and the range sizes of sampling units used to fit the relationship. Area of sampling units was measured in km².

n log10(c) z

Species richness

per 10,000 km² min(range) max(range)

Global model

Global 1032 2.296 0.179 1028.016 13.5 575439.9

Biome model

Tropical and subtropical moist broadleaf forests 121 2.522 0.212 2344.229 18.2 301995.2

Tropical and subtropical dry broadleaf forests 140 2.562 0.126 1164.126 1349.0 346736.9

Tropical and subtropical coniferous forests 36 1.537 0.454 2254.239 13.5 575439.9

Temperate broadleaf and mixed forests 24 2.468 0.161 1294.196 1096.5 141253.8

Temperate coniferous forests 313 2.562 0.127 1174.898 26.9 478630.1

Boreal forests/taiga 398 2.562 0.078 748.170 112.2 501187.2

Tropical and subtropical grasslands, savannas, and shrublands 1032 1.765 0.310 1011.579 13.5 575439.9

Temperate grasslands, savannas, and shrublands 1032 2.475 0.144 1124.605 13.5 575439.9

Flooded grasslands and savannas 1032 1.287 0.370 584.790 13.5 575439.9

Montane grasslands and shrublands 1032 2.260 0.215 1318.257 13.5 575439.9

Tundra 1032 1.634 0.250 430.527 13.5 575439.9

Mediterranean forests, woodlands, and scrub or sclerophyll forests 1032 2.080 0.280 1584.893 13.5 575439.9

Deserts and xeric shrublands 1032 1.926 0.205 557.186 13.5 575439.9

Land-cover model

Cultivated land 323 2.102 0.269 1506.607 29.5 478630.1

Pasture/land used for grazing 412 2.480 0.177 1541.700 18.2 478630.1

Boreal forest 186 2.612 0.089 928.966 467.7 489778.8

Cool conifer forest 144 2.762 0.065 1051.962 173.8 489778.8

Temperate mixed forest 231 2.384 0.177 1235.947 44.7 295120.9

Temperate deciduous forest 227 2.402 0.177 1288.250 35.5 478630.1

Warm mixed forest 192 2.087 0.267 1428.894 28.8 478630.1

Grassland/Steppe 258 2.219 0.177 845.279 13.5 575439.9

Hot desert 119 1.811 0.177 330.370 1122.0 575439.9

Scrubland 234 1.816 0.282 879.023 13.5 501187.2

Savanna 222 2.176 0.239 1355.189 29.5 478630.1

Tropical woodland 152 2.501 0.177 1618.080 177.8 478630.1

Tropical forest 154 2.495 0.223 2437.811 26.9 426579.5

Journal of Biogeography 41, 261–273
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After fitting 1000 bootstrap resamples, we found that spa-

tial dependence was of marginal importance for parameter

estimates. We compared parameter estimates from the entire

data set with those of the bootstrap resamples and found

that the means of each parameter estimate were nearly equal

across all samples regardless of spatial configuration, i.e. the

estimates were unbiased and there was no systematic over-

or underestimation. However, confidence intervals of the

error estimates were narrower when the entire data set was

used (Appendix S3: Fig. S3.4).

Varying SARs with biomes or land cover improved predic-

tions of species richness patterns relative to the global SAR

model. Accordingly, world maps of species density at

100 km 9 100 km showed considerably different patterns

(Fig. 4). The global SAR predicted a constant species density

for all cells except coastlines. This result was an artefact of

the data resolution because coastline areas only partially

overlapped the 100 km 9 100 km cells. Biome and land-

cover SARs identified a well-known macroecological pattern,

i.e. the latitudinal gradient (e.g. Ladle & Whittaker, 2011). In

addition, the LC model predicted variation of species

richness also at smaller scales. However, we lacked data to

test the accuracy of the models at finer scales.

Predicting the raw data, both the biome and the LC model

produced smaller prediction errors (maximum 1.12 and min-

imum �0.83, i.e. maximal overestimation of 112% and

underestimation of 83% of observed richness on the log-

scale) and a narrower distribution around zero compared to

the global model (Fig. 4 right column, Fig. 5). Colours in

Fig. 4 right column show localities where improvements were

achieved. Notably, there were three polygons for which the

biome model highly overpredicted the actual species richness

(Fig. 5b, prediction errors of 1.035 to 1.12). These polygons

contained a considerable amount of desert. Apart from these

outliers, the biome model improved predictions across the

entire area (prediction errors ranged from �0.765 to 0.754).

DISCUSSION

We found evidence that the relationship between species

richness and sampled area differs considerably across the

globe. The use of geographically varying SARs not only

improves predictions of species richness but our modelling

approach also allows easy implementation in applied stud-

ies. The number of species in a given area A can be

estimated by summing up species richness estimates for
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Figure 4 Left column: Predictions of vascular plant species richness for 100 km 9 100 km grid cells based on (a) a global species–area
relationship (SAR), or varying SARs by (b) biomes or (c) land cover. Right column: The prediction error (log10(pred)�log10(obs)) for
the corresponding models based on data points from raw data: red for underestimations, blue for overestimations, and green for all the

predictions close to reality (i.e. between �0.2 and +0.2). The maps are projected using the Robinson projection.
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each class of determinants (e.g. floristic kingdoms, biomes,

land cover):

log10S ¼
X

i

ðlog10ci þ zi log10AÞ �%Ri (4)

where i denotes the classes (i.e. ci, zi are SAR parameters),

%Ri is the percentage area covered by the corresponding

class (e.g. biomes), and ∑i%Ri = 1.

Determinants of geographical variation in SARs

We showed that several geographically varying factors help

to explain SARs. First, the total number of species in a study

area depends on its location in addition to its area. Thus, a

small sampling unit in one biome, floristic kingdom or land-

cover type can have more species than a larger unit in a

different biome, floristic kingdom or land-cover type

(Fig. 3). These differences are caused by regional variation in

species density, as reflected in the various intercepts, and by

the increase in species richness per unit area, as reflected in

differing slopes. For instance, the global model almost always

overestimates species richness in particularly species-poor

regions such as the tundra biome, whereas it underestimates

species richness in the biome of tropical and subtropical

moist broadleaf forests (Fig. 3a). Whether species richness in

other biomes such as tropical grasslands, savannas and

shrublands is over- or underestimated depends on the size of

the area of interest.

Second, depending on the location of interest, the global

model under- or overestimates species richness, while region-

specific SARs provide more accurate results. Regarding optimal

regionalization, we conclude that for SAR parameterization

Figure 5 Quantitative analysis of model improvement for species–area predictions for vascular plant richness. Left column: observed

versus predicted richness plot. Outliers in the biome model, to which we referred in the text, are highlighted by the ellipse. Right
column: histogram of absolute prediction errors.
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regions are better distinguished by biomes than by floristic

kingdoms because biomes explained more of the variation in

species richness (46% compared with 16%, cf. Table 1). Thus,

the results suggest that ecosystem productivity and evolution-

ary history, both captured in biomes, determine the patterns

of plant species richness. Future studies using better predictors

and possibly more specific hypotheses can use this proposed

approach to test the role of specific processes in generating

observed richness patterns.

Third, land cover is a less important factor in species rich-

ness variation than biomes (Table 1). Hence, land-use fea-

tures, in addition to ecosystem productivity, do not improve

the ability of models to explain the variation in species

richness. Comparing the different time steps, we conclude that

the SAR model works best for the year 1700. This result sup-

ports the suggestion made by Kier et al. (2005) that the data

reflect native species richness rather than the current situation

including introduced species and recent species extinction.

Moreover, as land cover included additional small-scale prop-

erties such as human land uses (even though the data used are

still relatively coarse, at 100 km 9 100 km), the LC model

predicted a wider range of species richness (Figs 4 & 5). How-

ever, we were not able to independently confirm these predic-

tions because of the lack of raw data for equal area grids.

Although we found that the independent use of biomes and

land cover improved SARs considerably, the models created

using both the aggregated land-cover and biome classes did

not bring additional improvements (Table 1, LCcombstrat

1700–1900). As the number of data points did not permit a

factorial combination of biogeographical regions and land-

cover classes, our combinations may have been suboptimal.

However, an alternative aggregation of land-cover classes pro-

duced less accurate results (data not shown).

Overall, accounting for regional variation in SARs substan-

tially improved the predictive ability of our models (Fig. 4

right column). However, using a regional area defined by

biomes or land cover still did not detect the entire range of

species richness. We show that models mostly overestimate

species richness in higher latitudes and deserts but

underestimate species richness in biodiversity hotspots (sensu

Myers et al., 2000) such as south Central China, Cape Floris-

tic Province, Succulent Karoo, Mesoamerica, western Ecuador

and the Mediterranean Basin. The underestimation could be

due to other factors that more directly influence the degree of

species diversity, such as climatic constraints at smaller scales,

which do not appear in biome or land-cover classification.

The diversity of human-dominated land

Contrary to our expectation, land-cover SAR curves (Fig. 3)

indicate that human transformed landscapes, such as culti-

vated land and grazed pastures, contain a large number of

plant species and show a relatively high increase in species

richness per area compared with SARs of natural vegetation.

In fact, several studies suggest that areas suitable for humans

coincide with areas that are suitable for maintaining a large

number of species (Ara�ujo, 2003; K€uhn et al., 2004). In some

cases, the introduction of human-dominated habitat can also

cause an increase in the species density (e.g. Ara�ujo, 2003;

Desrochers et al., 2011), especially in areas with a long history

of human settlement (e.g. Europe, parts of China and India).

For example, non-native plants are often introduced by

human inhabitants of agricultural regions, and thus increase

the species richness variation. Additionally, smaller losses of

natural habitat (up to a certain threshold) might increase spe-

cies richness because of increased habitat heterogeneity in

otherwise homogeneous natural areas, and thus increase

available habitat for open-habitat species (Desrochers et al.,

2011). However, we need to be cautious with the interpreta-

tion of the SAR curve for cultivated land. As Desrochers et al.

(2011) point out, progressive conversion of natural vegeta-

tion, above a critical threshold, can lead to pronounced and

rapid species loss. Thus, cultivated land potentially increases

species richness only in a mix with natural vegetation,

whereas in monoculture it leads to a drastic decrease.

Uncertainty and scale dependence

In addition to evaluating predictive accuracy of our models,

we identified two major sources of uncertainty. The first is

related to the Linnaean shortfall: species richness data come

from historical sources and may be either incomplete or fail

to reflect current knowledge (Ladle & Whittaker, 2011). The

second source of uncertainty concerns the HYDE 2.0 land-

cover data set, which estimates past distributions of main

land-cover classes based on past population densities, FAO

statistics, and several assumptions for cropland and pasture

allocation (Goldewijk, 2001). Compared with other model-

ling approaches, the HYDE database predicts a later start

and slower development of anthropogenic land use (Gaillard

et al., 2010).

Another issue is the nature of the geographical units used

to compile species–area data and the distribution of samples.

The geographical units used in our study represent a mixture

of units delineated by vegetation and geopolitical units. For

example, samples of units delineated by vegetation (e.g. pro-

tected areas) might have been less diverse in habitats because

they were a priori restricted to a set of habitats. Biological

interactions with adjacent areas may be reduced due to the

surrounding matrix (Turner & Tjørve, 2005). In contrast,

administrative units (e.g. countries) are likely to finely parti-

tion large biotically homogeneous regions in the temperate

zone while agglomerating smaller biotically heterogeneous

regions in the tropical zone (cf. Kisel et al., 2011). As we

account for the percentages of biomes and land cover, we do

not expect the heterogeneous origin of our units to bias the

results. Regarding the distribution of our samples, the Ama-

zon Basin is completely missing, while Europe is over-repre-

sented. The lack of data in the Amazon Basin might affect

the results for SARs of the (sub)tropical moist broadleaf for-

est biome and the tropical forest land cover. We expect that

having more data for the Amazon Basin would result in
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higher c- and/or higher z-values. However, the over-repre-

sentativeness of Europe should have an effect only on the

model uncertainty: we expect the 95% confidence interval to

be narrower due to more data.

As the determinants of SARs vary with scale (Rosenzweig,

1995; Turner & Tjørve, 2005), we strongly recommend

against extrapolating our results, particularly to smaller scales.

Obviously, species richness extrapolated to 1 km² is in some

cases an order of magnitude or more off reality. For instance,

richness estimates for the flooded grasslands and savannas

biome are far too low (cf. Schmiedel et al., 2010); those of

the boreal forest/taiga biome far too high. Hence, our results

indicate that in boreal forest/taiga biome the z-values below

the fitted range must become steeper and in the flooded

grasslands and savannas biome they must become flatter.

Therefore, the c-values, while being the parameters of the best

fitting function, have no ecological meaning. Although the

reason for scale-dependency of z-values remains unclear

(Crawley & Harral, 2001; Wilson et al., 2012), population

dynamics (e.g. birth, death, dispersal rates of individuals and

interactions with other populations) could create spatial

patterns of species richness (Crawley & Harral, 2001).

The fact that different biome- and land-cover-specific SARs

intersect further illustrates the strong scale-dependency of

species richness patterns. This has important implications for

ranking of areas in conservation prioritization. For instance,

the world records for highest species richness of vascular

plants at the scale of 50 m² or less are reported from grass-

land systems, while at coarser spatial grains tropical lowland

rain forests are clearly more diverse (Wilson et al., 2012).

Expanding the models

Our models can be further expanded by evaluating the con-

tribution of other variables related to environmental hetero-

geneity within sampling units. This proposal is also

applicable for predicting species loss due to global change

using SAR models. For instance, Koh & Ghazoul (2010)

highlight the importance of considering the effects of

landscape matrix when estimating species loss based on

SARs. They argue that landscape transformation does not

imply that a habitat becomes completely inhospitable but

rather changes the number of species supported in a taxon-

specific fashion. So far, these improved models have only

been applied to selected taxa and small regions. With this

study, by including habitat composition expressed as a per-

centage of biomes or land cover, we take a first step towards

a matrix-calibrated SAR model for vascular plants. Develop-

ing these models further would enable us to quantify the

impact and trade-offs of land-use effects on biodiversity

between different plausible land-use scenarios.

CONCLUSIONS

Our study contributes to a deeper understanding of species–

area relationships and global patterns of species richness.

Moreover, it improves the applicability of SARs through geo-

graphical regionalization. This is particularly important for

the application of SARs in conservation biogeography.

Within this discipline, global analyses are becoming increas-

ingly important, in order to assess the effects of the large-

scale environmental transformation on species richness pat-

terns.
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