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Abstract: The basic information necessary for biogeographical analysis is the geographical location appended to the data contained in 

biological databases. Reliability of analyses thus crucially depends on the quality of the spatial information available. In the present 

study we build on a database of vascular plants of West Africa (Ivory Coast, Burkina Faso, Benin), containing 53,205 georeferenced 

observations distributed over 2,931 collection localities. We propose a methodology to quantify the quality of the database through a 

series of spatial analyses of spatial configuration of the collection localities, their spatial and environmental bias and inventory com-

pleteness. The spatial configuration of the database followed a highly clustered pattern and was strongly biased with respect to the dis-

tance to cities, the coast, rivers, roads and protected areas. The same biased pattern was found in relation to several environmental fac-

tors. Inventory completeness was calculated by estimating the total number of species based on two non-parametric estimates (first-

order Jackknife and Bootstrap) and at different grid cell sizes. At the highest resolution (100 km²) only 5.5% of the cells contained a 

near-complete (> 80% of Jackknife estimates) species inventory. The percentage of near-complete cells increased as the resolution of 

analysis decreased. Results of all analyses were integrated into a new index (Gap Selection Index) that serves to guiding future field 

work campaigns and as cautionary criterion for the uncertainties related to biogeographical application based on the current database. 
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Introduction 

Biogeographical studies aim at under-

standing how living organisms are spa-

tially distributed, which environmental 

and biotic parameters influence their dis-

tribution and how this pattern changes 

over time (Brown & Lomolino 1998). The 

main source of information for such stud-

ies is contained in biological databases, 

specifically lists of species names and 

their georeferenced locations. Based on 

this information, spatial biodiversity pat-

terns can be investigated from local to 

global scales (Brown & Maurer 1989). 

Therefore, the accuracy of biogeographi-

cal analyses heavily depends on the qual-

ity of the spatial information recorded in 

biological databases. 

Spatial quality in databases refers spe-

cifically to the degree of spatial bias or 

clustering shown by the location of col-

lection localities (Whittaker et al. 2005), 

for example towards easily accessible lo-

cations (Nelson et al. 1990, Funk & 

Richardson 2002), conservation areas 

(Reddy & Dávalos 2003), “diversity hot-

spots” (Dennis & Thomas 2000) and even 

the place of residence of biologists 

(Freitag et al. 1998). This is partly due to 

the fact that many biological databases are 

the result of the combination of different 

heterogeneous data sources (e.g. Küper et 

al. 2006), each source having its own in-

dependent goals and focus areas. Typical 

information sources are inventories, her-

barium and museum collections, atlases 

and multiple field-based relevés (Za-

niewski et al. 2002). One consequence of 

employing biased data to model the dis-

tribution of species or communities might 

be an erroneous description of real distri-

bution patterns, representing instead the 

distribution and patterns of sampling ef-

fort and/or collection intensity (Williams 

et al. 2002, Phillips et al. 2009). Likewise, 

description of species niches could be 

mis-estimated if the collection records did 

not sample the whole environmental gra-

dient where a particular species can exist 

(Raes & ter Steege 2007, Hortal et al. 

2008). In addition, biased data can have a 

negative influence on the performance of 

predictive modelling techniques (Wolma-

rans et al. 2010). Given these potential 

problems, analysis of the amount and na-

ture of geographical bias in a biological 

database should be an obligatory step 

when evaluating the quality of biological 

databases (Romo et al. 2006). 

The quality of a biological database can 

also be evaluated in terms of its floristic 

completeness. Thereby one can assess 

how representative the database is in 

characterizing a specific aspect of biodi-

versity. Species richness (i.e. the number 

of species) is the most widely employed 

index to describe the diversity of an area 

(Whittaker et al. 2001) and is one of the 

main criteria to define important areas for 

conservation (Myers et al. 2000). Hence, 

decisions for conservation of biodiversity 

may be inaccurate when based on incom-

plete information. 
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Table 1: Analysis of species richness and completeness estimates. Richness observed is the total number of species counted 

in each of the grouping factors. Richness estimates were calculated by using two non-parametric estimation techniques (i.e. 

First-order Jackknife and Bootstrap). Completeness was calculated by dividing richness observed by richness estimates. 

Grouping 

Factors 

Area 

(km²) 

N. Collection 

localities 

Mean 

Density 

Maximum 

Density 

Richness 

observed 

Richness estimates Completeness 

      Jackknife Bootstrap Jackknife Bootstrap 

Study Area 730,600 2,931 0.40 159 4,587 5409 4989 0.85 0.92 

Ivory Coast 330,300 876 0.27 7 3,931 4601 4273 0.85 0.92 

Burkina Faso 278,800 1,731 0.62 159 1,610 2141 1846 0.75 0.87 

Benin 121,500 324 0.27 103 699 854 775 0.82 0.90 

 

 

It has been shown that the total number 

of species observed is always less than the 

true number of species, and hence a nega-

tive bias estimator (Walther & Moore 

2005: Fig. 2). For example, Palmer (1990) 

argued that there will always be species 

present in a sample plot that are not pre-

sent in the sampled subplots. This may be 

especially the case for biogeographical 

studies at regional and even at local 

scales, where a complete sampling 

scheme covering the whole study area is 

impractical (Archaux 2006). 

Several different methods exist to esti-

mate the total number of species in a cer-

tain area based on a restricted number of 

samples. Among them, non-parametric 

techniques (e.g. first- and second-order 

Jackknife, Bootstrap) have been widely 

used and have constantly outperformed 

other techniques, such as species-

accumulation curves (e.g. Walther & 

Martin 2001). By comparing the observed 

against the estimated number of species, 

different indices can be calculated to de-

scribe the completeness and representa-

tiveness of biodiversity information (So-

berón et al. 2000; 2007; Soria-Auza & 

Kessler 2008). One common approach is 

to stratify the area based on grouping fac-

tors and then examine species count com-

pleteness in each of them. For example, 

Parnell et al. (2003) used vegetation 

classes, forest and non-forest areas, coun-

try political divisions and grid cells to 

identify which areas have received most 

research effort and therefore possess a 

more complete biological inventory.  

Guidelines for land-use management 

for plant diversity usually originate from 

analysis of species distributions and eco-

systems health at local scales (Colwell & 

Coddington 1994). But the scale at which 

complete information is available gener-

ally contrasts with this need. As an exam-

ple, Soberón et al. (2007), in a study 

comparing different spatial scales, found 

the percentage of areas without informa-

tion to increase with decreasing spatial 

resolution. Multi-scale analysis may 

therefore help to identify the scale at 

which the data is best suited for analysis. 

One of the goals of analysing bias, 

completeness and the effect of spatial 

scale on biological databases is to answer 

the questions whether the available in-

formation in biological databases is suffi-

cient for the biogeographical research 

questions at hand, or how much additional 

effort still needs to be invested, and 

where. 

Over the last nine years, researchers 

from different institutions and countries 

have compiled a biological database con-

sisting of georeferenced locations of vas-

cular plants in West Africa. The aim of 

the present study is to quantify the quality 

of this biological database in terms of 1) 

the spatial bias in the distribution of col-

lection localities, 2) the causes or origins 

of bias in the location of collection locali-

ties and 3) the floristic completeness of 

the database and how it varies at different 

scales. A final step will be the integration 

of all these analyses into a Gap Selection 

Index (GSI) that serves as an identifica-

tion of areas with missing information and 

where additional sampling will improve 

spatial coverage of the database, envi-

ronmental representativeness and floristic 

completeness. 

Methods 

Study area 

The study area encompasses 730,600 km² 

in the countries included as part of the 

BIOTA project transect in West Africa 

(i.e. Ivory Coast, Burkina Faso and Benin; 

Figure 1). The terrain is generally flat 

with a mean elevation of 277 m a.s.l. 

However, some mountainous areas in 

western Ivory Coast reach an altitude of 

1,500 m a.s.l. 

The study area is characterized by a 

climatic North-East/South-West gradient. 

Annual mean temperature ranges from 

29.6 °C in the north part of the study area 

in the Sahelian region to around 18.8 °C 

in southwestern Ivory Coast. Total annual 

precipitation shows the opposite gradient: 

it ranges from 300 mm per year in the 

North to more than 2600 mm per year in 

the South-West. 

Plant species database 

The database used in this study is the re-

sult of the compilation of several different 

heterogeneous sources. Data for Burkina 

Faso includes vegetation data (Hahn 

1996, Kéré 1996, Küppers 1996, Böhm 

1998, Denschlag 1998, Ataholo 2001, 

Krohmer 2004, Schmidt 2006) archived in 

the West African Vegetation Database 

(www.westafricanvegetation.org; GIVD-

ID AF-00-001; see Janßen et al. 2011, 

Schmidt et al. 2012) and specimen data 

from the Herbarium Senckenbergianum 

(FR) and the Ouagadougou University 

Herbarium (OUA). This database has 

been described in detail in Schmidt et al. 

(2005, 2010a, 2010b). The database cov-

ering Ivory Coast is based on herbarium 

specimens collected since 1900 (described 

in Aké Assi 2001, 2002) and data col-

lected in the Botanical Garden of Geneva 

as part of the SIG-Ivoire project (Chate-

lain et al. 2001). Given the heterogeneity 

of methodologies and spatial accuracies 

used to collect the data, the final database 

was filtered to select the records at a 

minimal spatial accuracy of 100 km² (10 

km × 10 km pixels). At this resolution 

most of the information from all sources 

can be utilized for further analysis. 

The final database consisted of a total 

of 53,205 observations distributed over 

2,931 collection localities (Fig. 1, Table 

1). Collection localities are relevés (field 

sampling collections) and georeferenced 

herbarium collections. The data comprise 

a total of 4,587 plant species belonging to 

1,443 genera and 219 families. 
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Environmental data 

Table 2 shows the list of environmental 

data used to evaluate the causes of bias in 

the data and to check for over- and under-

represented environmental conditions. All 

original layers were prepared and proc-

essed using the geographical information 

system GRASS, Version 6.3 (GRASS 

Development Team 2008). All layers 

were transformed to UTM coordinates 

(zone 30N, datum WGS84), scaled to 100 

km² to match the minimal spatial accu-

racy of the species collections database 

and clipped to match the study area. 

The climatic data were extracted from 

the WORLDCLIM database (Hijmans et 

al. 2005). The data were generated 

through interpolation of average monthly 

climatic data from weather stations 

around the world. The elevation layer was 

also extracted from the WORLDCLIM 

database and was included into the geo-

graphical information system SAGA 

(SAGA Development Team 2008) to de-

rive the wetness index variable. Elevation 

variance was computed by calculating the 

variance of the elevation values using a 9 

× 9 cell moving window. 

Statistical analysis 

All analysis were carried out using the 

statistical software R (R Development 

Core Team 2009), with package vegan 

(Oksanen et al. 2009) and spatstat 

(Baddeley & Turner 2005). 

Density estimates and departure from 

complete spatial randomness (CSR) 

Density estimates and departure from 

randomness of collection localities was 

investigated from the theoretical back-

grounds of point pattern analysis (see 

Chapter 8 in Cressie 1993). Collection 

localities were considered as the “points” 

used in point pattern analysis. The first 

step was to calculate the density as the 

number of collection localities per 

100 km². 

To visualise density patterns, a density 

map of the study area was created using 

an isotropic Gaussian kernel (Diggle 

2003, Baddeley & Turner 2005). The 

bandwidth of the Gaussian kernel was 

estimated using the method of Berman & 

Diggle (1989) which minimises the Mean 

Square Error (MSE) of the kernel estima-

tor (see Appendix 1). 30 km was chosen 

as the final bandwidth, although other 

values seem plausible given the flatness 

of the curve. Locality density is one of the 

inputs for the Gap Selection Index (GSI) 

(see below). 

To quantitatively test whether the dis-

tribution pattern of the collection locali-

ties departed from a complete spatial ran-

dom distribution (CSR, henceforth), Rip-

ley’s K-function was used (Schabenberger 

& Gotway 2005: pp. 99–103), following 

the procedures implemented in Baddeley 

et al. (2000). Point-wise envelops under 

CSR were computed based on 100 simu-

lations of random distributed points over 

the study area. Then, it was checked 

whether the observed pattern (i.e. the one 

defined by the collection localities) lay 

inside this envelope. 

Bias analysis 

The purpose of the bias analysis was 

three-fold: (1) to understand which factors 

cause spatial bias in the distribution of 

collection localities; (2) to check whether 

spatial bias of collection localities repre-

sents environmental bias as well; and (3) 

to generate a layer representing environ-

mental bias in the study area. The detail 

procedures carried out for each of the 

above points are described below. 

Procedure 1: To measure the magnitude 

of bias in collection localities, each of the 

bias factors (see Table 3) was split into 

four intervals based on the range of meas-

ured distances. Thus, interval 1 repre-

sented the area where distances to each 

bias factor were smallest, while in interval 

4 distances were highest. To calculate the 

size of each interval the Fisher algorithm 

was used (Fisher 1958). This method se-

lects class breaks to group similar values 

and at the same time maximizes the dif-

ference between classes (Slocum et al. 

2005). 

Next, bias was quantified for each in-

terval following the index of Kadmon et 

al. (2004): 

Npp

Npn
=Bias

dd

dd
d

1
 (1.1) 

 

where nd is the number of collection lo-

calities within a specified interval (d), N is 

the total number of collection localities in 

the database and pd is the probability for a 

given collection locality to be within a 

interval (d). Since the above equation is 

derived from the normal approximation to 

the binomial distribution, values become 

statistically significant when they are 

greater or less than 1.64 and –1.64 respec-

tively (at α = 0.05). Bias values greater 

Fig. 1: Detailed map of the study area; red dots represent collection localities. 
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than 1.64 represent over-sampled areas, 

that is areas with more collection locali-

ties than expected from a random sam-

pling design. In contrast, bias values less 

than –1.64 depicted under-sampled ar-

eas.To estimate p for each interval, the 

same amount of points as collection lo-

calities was generated based on a random 

sampling design with replacement. The 

fraction of random points within each in-

terval was taken to be p. The definition of 

random points and the estimation of the 

bias index was repeated 100 times. Basic 

statistics and confidence intervals were 

calculated. 

 

Table 2: List of bias factors and environmental data used to evaluate the sources of spatial bias and the environmental repre-

sentativeness in the distribution of collection localities. Distance to the coast has a different meaning for Burkina Faso: it 

represents possible bias in a north-south gradient within the country. 

Layer name Derived layer name Abbreviation Source 

Bias Factors    

Main cities Distance to cities  DMA (1992) 

Countries of the world Distance to the coast  DMA (1992) 

Rivers Distance to rivers  DMA 1992) 

Roads Distance to roads  DMA 1992) 

World database on protected areas Protected areas  World Conservation Union & UNEP-World 
Conservation Monitoring Centre (2007) 

Environmental layers    

Annual mean temperature Annual mean temperature amte Hijmans et al. (2005) 

Annual precipitation Annual precipitation apre Hijmans et al. (2005) 

Temperature annual range Temperature annual range tara Hijmans et al. (2005) 

Elevation Elevation elev Hijmans et al. (2005) 

Elevation Elevation variance of elevation srtm Hijmans et al. (2005) 

Elevation Wetness index weti Hijmans et al. (2005) 

 

Table 3: Differences between the number and percentage of grid cells containing information at different spatial resolutions. 

Resolution (km
2
)  Total No. of cells Cells with some information % 

100 (10 km x 10 km) 7306 1011 13.8 

900 (30 km x 30 km) 884 440 48.2 

3,660 (60 km x 60 km) 247 182 73.7 

14,400 (120 km x 120 km) 74 63 85.1 

 

Procedure 2: Even if collection locali-

ties are biased towards some of the bias 

factors considered here, applying predic-

tive modelling may still be valid as long 

as the geographical arrangement of those 

bias factors properly represent the envi-

ronmental variability of the study area. To 

assess whether localities covered envi-

ronmental conditions randomly, several 

steps were carried out. First, the bias fac-

tors that showed over-representation of 

collection localities in any of the four in-

tervals were selected. Second, the number 

of collection localities present in the se-

lected bias factors in the specified interval 

was counted and the same number of 

points was created randomly throughout 

the study area. Third, both sets of points 

were overlaid with the environmental lay-

ers described above in order to obtain the 

values of the environmental variables for 

each point. Fourth, the frequency distribu-

tion of those values was compared using 

the Kolmogorov-Smirnov test (KS). The 

KS tests the null hypothesis that the fre-

quency distribution of two samples were 

drawn from the same continuous distribu-

tion (Marsaglia et al. 2003). 

Procedure 3: A new layer representing 

the environmental bias in the study area 

was created following the same steps as in 

procedure 1 but using the environmental 

layers instead of the bias factors. Once the 

bias index was calculated for each envi-

ronmental layer and for each interval, all 

layers were summed up to derive the en-

vironmental bias index map. This layer 

was used as input for the Gap Selection 

Index. 

Database completeness 

To analyse the floristic completeness of 

the database used in this study, the com-

pleteness index proposed by Soberón et 

al. (2000) was used. This index is based 

on the comparison of the total (i.e. esti-

mated) number of species present in a cer-

tain geographical area (S*) with the num-

ber of species observed (Sobs) in the same 

area: C = Sobs/S* where C is the com-

pleteness index. The calculation of the C-

index has to be constrained to a certain 

geographical area or subdivisions of it, 

called grouping factor herein. In this 

study the C-index was calculated for the 

whole study area, for each country and for 

grid cells of different size to identify how 

the completeness of the database varies 

with scale. 

The observed number of species (Sobs) 

in each grouping factor was the number of 

species counted. To estimate the total 

number of species (S*) two non-

parametric techniques were implemented: 

1. First-order Jackknife as a bias reduc-

tion method: 

 
n

n
L+S=S obs

1
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where n is the number of samples and L 

the number of species that occur in only 

one sample (Burnham & Overton 1979, 

Heltshe & Forrester 1983). 

2. Bootstrap: 

N

iobs p+S=S 1  

where pi is the frequency of species i 

and N is the total number of collections in 

the grouping factor (Smith & Belle 1984). 

Database quality evaluation 

We developed the Gap Selection Index as 

a measure of database quality. For that we 

considered three factors: the density of 

collection localities as calculated using 

the Gaussian smooth kernel (d), the val-

ues representing the environmental bias in 

each country (b) and the database com-

pleteness (C). All factors were converted 

to values between 0 and 1 following the 

equation of Legendre and Legendre 

(1998): 

minmax

mini
i

yy

yy
=y' (1.2) 

 

Then, all factors were subtracted from 1 

to ensure that values close to 1 represent 

deficiencies in data quality. The gap se-

lection index was thus calculated as: 

F

C'b'd'
=GSI

3
(1.3) 

where F represent the number of factors 

included in the index. Results of the index 

are values between 0 and 1, where values 

close to zero represent areas that have 

been properly represented while values 

close to one represent areas where the 

density of collection is very low or zero, 

the information is incomplete and where 

the environmental conditions are not well 

represented in the distribution of collec-

tion localities. 

Results 

Density and complete spatial ran-
domness 

The mean density of collection localities 

in the study area is very low, with less 

than 1 collection locality per 100 km² 

(Table 1). Collection localities are un-

evenly distributed, with certain patches of 

high densities, especially in Burkina Faso 

and Benin (Fig. 2a). This clustered pattern 

was quantitatively estimated based on the 

analysis of the inhomogeneous K-function 

(Fig. 2b). 

Bias analysis 

In general, all bias factors had a strong 

influence on the spatial distribution of 

collection localities in the study area (Fig. 

3). For Ivory Coast, there was a clear 

over-representation of collection localities 

in areas close to each of the bias factors 

(i.e. interval 1), but most importantly to 

cities, to the coast and to roads. In con-

trast, in distant areas the trend was to-

wards an under-representation of collec-

tion localities (Fig. 3). Closeness to roads 

and specifically to protected areas were 

the factors explaining the over-

representation of collection localities in 

Burkina Faso. Also in Burkina Faso there 

seemed to be a preference to collect far 

away from the main cities, the coast 

(which in this case represented north-

south gradient) and roads (Fig. 3). As for 

Benin, in places situated close to rivers 

and roads, an over-representation of col-

lection localities was found while at long 

distances a negative bias existed (Fig. 3). 

 

Fig. 2: (A) Three dimensional view of collection localities density patterns estimated 

based on a smoothing Gaussian kernel; (B) Point pattern estimates of the collection 

localities based on the inhomogeneous Ripley’s K-function. Displayed are envelops 

(gray) representing the area ocuppied by realizations of 100 simulated random 

patterns. Black dash lines are the estimated K values of the collection localities for 

different distances. The line is expected to be inside the envelop if the pattern of 

collection localities is random. Lines above the envelope indicate a clustered 

pattern. 
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Fig. 3: Bias estimates (as calculated from equation 1.1) for each of the bias factors (rows) in each country (columns) and for 

each distance interval (1 to 4) considered in this study. Interval 1 represents short distance and interval 4 largest distance val-

ues. Shadow polygons represent the range of values where no bias is expected. If boxplots are within this area than the number 

of collection localities are as expected from a random sampling scheme (i.e. no bias). Boxplots above and below this area rep-

resent over- or under-sampling, respectively. 
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Fig. 4: Example of the difference between the frequency distribution of environmental values found for all collections located in 

areas close to cities (i.e. interval 1) in Ivory Coast and for the locations of randomly distributed points in the study area. No sig-

nificant differences exists for the variance of elevation (srtm) and wetness index (weti). On the contrary, for all other environ-

mental variables the differences are significant (see also Appendix 2). There is an over-representation of low elevation areas 

while areas of high altitude have been under-represented. The same case applies for temperature annual range (tara) and the 

opposite for annual mean temperature (amte) and annual precipitation (apre). 

In general, an over-representation of col-

lection localities in some regions of the 

study area also correlated with an envi-

ronmental bias. That means, some envi-

ronmental condition were over-

represented (e.g. those found near to 

roads), while others are under-represented 

(those found far away from parks) in the 

distribution of collection localities. Few 

of these biases were consistent, however. 

For example, in Ivory Coast, environ-

mental conditions far away from cities 

were representatively sampled, while in 

Burkina Faso they were over-, and in Be-

nin under-represented (Fig. 3, first row, 

interval 4). Significant differences be-

tween sampled versus randomised loca-

tions were found for the frequencies of 

the values of all environmental parame-

ters (see Fig. 4 for an example from inter-

val 1; see also Appendix 2). If the distri-

bution of collection localities was not en-

vironmentally biased, one would have 

expected to find no differences between 

these frequencies. An exception was Ivory 

Coast for elevational variance (srtm) and 

wetness index (weti), where no bias was 

present despite the fact that the majority 

of collection localities were near cities 

and rivers. 

The map in Figure 5 depicts the sum of 

the bias estimates for each of the envi-

ronmental variables used in this study. 

Clearly, environmental conditions in 

coastal Ivory Coast, in and around the 

eastern Guinean forest in Benin and the 

Sahelian zone in Burkina Faso were over-

represented. In contrast, wide expanses of 

savannas and forest-savanna mosaic in all 

three countries were under-represented. 

Completeness analysis 

A general comparison between the two 

non-parametric techniques employed in-

dicated that results of the first-order Jack-

knife estimator were in general higher 

than results of the Bootstrap estimator and 

therefore completeness values were al-

ways higher when calculated based on the 

Bootstrap technique. 

Estimates of species richness and com-

pleteness were calculated for different 

grouping factors (Table 2). In general, the 

floristic knowledge of the study area was 

good, as shown by the high values of the 

completeness index. Comparing the three 

countries independently, Burkina Faso is 

the least studied country since it has the 

lowest completeness value. From 1,610 

plant species observed at the time, there 

will be at least several hundred species 

still not described in the database. 

Completeness analysis was also applied 

on a grid cell basis. Different cell sizes 

(i.e. resolutions) were used (i.e. 100 km², 

900 km², 3,600 km², 14,400 km²). Corre-

lations between number of species ob-

served and estimated were very high at all 

resolutions (in all cases a correlation coef-

ficient of 0.99). In contrast, correlations 

between estimated species richness and 

completeness values were low (Fig. 6). In 

general, grid cells with the highest num-

ber of species were not necessarily com-

plete. Complete cells occurred in Benin 

and Burkina Faso, although the two coun-

tries were less studied than Ivory Coast 

(Table 1). Note that virtually all of Benin 

had a completeness index close or equal 

zero. 
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Fig. 5: Environmental bias in the study area. Values close to one (red) represent areas where environmental conditions are un-

der-represented. Areas assigned values close to zero (white) have been visited as expected by applying a random sampling 

scheme. Environmentally over-represented areas in the distribution of collections localities are those with values close to –1 

(green). 

The percentage of grid cells containing 

information increased with an increase in 

cell size (Table 3). As a result of the clus-

tered distribution pattern of collection lo-

calities, there were few areas with high 

density and most of the remnant area had 

either no or a very small density of collec-

tion localities. Consequently there are ei-

ther areas with high completeness index 

values and areas with very low complete-

ness values. However, the percentage of 

grid cells with a completeness value equal 

or higher than 0.6 increased up to a grid 

cell size of 3,600 km². There is also a 

constant increase of grid cells with com-

pleteness values higher than 0.8 as the 

resolution increases (Fig. 7). 

Gap selection index 

Based on the density distribution of col-

lection localities (Fig. 2b), the degree of 

environmental bias (Fig. 5) and the floris-

tic completeness of the database (Fig. 6), 

the gap selection index was calculated 

(Fig. 8). In this index, values close to zero 

represent areas that have been well stud-

ied, where the density of collection locali-

ties is high, where the environmental con-

ditions have been properly represented 

and where the floristic information is 

complete. 

From a pessimistic point of view, prob-

lematic intervals can be considered as 

those having values greater than 0.8. 

71.1% of the total area were within this 

interval. 70.9%, 64.9% and 86.2% of the 

area in Ivory Coast, Burkina Faso and 

Benin, respectively, had values greater or 

equal 0.8. 
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Fig. 6: Maps of observed species richness (A) 

and estimated species richness as calculated us-

ing two non-parametric estimation techniques 

(i.e. First-order Jackknife (B) and Bootstrap (C)). 

In the fourth and fifth rows are the maps of the 

Completeness Index (D and E) (i.e. richness ob-

served divided by richness estimates). All illus-

trations are based on the analysis done at a 

3,600-km² resolution. The first-order Jackknife 

estimator produced in all cases higher species 

richness estimates while the Bootstrap produced 

more conservative numbers. 



   

  Biodiversity & Ecology 4     2012 34 

 

 

Fig. 7: Barplots showing the percentage of grid cells in three completeness classes (see legend). Calculations were done for 

four different spatial resolutions and considering the two non-parametric techniques used for species richness estimations (i.e. 

First-order Jackknife and Bootstrap) at each resolution. 

 

Fig. 8: Map of the Gap Selection Index (GSI). The main goal of the index is to emphasize those areas that have been poorly vis-

ited and contained environmental information not well represented by the distribution of collection localities in the database. 

Therefore, values close to one represent under-represented areas while places with values close to zero have received enough 

attention and have been well studied. The index has been calculated by integrating information on collection densities, envi-

ronmental representativeness and floristic completeness on a pixel based approach (i.e. 100 km²). Regions with highest GSI 

values are marked in yellow numbers: (1) Triangle Fô/Bobo-Dioulasso/Samorogouan, close to border with Mali: area of rice 

fields, traditional Vitellaria parklands, some forested hills in its northern part (often holy groves, thus protected); (2) hill chain of 

the Lake Bam/Lake Dem/Kaya area with a low cover of woody plants, but including some rare species, e.g. Boswellia dalzielii; 

(3) area between Mt. Sanghe NP, Ferkessédougou and the Mali border; (4) area around the eastern border of Comoé-NP; (5) 

northern-most part of Benin including W National Park with highest values in the Atakora hunting zone close to the border with 

Burkina Faso: Sudanian savannas and parklands. 
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Discussion 

Uneven efforts of plant collection 
in West Africa 

The database used in this study is the re-

sult of more than nine years of compila-

tion efforts. Still, the average density of 

collection localities is very small (Table 

1) and spatially strongly clustered (Fig. 

2). Although the database has already 

been used for estimating patterns of plant 

diversity in the region (Schmidt et al. 

2005, Thiombiano et al. 2006), this was 

not the main goal motivating the construc-

tion of the database. Instead, many of the 

data have been generated from specific 

projects with their focus on specific areas 

and research questions. In Burkina Faso, 

for example, a special focus has been 

given to the Sahelian acacia savanna eco-

region, where, in consequence, collection 

localities are found at high densities. A 

specific macroecological analysis of this 

particular region was presented by 

Schmidt et al. (2008). Other “hot-spots” 

of plant collections in Burkina Faso are 

situated in small areas that have been the 

focus of investigation by students and re-

searches in the region (Müller 2003, 

Krohmer 2004). The same situation oc-

curs in Benin, where only a special area 

has been the focus of research, namely the 

Atacora mountains around Natitingou 

(Sieglstetter 2002, Krohmer 2004), where 

the maximal density found is 103 collec-

tions per 100 km² (Fig. 2a). 

Not surprisingly, the south of Ivory 

Coast has been studied better, since in this 

area the Guinean Forest diversity hotspot 

is located (Myers et al. 2000), one of the 

known areas with high species richness 

and endemism. Several studies have been 

carried out to investigate different aspects 

of the composition, structure and dynam-

ics of the forest ecosystems in this area 

(Chatelain et al. 2004, Nussbaumer et al. 

2005). 

Bias: a recurrent issue 

Spatial bias in biological databases is one 

of the most repeatedly mentioned issues 

in biogeographical research. It is pre-

sumed to be one of the factors potentially 

distorting the results of biogeographical 

analysis (Funk & Richardson 2002, 

Loiselle et al. 2008, Wolmarans et al. 

2010), but its influence on model output is 

rarely explicitly made. However, it has 

been demonstrated that spatial bias can 

have a substantial influence on model 

outcome and performance as well as in 

the establishment of the effect of envi-

ronmental variables on the defined niche 

of a species (Graham et al. 2004, Feeley 

& Silman 2010). For that reason, we con-

cur with other authors that before using 

predictive modelling techniques, it is nec-

essary to explicitly evaluate the database 

in terms of spatial bias and to understand 

the possible causes that led to that bias.  

We used a similar approach to identify 

factors influencing spatial bias in the da-

tabase and estimating environmental bias 

as implemented earlier by Kadmon et al. 

(2004) and Loiselle et al. (2008). Al-

though Kadmon et al. (2004) found sig-

nificant differences between the distribu-

tion of collection localities and that of the 

rainfall conditions based on a random se-

lection of localities in the study area, they 

demonstrated that predictions of habitat 

suitability were not biased, since the sta-

tistical difference was weak (although 

significant). In this study, strong statisti-

cal differences were found and therefore 

we conclude that model predictions based 

on the current database are likely to pro-

duce biased and misleading estimates of 

species range predictions. 

What is the appropriate scale of 
analysis? 

Finding the appropriate scale of analysis 

is one of the most controversial and stud-

ied issues in ecology (Hurlbert & Jetz 

2007). The resolution of analysis should 

comply with the inherent properties of 

any given dataset (Hengl 2006). At the 

same time, it should be adequate to solve 

the ecological questions of concern. One 

of the future applications of the database 

presented in this study is to generate spe-

cies distribution patterns taking advantage 

of the high spatial accuracy of the data 

(i.e. 100 km²) and the accessibility of en-

vironmental information available at this 

resolution. Is then 100-km² resolution the 

proper scale for such studies? 

Several of the analysis carried out in 

this study indicate otherwise. Hengl 

(2006) recommended the inspection of the 

density of a point pattern as one of the 

criteria to define the right pixel size. Re-

sults show that the mean square error of 

the bandwidth calculated to estimate the 

density (Appendix 1) is higher at 10 km 

and diminishes at longer distances with 

small differences above 30 km. That 

means that if we calculate the density pat-

terns with a bandwidth of 10 km, the final 

estimates will have a bigger error than at 

longer distances. 

Secondly, it is clear from Table 3 and 

Figure 7 that the percentage of grid cells 

containing information increases as the 

resolution increases and that the amount 

of grid cells with complete information 

also increases as the cell size increases. In 

conclusion, more accurate models of spe-

cies distribution patterns can be obtained 

if a cell size bigger than 100 km² is used. 

We suggest a cell size of 3,600 km² (i.e. 

60 km × 60 km) as a minimum acceptable 

scale of analysis. 

Disentangling the gap selection in-
dex 

It is not the first time that a methodology 

was developed to identify areas where 

information is missing (see Küper et al. 

2006 for an example). Funk et al. (2005) 

developed a method which they called 

survey-gap analysis to identify the loca-

tion of future collection activities. For that 

purpose, they used a set of environmental 

variables to derive an environmental di-

versity (ED) measure (see Faith & Walker 

1996) and a set of collected sites, which 

they integrated into a complementary 

analysis to select sites that would contrib-

ute new taxa. The novelty of the Gap Se-

lection Index concept developed in this 

study is the integration of different inde-

pendent criteria, which makes the selec-

tion of target sites objective and efficient. 

Relying on only one criterion makes the 

identification of target sites impractical. 

For example, if some particular places are 

to be visited based on density estimates 

then areas with low density of collection 

localities will be chosen. Obviously, in-

formation is still missing in those areas. 

But if the environmental conditions char-

acterizing those areas are very similar to 

areas where collection density is high, 

then similar vegetation structure and flo-

ristic composition can be expected and no 

novel data will be added to the database. 

A more efficient use of the resources at 

hand will be to go to sites that combine 

low collection densities and under-

represented environmental conditions. 

Another important combination of cri-

teria for site selection uses collection den-

sities and database completeness, com-

pared on a grid cell basis (Soberón et al. 

2007). The expected behaviour of the re-

lationship between these two criteria is an 

increase in completeness with an increase 

in collection density. In the study, this 

relationship is weak. In general, the ma-

jority of grid cells has low density values 

and is yet complete. In conclusion, a good 

estimation of the floristic composition of 
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the study area requires few collection lo-

calities, but properly distributed. 

One of the main purposes of the Gap 

Selection Index is to support the prioriti-

sation of future sampling efforts to com-

plement current inventory data of the flo-

ristic composition of the region. Large 

areas are unsampled still and visiting all 

of them is unrealistic. The use of addi-

tional tools that help in the effective se-

lection of target areas is needed. One of 

these tools is GoogleEarth, where the Gap 

Selection Index can be displayed and 

compared with high resolution images. 

Visualisation of this type could help both 

understanding the potentially underlying 

drivers of diversity and identifying areas 

that deserve more investment regarding 

fieldwork and resources. There are al-

ready efforts in making use of the integra-

tion of GIS analysis and visualisation on 

GoogleEarth for scientific and communi-

cation purposes (e.g. Conroy et al. 2008). 

In this study we decided to use non-

parametric techniques (i.e. first order 

Jackknife and Bootstrap) to estimate spe-

cies richness based on the species ob-

served in the different collection locali-

ties. The first-order Jackknife one has 

been consistently ranked among the most 

precise techniques and the second one is 

considered as a technique that generally 

underestimates the real value (Beck & 

Schwanghart 2010). The two techniques 

were selected so that a range of possible 

values could be given and compared. 

However, there is a range of species rich-

ness estimator techniques that have been 

used for the same purpose, all likely to 

underestimate species richness except in 

near-complete inventories (Coddington et 

al. 2009, Unterseher et al. 2011). For ex-

ample, Baselga & Novoa (2006) and 

Jiménez et al. (2009) used rarefaction 

curves to estimate species richness values 

and compared them to the observed spe-

cies richness to evaluate the completeness 

of their databases. 

Modelling plant diversity in West 
Africa: where from now? 

Is it possible to use the information in the 

database to model plant diversity patterns 

in West Africa? From the map of the Gap 

Selection Index (Fig. 8) it is clear that a 

considerable part of the study area is 

missing information and is not well repre-

sented in the database. Although several 

techniques can potentially be applied to 

model diversity patterns, it is important to 

recognize that there will be a considerable 

amount of uncertainty present in predic-

tions, especially in those areas missing 

information. It is recommended that any 

efforts to estimate and display plant diver-

sity patterns should be accompanied by 

the Gap Selection Index map as a repre-

sentation of the uncertainties of the out-

comes. 

Many techniques can be used to predict 

and model plant diversity patterns based 

on our database. These techniques can be 

grouped into two main modelling ap-

proaches. In the first group are all tech-

niques that directly relate species diver-

sity (e.g. species richness) and environ-

mental variables. From the relationships 

found (i.e. variable coefficients), models 

are able to predict species diversity to the 

total extent of the region of interest. 

To employ this approach for data with 

limited completeness one would select 

only those grid cells that are above a se-

lected completeness threshold for model-

ling (e.g. Romo et al. 2006). Although 

information might thus be lost, the reli-

ability of predictions increases since the 

modelling itself is based on more accurate 

data. Another possibility is to use all cells 

with data, so no information is lost, and 

weight those cells with the completeness 

index calculated for each of them. 

The second group of modelling ap-

proaches is the species niche modelling 

(see Elith et al. 2006, for a review and 

performance comparison of different 

methods). The principle of this approach 

is to model each species individually and 

create species range map for each of 

them. Afterward, all maps are stacked up 

to create a final map of species richness. 

A major constraint of applying this ap-

proach to the database is that most species 

have been collected only very few times. 

If the recommendation of using species 

with 10 or more sampled occurrences 

given by Hernández et al. (2006) is fol-

lowed, than only 1,423 species will be 

considered for analysis, that is, only 31% 

of all species. However, even as few as 

three occurrence localities have claimed 

to be useful to model species ranges 

(Pearson et al. 2007). 

Dealing with spatial bias (i.e. spatial 

autocorrelation) in the distribution of the 

collection localities becomes an issue 

when using any of these approaches 

(Dormann 2007). Some research has been 

done to deal with this issue (e.g. Kadmon 

et al. 2004, Allouche et al. 2008, De 

Marco et al. 2008, Phillips et al. 2009) 

and the methodologies recommended can 

potentially be also applied for the data-

base (see Dormann et al. 2007 for a re-

view of methods to deal with spatial auto-

correlation). Algar et al. (2009) made a 

comparison of the two main approaches 

described above to estimate species rich-

ness patterns and predictions to the future 

and found that after dealing with the spa-

tial autocorrelation issue the first ap-

proach (i. e. empirical diversity theory 

approaches) fared significantly better. 

Conclusions 

A lot of work, money and effort has been 

invested in the creation of the databases 

forming the basis for this study. Scientific 

investigations have already set a good 

example for utilizing these data for re-

search and conservation applications 

(Schmidt et al. 2005, 2008, Thiombiano et 

al. 2006). However, the use of the data-

base for macroecological studies at re-

gional scales might be limited by a series 

of factors. The distribution of collection 

localities has not been done in a manner 

expected in statistical techniques. Particu-

larly, collections do not follow a random 

distribution in geographic as well as in 

environmental space but rather a very 

clustered pattern. There are few areas and 

environments that have been well investi-

gated but information is still missing for 

most of the extent of the study area and its 

habitats. 

The correlation between several bias 

factors and the distribution of collection 

localities is very high. Unfortunately, this 

collection distribution bias represents en-

vironmental bias as well. Many areas with 

specific environmental conditions have 

not been visited yet, and their inclusion 

into models that seek to predict species 

distribution ranges to those areas will re-

sult in misleading estimates. 

If biogeographical applications based 

on the database are expected in the short 

term, it is strongly recommended to find 

the proper modelling techniques that are 

robust to spatial bias in the distribution of 

collection localities. Several approaches 

and modelling techniques have been 

tested to deal with this issue (see, e.g., 

Kadmon et al. 2004, Phillips et al. 2009) 

with positive results. Nonetheless, if there 

are funds and resources to organize field 

campaigns, targeting the areas identified 

by the Gap Selection Index will fill up 

data gaps and will decrease the amount of 

bias currently present in the database. 
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