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Expansion of mass-flowering crops leads to
transient pollinator dilution and reduced

wild plant pollination
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Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also
cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field
studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in
a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland
plants for pollinators. Abundances of bumble-bees, which are the main pollinators of Primula, but also
pollinate OSR, decreased with increasing amount of OSR. This landscape-scale dilution strongly affected
bumble-bee abundances in OSR fields, and marginally in grasslands, where bumble-bee abundances
were generally low at the time of Primula flowering. Seed set of the grassland plant Primula veris,
which is flowering during OSR bloom, was reduced by 20 per cent when the amount of OSR in 1 km
radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops
results in transient dilution of crop pollinators, which means an increased competition for pollinators
between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of
concurrently flowering wild plants in conservation areas, despite the fact that in the long run, mass-flow-
ering crops can enhance abundances of generalist pollinators and their pollination service.
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1. INTRODUCTION
Negative consequences of land-use intensification and
habitat loss for biodiversity and associated ecosystem ser-
vices have often been reported [1–3], but the exact
mechanisms are still poorly understood [4]. Although
biodiversity loss is mostly assumed to be a direct result
of decreasing habitat area and of impeded organism
exchanges between habitat fragments [5,6], indirect
effects mediated by changed species interactions might
be just as important [7,8].

Indirect effects of land-use intensification via species
interactions can be expected to be ubiquitous where
managed and natural habitats adjoin, or where species
using multiple habitats connect managed and natural
habitats on a larger scale [9,10]. Changes in species
interactions might occur everywhere in mosaic land-
scapes where (i) at least one of two interacting
partners uses both managed and natural habitats, and
where (ii) land-use intensification (i.e. the difference
between managed and natural habitats) affects one inter-
action partner more strongly than the other (positively
or negatively).

There are several examples showing that mobile organ-
isms occurring in managed habitats benefit from
neighbouring natural habitats, which provide e.g. nesting
sites or refugee after disturbances [11,12]. By contrast,
evidence for organism spill-over from managed to natural
habitats is extremely rare and consequences for species
interactions are poorly known [13]. Spill-over from man-
aged to natural habitats occurs if organisms benefit from
the high productivity of managed habitats and then
move to (semi-)natural habitats, which are normally less
productive [14]. Predators and herbivores, which are
subsidized by resources in managed habitats, can sub-
sequently strongly affect prey species and plants in
natural habitats [15]. Comparable but currently unknown
changes of species interactions are possible for pollinators
that visit highly productive mass-flowering crops for
pollen and nectar instead of foraging and providing
pollination in their semi-natural nesting habitats [7].

A preference of native bees for crop fields over semi-
natural habitats might have serious negative effects for
seed or fruit set of bee-pollinated wild plants in conserva-
tion areas. Competition between plant species for a limited
number of pollinators can result in reduced flower visita-
tion rates and reduced seed set in the less attractive
species [16]. On the other hand, attractive plant species
can also enhance visitation rates of neighbouring plants if
the attractive plant attracts pollinators to a certain flower
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patch and pollinators subsequently visit all flowers within
the patch independently of their attractiveness (‘good
neighbours’; [16,17]). In that case, the positive effect of
facilitation by the attractive magnet plant exceeds the nega-
tive effect of competition. The meta-analysis of Morales &
Traveset [18] revealed that detrimental effects of invading
plant species on pollination and reproduction of natives
are predominant. While there are increasing numbers of
field-scale studies focusing on interactions between simul-
taneously flowering plant species growing in a shared
habitat (e.g. reviewed in [18–20]), there are—as yet—no
studies focusing on links among sites or habitat types via
shared pollinators.

We conducted three large-scale field studies on 67
study sites to assess interactions between mass-flowering
oilseed rape (OSR) and semi-natural grasslands, and
their potential negative or positive effects on wild plants
and bees. Pollen and nectar provided by OSR are highly
attractive to bees. OSR is planted at a density of 350
000–700 000 plants per hectare, producing more than
100 times as many flowers per hectare (Hoyle et al.
2007)Q1 . The enormous flower density and the good acces-
sibility of nectar and pollen facilitate a high number of
flower visits per time unit. On forage trips, bumble-bees
visit on average over 400 OSR flowers per visit and
approximatelyQ1 2000 flowers per hour (Hoyle et al. 2007).

In study 1, we hypothesized that OSR enhances the
diversity and abundances of bees in grasslands if the
OSR fields directly adjoin the grassland. The large
amount of additional flower resources provided by OSR
fields can be expected to attract bees to nesting sites in
the grassland (local scale effect). High amounts of OSR
at the landscapes scale were hypothesized to result in a
transient dilution of bees during mass flowering, and to
decrease bee abundances in grasslands (figure 1).

In study 2, we hypothesized that bee diversity and
abundance in OSR are positively affected by adjacent

grasslands, which provide nesting sites, and negatively
by high amounts of OSR, which cause landscape-scale
dilution effects (figure 1).

In study 3, we formulated two contrasting hypotheses.
The facilitation hypothesis states that OSR enhances
sexual reproduction of grassland plants, because their
pollinators prefer to nest in grasslands adjacent to OSR,
resulting in positive effects on the pollination of the grass-
land plants. The competition hypothesis states that OSR
reduces the reproduction of grassland plants, because
mass-flowering OSR is a superior competitor in attracting
wild bees (figure 1).

2. METHODS
(a) Study sites

Three studies were carried out in 2007 near the town of Göt-

tingen (51.58N, 9.98E), Lower Saxony, Germany. The study

area is composed of intensively managed agricultural areas

dominated by annual crop fields, and patchily distributed

fragments of forests and semi-natural habitats such as calcar-

eous grasslands. Calcareous grasslands belong to the most

species-rich bee habitats in Europe [21] and are protected

by law as conservation areas.

In an area of 25 ! 30 km, we selected 67 study sites (33

calcareous grasslands and 34 Brassica napus OSR fields)

belonging to four categories. (i) 16 grasslands were isolated

by at least 230 m from OSR; (ii) 17 grasslands were within

1–15 m distance of OSR; (iii) 17 OSR fields were isolated

by at least 570 m from calcareous grasslands; and (iv) 17 OSR

fields were within 1–15 m distance of the study grasslands.

Further details are given in the electronic supplementary

material, appendix S1.

(b) Landscape parameters

For each study site, the surrounding landscape was charac-

terized in a landscape circle of 1 km radius. OSR fields,

oilseed rape

oilseed rape

1km

oilseed rape oilseed rape
oilseed rape

oilseed rape

grassland grassland

(a) (b)

Figure 1. Landscape-scale dilution of bees in oilseed rape, and consequences for pollinator abundances and seed set. The
number of black dots indicates number of produced seeds. (a) High amount of oilseed rape results in high dilution of pollina-
tors, in low pollinator abundances per site and low reproduction of pollinator-dependent grassland plants. (b) Low amount of
oilseed rape results in high pollinator abundances per site and high reproduction of pollinator-dependent grassland plants.
Effects on oilseed rape have not been studied here and hence its seed production is not indicated.
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semi-natural habitats (calcareous grasslands, orchard mea-

dows, old fallows, hedgerows) and other habitat types were

mapped in the field and included into digital thematic

maps. Geographic Information Systems (ESRI ARC/View

v. 3.2) were used to calculate the proportion of each habitat

type in the landscape sectors. The percentage of area covered

with OSR (hereafter referred to as %OSR) spanned a gradi-

ent from 0 to 30.5 per cent and was not correlated with any

other habitat type (Spearman rank correlations, all p . 0.1,

n ¼ 67). The percentage area covered with semi-natural

habitat (% semi-natural habitat) spanned a gradient from

0.6 to 12.9 per cent and was negatively correlated with

the per cent arable land and positively correlated with the

Shannon index of habitat diversity calculated using the

percentage of each habitat type (Spearman rank correlations,

all p, 0.05, n ¼ 67).

(c) Study 1: bees in semi-natural grasslands

In grasslands, bees (Apiformes) were recorded during OSR

flowering in April and May for 15 min in a 0.1 ha plot

along a variable transect (following Westphal et al. [22]).

Flower cover (% cover of flower corollas per area ground sur-

face) and the number of plant species flowering during the

survey in the 0.1 ha plot were recorded (number of plant

species was missing for one of the grasslands adjacent to

OSR). Bee abundances are expressed as bee densities per

100 m2 and 15 min. The diversity of bees equals the total

number of solitary bee species. All bees that could not be

identified in the field were collected for subsequent identifi-

cation in the laboratory. Sites were sampled between 10.00

and 17.00 h under sunny weather conditions only (tempera-

ture greater than 168C, cloud cover less than 10%, low wind

speeds less than 2 Bft).

(d) Study 2: bees in oilseed rape

Transect walks were conducted to assess bee diversity and

abundance in OSR. Bees were recorded along 100 m trans-

ects with 1m width in the field centre and at the field edge

for 15 min per transect on two occasions during OSR flower-

ing in April and May (2 ! 15 min ! 2 ¼ 60 min per field).

The diversity of bees equals the total number of bee species.

The edge transect was located 1 m into the OSR field along

the field edge, the centre transect started 10 m from the field

edge and followed a lane into the direction of the field centre.

Data from the four transect walks per OSR field were pooled

for analysis. Bee abundances are expressed as bee densities

per 400 m2 and 60 min.

(e) Study 3: seed set of P. veris

To assess the effect of OSR on the pollination and reproduc-

tive success of a grassland plant, we measured seed set of the

Cowslip P. veris L. (Primulaceae). Flowering is usually during

the period of OSR flowering, starting at the end of April and

ending three to four weeks later. Primula veris is strictly self-

incompatible and only cross-pollination between pin morphs

(long pistil, short stamens) and thrum morphs (short pistil,

long stamens) results in effective seed set [23]. Flowers are

successfully pollinated by long-tongued bees (mainly bees

of the genera Bombus and Anthophora) and bombyliid flies,

which are able to exploit the nectar [24,25]. Because of the

fragmentation of its habitat, P. veris is included in the Red

Data Book as ‘critically endangered’ in Lower Saxony [26].

Primula veris occurred in 19 of the 33 study grasslands

(seven adjacent to OSR, 12 isolated from OSR). At the

beginning of flowering, we randomly marked 10–24 plants

per grassland that all had one stalk. Some of the inflores-

cences were lost to mammal herbivory, resulting in 260

marked plants (155 plants adjacent to OSR, 105 plants iso-

lated from OSR, mean per grassland+ s.d.: 13+5.6, min:

2, max: 24) at the time of seed ripening. We recorded the

number of plant species flowering in the 0.1 ha plot during

the survey, and the flower cover of these species (% cover

of flower corollas per area ground surface in the 0.1 ha

plot). The number of P. veris individuals in the flower patch

around the marked plants was recorded (patch edges were

defined by a separation of greater than 3 m to the next con-

specific individual). This parameter was correlated with

patch size (Spearman rank correlation: R ¼ 0.89, p,
0.001, n ¼ 19) and with flower cover of P. veris in the

0.1 ha transect plots (R ¼ 0.69, p ¼ 0.003, n ¼ 19). Morph

ratios (pin : thrum morph) were not skewed in the study

grasslands and did not differ between isolated grasslands

and grasslands adjacent to OSR (see the electronic sup-

plementary material, appendix S2).

In July, the ripe fruits were collected and dried. The

number of seeds per plant was counted and the seeds were

weighed. Seed number per plant and seed weight per plant

were divided by the total number of flowers minus the

number of predated fruits (¼number of intact fruits) to cor-

rect for differences in flower numbers and predation rate

between plants (mean+ s.e. of non-predated fruits per

plant: 5+3). If seeds were predated by insect larvae, the

fruit was excluded from the analyses, because usually all

seeds were damaged and turned into crumbs. The predation

rate was not related to the number of seeds per fruit (R ¼
0.11, p . 0.01, n ¼ 19). The number and weight of seeds

per fruit were taken as a measure of reproductive success

and averaged over the plants of the study site.

(f) Statistical analyses

Local and landscape effects on bees were assessed in ANCO-

VAs (type II sums of squares; [27]). Response variables in

grasslands were the diversity and abundances of solitary

bees and the abundance of bumble-bees. Presence–absence

data for honeybees in grasslands were assessed in a logistic

regression. Response variables in OSR were bee diversity

and abundances of solitary bees, bumble-bees and honey-

bees. Predictors for bees in grasslands were the presence of

adjacent OSR (grasslands adjacent to OSR versus grasslands

isolated from OSR), %OSR and %semi-natural habitats in

1 km radius, flower cover, diversity of flowering plant species

and interactions between presence of OSR at the local scale

and the other factors. Predictors for bees in OSR were the

presence of adjacent grassland (OSR adjacent to grassland

versus OSR isolated from grassland), %OSR fields and

%semi-natural habitats in 1 km radius, OSR field size

and interactions between presence of adjacent grassland

and the other factors.

Effects on P. veris seed set were assessed in ANCOVAs

with the dependent variables the mean number of seeds per

fruit and mean seed weight per fruit. Predictors were the

presence of adjacent OSR (grasslands adjacent to OSR

versus grasslands isolated from OSR), %OSR fields and

%semi-natural habitats in 1 km radius, the number of

P. veris individuals in the patch, total flower cover and

diversity of flowering plant species.

All models were computed in R ([28], v. 2.9.0). Maximal

models were simplified in a manual stepwise backward selec-

tion on the basis of F-tests [29]. Predictors with p, 0.05
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were considered to be significant. Predictors with p . 0.1

were removed from the maximal models. We transformed

bee diversity and abundances recorded during transect

walks to meet the assumptions of constant error variance

and normality of errors (log10(x þ 1)).

3. RESULTS
(a) Study 1: bees in semi-natural grasslands

We recorded 684 solitary bees (44 species), 49 bumble-
bees (eight species) and 12 honeybees on 33 study
grasslands.

The number of flowering plant species in the grassland
and the presence of adjacent OSR contributed to the
explanation of diversity and abundance of solitary bees
in grasslands. An interaction between the factors indi-
cated that observed diversity and abundance of solitary
bees increased with increasing number of flowering
plants in grasslands isolated from OSR, but not in
grasslands adjacent to OSR fields (table 1 and figure 2,
equations in the electronic supplementary material,
appendix S3).

The abundance of bumble-bees marginally decreased
with increasing proportion of OSR in the landscape
(p ¼ 0.090; log ( y þ 1) ¼ 0.042 þ 0.011 ! %OSR;
table 1).

As the abundance of honeybees was very low, only
presence–absence data were analysed. Honeybees were
more likely to be found in grasslands adjacent to OSR
(on five of 17 grasslands) than in isolated grasslands
(zero of 16 grasslands; logistic regression, x2 ¼ 7.4, p ¼
0.006).

(b) Study 2: bees in oilseed rape

We recorded 373 solitary bees belonging to 35 species, 92
bumble-bees belonging to nine species and 1080 honey-
bees in 34 OSR fields. Half of the species were only
found in OSR adjacent to grassland, but not in isolated
OSR, and two species were found in isolated OSR, but
not in grasslands.

The presence of nearby grassland enhanced the abun-
dance of solitary bees and marginally affected the
diversity of bees, but not the abundance of bumble-bees
(table 1 and figure 3). A mean of 6.6 solitary bee individ-
uals and 4.1 species of wild bees was found in isolated
OSR, and 15.3 solitary bee individuals and 8.6 species
of wild bees in OSR adjacent to grassland.

The abundance of solitary bees increased with the
decreasing amount of OSR at the local scale (OSR field
size; table 1 and figure 3a). The abundance of bumble-
bees increased with decreasing % OSR at the landscape

Table 1. Landscape and local effects on bee diversity and abundances in grasslands and oilseed rape (OSR). Results are from
ANCOVAs. Landscape-scale predictors were %OSR fields and %semi-natural habitats in 1 km radius. Local predictors were
diversity of flowering plant species and presence of OSR (grasslands adjacent to OSR versus grasslands isolated from OSR)
for bees in grasslands, and OSR field size and presence of grassland (OSR adjacent to grassland versus OSR isolated from
grassland) for bees in OSR. Predictors are shown when p, 0.1 or when they are part of a significant interaction.

d.f. MS F p

study 1: bees in grasslands
abundance of solitary bees

flower diversity 1 0.19 5.1 0.032
presence of OSR 1 ,0.01 ,0.1 0.958
flower diversity ! presence of OSR 0.13 3.5 0.072
residuals 28 0.04

abundance of bumble-bees
%OSR (1 km) 1 0.15 3.1 0.090
residuals 30 0.05

diversity of solitary bees
flower diversity 1 0.04 2.7 0.109
presence of OSR 1 0.01 0.8 0.382
%OSR (1 km) 1 0.04 2.9 0.098
flower diversity ! presence of OSR 1 0.16 11.9 0.002
residuals 26 0.36

study 2: bees in OSR fields
abundance of solitary bees

OSR field size 1 1.74 10.0 0.003
presence of grassland 1 0.67 5.7 0.023
residuals 31 0.11

abundance of bumble-bees
%OSR (1 km) 1 0.71 7.1 0.012
residuals 32 3.19

abundance of honey bees
none

diversity of bees
OSR field size 1 0.12 3.7 0.062
presence of grassland 1 0.19 6.0 0.020
%OSR (1 km) 1 0.30 9.8 0.004
residuals 30 0.03
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scale (table 1 and figure 3b). Bee diversity was highest in
OSR adjacent to grasslands, and in landscapes with low
proportions of OSR (table 1 and figure 3c). Honeybees
were not influenced by any of the predictors.

(c) Study 3: seed set of P. veris
The number of seeds per fruit and seed weight per fruit of
P. veris decreased with increasing %OSR in the surrounding
landscape (figure 4; linear regression models: number of
seeds: F1,17 ¼ 10.3, p¼ 0.005; seed weight per fruit:
F1,17 ¼ 8.2, p ¼ 0.011). The presence of adjacent OSR
and local variables (number of P. veris individuals in the
patch, total flower cover, flower diversity) did not have a sig-
nificant effect on seed number or seed weight (all p. 0.1).

We recorded 31 bumble-bees in the 19 grasslands with
P. veris during the transect walks of study 1 (mean+ s.e.:
1.38+0.35 in isolated grasslands, 1.86+0.46 in grass-
lands adjacent to OSR. Eight bee individuals
(Anthophora plumipes, Bombus sp.) and two bombyliid
flies were observed visiting P. veris. Abundances of
bumble-bees and P. veris visitors were too low to detect
significant relationships between pollinator abundance
and seed number or seed weight.

4. DISCUSSION
We conducted three studies to assess potential positive or
negative effects of interactions between a mass-flowering
crop and protected semi-natural grasslands on bees and
native plants. Our results show that interactions between
these habitats occur at different spatial scales, alter
resource use of pollinators and reduce plant reproduction
in conservation areas.

(a) Study 1: bees in semi-natural grasslands

Diversity and abundance of solitary bees in grasslands
isolated from OSR were enhanced by local flower

diversity. In grasslands adjacent to OSR, diversity and
abundance of solitary bees were independent of local
flower diversity, and were high even in grasslands with
low flower diversity. This suggests that bees even visited
low-diverse grasslands if OSR was nearby providing rich
floral resources in the vicinity of the grassland.

Local abundance and diversity of flowering plants
have often been found to be important drivers of bee
abundance and diversity (e.g. [30,31]). However, there
is some evidence that the relationship between local
habitat factors and bees is affected by the amount of
bee habitats in the surrounding [31,32]. Here we show
that the importance of local resource availability for
bees decreases as the availability of alternative flower
resources at a larger spatial scale increases. We conclude
that bee conservation measures, which aim to enhance
local food availability in agricultural landscapes (e.g. res-
toration of high flower diversity in grasslands, organic
farming or flower margin strips), are not only more effi-
cient in crop-dominated landscapes than in landscapes
dominated by non-crop habitats [31,32], but can be
expected to be most needed and most efficient in crop
landscapes where mass-flowering crops are not
abundant.

In addition to local effects of adjacent OSR, we found
weak landscape-scale effects of OSR, resulting in a
decrease in bumble-bee abundances with increasing
%OSR in the landscape. The number of bumble-bees
recorded in grasslands was very low (49, compared with
684 solitary bees) and might explain why the OSR
effect on bumble-bees was only marginally significant
(p , 0.1). However, even moderate dilution of bumble-
bees over the landscape during OSR flowering
might have severe effects on bumble-bee-dependent
plants (see study 3: pollination of P. veris), because abun-
dances of bumble-bees are generally low at that time of
the year [25].
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(b) Study 2: bees in oilseed rape

Bee diversity and the abundance of solitary bees, but not
of bumble-bees and honeybees, were higher in OSR adja-
cent to grasslands than in isolated OSR. In contrast to
solitary bees, bumble-bees and honeybees do not strongly
depend on semi-natural habitats, because they are not as
strongly constrained by their nesting requirements [21].
The contrasting habitat requirements resulted in altered
proportions of solitary bees, bumble-bees and honeybees
in OSR compared with grasslands. In our study, only
1.6 per cent of the bees in grasslands, but 68.6 per cent
of the bees in OSR were honeybees. Only 7.5 per cent
of the wild bees (i.e. excluding honeybees) in grasslands,
but 20 per cent of the wild bees in OSR fields were

bumble-bees. These shifts highlight the importance of
OSR as attractive food resources, which can be exploited
by pollinators that are not particularly restricted to semi-
natural grasslands owing to low mobility and nesting
requirements.

Bumble-bee abundances in OSR fields decreased with
increasing %OSR in the landscape. Recent studies
showed that generalist bumble-bees strongly benefit
from OSR and other mass-flowering crops, although the
benefit might differ between bumble-bee species [7].
Two to four months after colony establishment and after
OSR flowering, colonies were larger and forager abun-
dances were higher if the %OSR at a landscape scale
was high [33–35]. In contrast to these studies showing
a long-term numerical response of bumble-bee popu-
lations, our data, which were collected during OSR
flowering, suggest a landscape-scale transient dilution of
foraging bumble-bees. The dilution of bumble-bees can
be considered to indicate that bumble-bee abundances
declined at a landscape scale. It indicates that the distri-
bution of bumble-bees in the landscape changed. The
dilution of bumble-bees in the landscape might result in
a decrease in pollination service per area unit of OSR,
because OSR pollination and seed set depend at least
partly on bee abundance [36,37]. In the long run,
mass-flowering crops can enhance abundances of general-
ist pollinators and their pollination service at a landscape
scale [34].

(c) Study 3: seed set of P. veris
The number of seeds per fruit of the grassland plant
P. veris declined with increasing %OSR in the landscape.
Our results indicate that OSR fields withdrew pollinators
from P. veris. Competition for pollinators may occur when
simultaneously flowering plant species are more attractive
than the focal species, and the focal species suffers from
pollen limitation [20]. Negative effects of co-flowering
plant species on flower visitation and reproductive success
of a focal species are known from neighbouring plants
within a habitat [18–20], but have never been shown
for co-flowering crops and native plants, or for co-flower-
ing plant species interacting over larger than local scales
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and across habitat borders. Introduced plant species have
been hypothesized repeatedly to reduce flower visitation,
pollen deposition and reproductive success of neighbour-
ing native species [18,20].

OSR meets the criteria for being a strong competitor
with P. veris for pollinators: (i) It is very attractive to pol-
linators because its floral density is huge. (ii) Bumble-
bees, which are the main pollinators of P. veris, also
forage in OSR, resulting in dilution of bumble-bees in
OSR-dominated landscapes (study 2). (iii) Bumble-bee
abundances are low at the time of P. veris and OSR flower-
ing (study 1; [25]), which directly starts at the end of the
hibernation period of bumble-bees, when queens are pre-
sent, but worker bumble-bees did not yet appear. In
addition to reduced visitation rates, OSR might reduce
deposition of conspecific pollen on P. veris if pollinators
visit flowers of both OSR and P. veris during the same
foraging flight [17,38].

(d) Implications

The current expansion of bee-attractive biofuel crops will
increase cross-habitat exchanges of bees and competition
between OSR and wild plants for pollinators. Spill-over
effects of bees from semi-natural nesting habitats to
crop habitats and bee-mediated spill-over of food
resources from crop to nesting habitats may have a
strong impact on population dynamics of bees and
plants that depend on pollinators. Although there is
little additional evidence up to now, similar spill-over
effects connecting crop and natural habitats can be
expected for many types of species interactions in land-
scapes where highly productive sites and less productive,
more natural sites co-occur.

Plants that depend on pollination by solitary bees
might benefit from enhanced bee abundances at two tem-
poral scales. In the year of OSR flowering, OSR might
enhance the reproduction of plants in nearby grasslands
with naturally low flower and bee diversity by attracting
additional bees to those grasslands. In the year after
OSR flowering, plant reproduction might be enhanced
with a time lag owing to enhanced bee population abun-
dances. From one year to the next, crop rotations can
completely change the % OSR in a landscape and the
crops cultivated in the vicinity of nature reserves. Thus,
declines in plant reproduction in the presence of OSR
in one year might be compensated for by an increased
number of bee offspring in the following year.

Furthermore, given that bees live longer than the flow-
ering period of OSR, plants in the vicinity of OSR may
benefit from enhanced bee abundances after the period
of OSR flowering. However, such beneficial effects
might be restricted to plants pollinated by resource gener-
alists and potentially increase competition between
generalist and specialist pollinators in conservation areas.
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