Author's Proof

Chapter 13
 Modelling Species' Distributions

Carsten F. Dormann

Abstract

Species distribution models have become a commonplace exercise over 4 the last 10 years, however, analyses vary due to different traditions, aims of applica- 5 tions and statistical backgrounds. In this chapter, I lay out what I consider to be the 6 most crucial steps in a species distribution analysis: data pre-processing and visua- 7 lisation, dimensional reduction (including collinearity), model formulation, model 8 simplification, model type, assessment of model performance (incl. spatial autocor- 9 relation) and model interpretation. For each step, the most relevant considerations are discussed, mainly illustrated with Generalised Linear Models and Boosted Regres- 11 sion Trees as the two most contrasting methods. In the second section, I draw 12 attention to the three most challenging problems in species distribution modelling: 13 identifying (and incorporating into the model) the factors that limit a species range; 14 separating the fundamental, realised and potential niche; and niche evolution.

13.1 Introduction

As more species types undergo rapid human-induced extinction, understanding why 17 species occur where they do is becoming a highly relevant, pressing and potentially 18 life-saving topic. Conservation actions, such as establishing protected site networks, adapting land use, providing stepping-stone habitats all require an idea of how the target species will respond. Furthermore, using organisms as a "bioassay technique",20 i.e. indicators of environmental trends (such as climate change, air pollution, overfishing) demands an intimate knowledge of the organism's niche. Species distribution23
modelling (SDM) attempts to identify the probable causes of species whereabouts. 24 We seek to delineate the realized niche of an organism based on its current distribution with respect to the environment (see Elith and Leathwick 2009b for definitions 26 and concepts, Guisan and Thuiller 2005; Kearney 2006; Soberón 2007).

[^0]
Author's Proof

Why Species Distribution Modelling?

There are several fundamental challenges to this approach (e.g. first and foremost that it is correlative; see Vaughan and Ormerod 2005 and Dormann 2007b for a recent critique), and before jumping into the analysis, it is worth considering whether SDMs are actually useful and fit for the purpose of your specific problem. For example, at very small spatial scales, differences in environmental conditions may be too small to be of predictive value and biotic interactions (competition, predation) may be of crucial importance. In contrast, at the global scale, data become so coarse that we "only" model the climate niche and specific habitat requirements cannot be detected.

On the other hand, SDMs try to extract ecological information from a species occurrence pattern when and where it matters. Expert knowledge usually cannot inform us which trait or limitation will be relevant for our problem at hand. We may know that a palm tree does not survive sub-zero temperatures, but the observed distribution will tell you that even $10 \times 10 \mathrm{~km}$ grid squares with minimum temperatures well below $0^{\circ} \mathrm{C}$ harbour this species because of microclimatically suitable places. Thus, at the spatial resolution under investigation, the physiological threshold can be misleading even though it may be true. Overall, SDMs are useful for complementing existing approaches in at least these five areas of research:

1. Small-extent, decision-support for conservation biology (such as Biological Action Plans: Zabel et al. 2003, and numerous others)
2. Testing specific hypotheses, e.g. on the spatial scale of habitat selection (Graf et al. 2005; Mackey and Lindenmayer 2001), the species-energy hypothesis (Lennon et al. 2000) or range-size effects on diversity pattern (Jetz and Rahbek 2002)
3. Generating hypotheses, e.g. on correlation of species traits with environmental variables (Kühn et al. 2006), which can then be tested experimentally
4. Identifying hierarchies of environmental drivers (Bjorholm et al. 2005; Borcard and Legendre 2002; Pearson et al. 2004)
5. Prospective design of surveys, e.g. optimizing sampling schemes for rare species (Guisan et al. 2006)

Now, we shall focus on the technical side, and assume that you know what you are doing, ecologically speaking.

Analysing the geographic distribution of species' occurrence, abundance or diversity is, essentially, a statistical task. As such, the fundamental ideas and principles of good statistics apply (and can be found in the excellent but advanced book of Hastie et al. 2008). There are at least three reasons why methods for describing or modelling these patterns have reached a higher level of sophistication than many other fields in ecology. Firstly, biogeographical data sets are nowadays large (both in terms of number of data points and potentially explanatory variables), necessitating the use of new statistical strategies. Secondly, species distribution data typically carry a largish bunch of common intrinsic statistical

Author's Proof

13 Modelling Species' Distributions
problems and accordingly several solutions have been tailored to these problems 70 (presence-only data, low information content of binary data, spatial autocorrelation, multi-collinearity, model unidentifiability). Thirdly, species distribution
modelling (SDM) is "sexy". As habitat of many species is continually lost, as 73
climate changes and as environmental management becomes a matter of human 74 survival, scientists, decision makers and the general public look for information and predictions of possible future scenarios. Consequently, substantial funding (at 7 least for ecological topics) over the last decade has enabled talented scientists to make a career from SDMs.

Aims of This Chapter

Recent developments have made the field of SDM somewhat complex, diverse and 80 confusing for the newcomer. The aim of this chapter is thus to (1) provide a recipe 81 for SDM; (2) briefly discuss a few selected "hot" topics; and (3) give an overview of 82 challenges of a more ecological modelling type (dispersal, occupancy, biotic inter- 83 actions, functional variables, evolution, changing limiting resources). I shall restrict 84 citations to fundamental or specific methodological papers and will therefore have 85 to ignore the vast amount of good ecological papers that "only" did it right. On the 86 other hand, I am not aware of any paper on species distribution modelling that could 87 tick all elements of the recipe below.

13.2 A Species Distribution Modelling Recipe

A good cook needs no recipe. Alas, we are trained more in ecology than statistics. 90 Moreover, without the right ingredients (a.k.a. data) and tools (software), no dish 91 will be tasty. Also, I should mention other recipes along this line: see Harrell (2001) 92 for a generic statistical recipe, and Pearson (2007) and Elith and Leathwick (2009a, 93 b) for a specific one on SDMs. As for "cooking tools", I highly recommend using 94 code-based software so that each step of the analysis is documented and easily 95 reproducible. The functions mentioned in this chapter are all from the free R 96 environment for statistical programming (R Development Core Team 2008). 97

The recipe falls into three sections: pre-processing, modelling and model inter- 98 pretation (Fig. 13.1). These sections are somewhat arbitrary, but are useful to 99 structure the whole endeavour. We shall assume that you have your ingredients 100 well prepared: The observed data are as good as we need them, the explanatory 101 variables are ecologically relevant and at the same resolution and your statistical 102 tools are laid out in front of you. A worked example is available at http://www. 103 mced-ecology.org (Where's the sperm whale?), which follows the recipe and 104 provides example data and R-code.

Author's Proof

SDM task

$\begin{aligned} & \text { 든 } \\ & \hline \overline{\overline{1}} \\ & \hline 8 \\ & \hline \end{aligned}$	model	formulation
		simplification
		type
	spatial autocorrelation	
	diagnostics	
	model performance	

typical example
log, Box-Cox
square-root
multiple imputation
centering, scaling resource/direct/proxy

PCA, univariate scans
$|\mathrm{r}|<0.7$, sequential regression
splines, interactions
BIC, pooling of levels
GLM, GAM, BRT
GLMM, SEVM
Influential points, dispersion
AUC, cross-validation
shape, error margins
partial R^{2}, p-values
plausibility, cf. literature

Fig. 13.1 Overview of the species distribution modelling workflow. The three phases contain various tasks, for which typical examples are given in the right column

13.2.1 Pre-processing and Visualization

The Response Variable

When the data are presence-absence (i.e. binary) no further preparation is needed. When data are counts or continuous, we have to make sure that assumptions of the modelling approach are met. For parametric modelling approaches (regressions by means of GLM or GAM), count data are usually assumed to be Poisson distributed but all too often are not. Continuous responses are generally assumed to be normally distributed. These assumptions can be checked only after modelling, because we need to look at the residuals or compare log-likelihoods of different distributions. Generally, if too many zeros have been observed, the data are overdispersed and we have to resort to one of three alternative approaches: a quasiPoisson distribution (where over-dispersion is explicitly modelled); a negative binomial distribution (where a clumping parameter is fitted); or a separate analysis of zeros and non-zeros (as in zero-inflated or other mixed distribution models:

Author's Proof

13 Modelling Species' Distributions
Bolker 2008). Sometimes people log-transform count data (more precisely: y' $=120$ $\log (y+1))$, and find the new y ' to be normally distributed. 121

Normally (Gaussian) distributed data show a normal distribution in the model 122 residuals and a straight 1:1 relationship in a QQ-plot of these residuals. Deviations 123 need to be accounted for, e.g. by transforming the data (any good introductory 124 textbook, such as Quinn and Keough (2002), will feature a section on transforma- 125 tions, including useful ones such as the Box-Cox ${ }^{1}$ transformation). 126

When we have presence-only data (i.e. only locations where a species occurs but 127 no information where it does not), two alternative approaches are available. We 128 could use purpose-built presence-only methods, or we could use all locations 129 without a presence and call them absences (pseudo-absences). Both approaches 130 have their difficulties (Brotons et al. 2004; Pearce and Boyce 2006). The first suffers 131 from a lack of sound methods (in fact, following e.g. Tsoar et al. 2007 and Elith and 132 Graham 2009), I would currently only recommend MaxEnt ${ }^{2}$ in this direction and 133 hope for the approach of Ward et al. (2009) to become publically available). The second approach lacks simulation tests on how to select pseudo-absences and how to weight them (see Phillips et al. 2009 for the cutting edge in this field), although it has been argued that the pseudo-absence approach can be as good or better than the purpose-built presence-only methods (Zuo et al. 2008). In what follows, I only consider presence-(pseudo) absence data.

The Explanatory Variables

Explanatory variables may also require transforming! Consider a relevant explanatory variable which is highly skewed (e.g. log-normally distributed), as is commonly 142 the case for land-use proportions. Few high-value data points may completely dominate the regression fitted. To give a more balanced influence to all data points, 143 we want the values of the predictors to be uniformly distributed over their range. 144 This will rarely be achievable, and researchers mostly settle for a more or less symmetric distribution of the predictor. Note, however, that ideally we want most data points where they help most. For a linear regression, the mean is always best described, so we would want most data points at the lowest and highest end of the range. For a non-linear function, for example a Michaelis-Menton-like saturation curve, we want most data points in the steep increase, while there is little gained from many points at the high end, once the maximum is reached. As a rule of thumb we

Transformation of explanatory variables is particularly needed for regression- 154 type modelling approaches such as GLM and GAM (see below for explanation). 155 Regression trees (used, e.g. in Boosted Regression Trees, BRT, or randomForest) 156 are far less sensitive, if at all (Hastie et al. 2008). It is a good custom to make a 157

[^1]
Author's Proof

histogram of each explanatory variable before entering it into an analysis! Transformation options are the same as for the response.

Missing data are a (very) special case of transformation. Although generally disliked by many analysts, imputation (replacement of missing data) is often a good idea (see Harrell 2001), particularly if missing data are scattered through the data set (i.e. across several variables!) and we would lose many data points if we simply omitted every data point with missing values. Standard imputation uses the other explanatory variables to interpolate a likely value for the missing one. ${ }^{3}$ Replacement by the mean is not an option!
"Outliers" are (in general) a red herring: If there is no methodological reason why a data point is extremely high (e.g. one data set being recorded in winter, while all other data points are from the summer), then this datum should also be included in the analysis. Otherwise the data set may be poorly sampled, but the "outlier" would still represent a (potentially) valuable datum. It would be good practice to omit it later on and see if the results are robust to this omission. Furthermore, in multi-dimensional data sets (i.e. those with several explanatory variables), a datum might be an "outlier" in one dimension, but an ordinary data point in all others: why delete it?

Finally, all continuous variables should be standardized before the analysis. ${ }^{4}$ This reduces collinearity, particularly with interactions (Quinn and Keough 2002). As a convenient side effect, regression coefficients are now directly comparable: the larger their absolute value, the more important this term is in the model (they become standardized regression coefficients).

Collinearity

Collinearity refers to the existence of correlated explanatory variables. Some predictors are only proxies for an underlying, latent variable. For example, consider temperature and rainfall, which are largely governed by distance to ocean (oceanity), altitude and regional terrain. Collinear predictors can lead to biased models due to inflated variances (Quinn and Keough 2002). There are many cures to this ailment, but no remedy. Logically speaking, if two predictors are tightly linked to an underlying (but elusive) causal variable, there is no way to find out which is the "correct" predictor for our analysis. We may choose precipitation over temperature when modelling plants (or the other way around for insects), but there is no guarantee that this choice allows us a sensible extrapolation of our model. Furthermore, using Principal Component Analysis (PCA) or any of the other tailor-made methods for collinearity (Partial Least Squares, penalized regression, latent root regression, sequential regression, and many others) will not solve the ecological problem, only the statistical. These methods will produce either a new data set of

[^2]
Author's Proof

13 Modelling Species' Distributions
uncorrelated variables, or "consider" the correlation when estimating model parameters.

So where is the problem? Imagine an organism whose distribution is governed entirely by its sensitivity to frost. When we combine our climate variables into one or more principal components, model the species' distribution, and then predict to a climate change scenario, the fact that both rainfall and mean summer temperature are correlated with number of frost days will dilute its impact in the model. The total effect of "frost" is distributed over all correlated variables. As a consequence, any climate prediction will underestimate the effect of frost and hence yield a "wrong" expected future distribution. If we don't know the true underlying causal mechanism, no statistics can help us here (or at least very little). Any ecological knowledge used in variable pre-selection, however, will lead to a smaller bias in scenario projections!

Dimensional Reduction

Often we may have dozens or even hundreds of potential explanatory variables (e.g. 210 from multispectral remote sensing or landscape metrics). We should try to reduce 211 this set to as few as possible for two reasons: (1) The more variables we have, the 212 more they will be correlated. (2) The more variables we have, the more likely one of 213 them will spuriously contribute to our model (type I error). For SDMs, Austin 214 (2002) and Guisan and Thuiller (2005) argue that we should choose "resource" over 215 "direct" and "direct" over "indirect" yariables. For example, the abundance of prey 216 (hardly ever available) or nesting opportunities will be a resource variable when 217 analysing the distribution pattern of a bird of prey. Temperature or human distur- 218 bance could be direct variables, impacting on the bird without moderation by other 219 variables. Indirect variables would be altitude or length of road in a grid cell, which 220 are substitutes, surrogates or proxies for other, more directly acting variables. These 221 indirect variables are often not immediately perceivable by the organism (such as 222 altitude by a plant or length of road verges by a rodent). So if we have two 223 (correlated) variables, we should discard the one "further away" from the species' 224 ecology. 225

If we are unable to reduce the data set sufficiently (i.e. $k \gg N$), we should use 226 dimensional reduction techniques, such as Principal Component Analysis ${ }^{5}$ or its 227 more sophisticated variants that also allow categorical variables (nMDS ${ }^{6}$). The 228 scores for the most important axes in this new parameter hyperspace can be used as 229 explanatory variables. Note that interpretation is often extremely impaired by 230 automatic dimensional reductions. It is thus always advisable to use ecological 231 understanding rather than statistical functions at this step! 232

[^3]
Author's Proof

An alternative is to "filter" the data by importance. We can use a robust and able technique to tell us which variables are important. Next, we use only those 5 or 12 variables filtered from the initial pool of variables, and continue. Regression-tree based methods are very useful for this, and I recommend randomForest and Boosted Regression Trees. If you plan to model your data with BRT anyway, there is little point in reducing the data before.

Finally, be aware that any model can only find correlations with the variables provided. Of course, we know that our hypothetical bird of prey depends on specific prey. Without this information, we may actually be modelling the niche of the prey, not of the predator!

Exploratory Data Plotting

Can we finally start? No! It is both good practice and highly advisable to look at the data by plotting them in any reasonable combination conceivable (see, e.g., Bolker 2008). Plot thematically related explanatory variables as scatterplot ${ }^{7}$ to detect collinearity. Plot each explanatory variable against the response (henceforth called X and y , respectively) and look for nonlinear effects. Plot y against two Xs (Fig. 13.2) and a hull-polygon around the data to see that 40% or so of the parameter space is not in your data set. This is the area outside the convex hull in Fig. 13.2. The more variables (and hence dimensions) your data set has, the more severe this problem becomes. It is so prominent among statisticians (though not among ecologists) that it is referred to as the "curse of dimensionality" (Bellman 1957; Hastie et al. 2008). Repeat this plotting for any number of variables. Getting a feeling for the data is crucial, and many later errors can be avoided. Every minute invested at this stage saves hours later on.

13.2.2 Modelling

Here, we arbitrarily divide the process of deriving a "usable" model into two steps. The first, model building, selects the variables to be included, the type of nonlinearity and order of interactions considered, and the criteria for selecting the final complexity of a model. The second step, model parameterisation, performs the final step of using the data to calculate the best estimates for variable effects. It is this model that we want to use for interpolation, hypothesis testing or extrapolation. Note that in some methods these two steps are implicitly taken care of and that there is no two-step process (mainly machine learning, where model selection is done internally through cross-validation in order to prevent models from being "unreasonably"

[^4]
Author's Proof

13 Modelling Species' Distributions

Fig. 13.2 Visualizing the parameter space supported by data. In this case, the top-right and bottom-left corner of the parameter space of the two predictors has not actually been sampled by data (despite a low correlation of $r=-0.26$). The parameter space actually sampled is indicated by the convex hull covering 57% of the area, declines dramatically with the number of dimensions ("curse of dimensionality"). In other words: we have few data points to look at interactions of higher order
large: e.g. Hastie et al. 2008). For more traditional approaches (and here I am thinking of GLMs), we may want to have these steps functionally separated.

We have reduced our data set to a moderate number of predictors in the step form the predictors are allowed to correlate with the response. In early years, both non-linear and interactive model terms were neglected, making many of their findings less trustworthy. Modern methods (such as BRT) will automatically have non-linearity and interactions build-in. It is still important to understand the relevance of non-linearity and interactions, even when using the tree-based methods, 276 because we still have to be able to interpret the results. The information on the 277 importance of a variable often returned by machine-learning algorithms does not allow us to see how the variables act. As shown in the case study at http://www. 279 mced-ecology.org (Where's the sperm whale?), the functional relationship must be280

Author's Proof

plotted to gauge its shape. For interactions we need to plot each variable at each level of the other variable, thus visualizing synergistic or compensatory effects of the two variables.

The key idea behind SDM, i.e. the environmental niche of a species, implies a hump-shaped relationship between any environmental predictor and a species' occurrence: there are lower and upper limits. Hence, we must allow the model to be nonlinear. If we happen to only sample a part of the entire gradient, we also need to consider saturation curves, which are again non-linear. The simplest, and generally sufficient, way to include non-linearity is by generating a new, squared dummy variable for each continuous predictor. ${ }^{8}$ This represents the third element of a Taylor series (which can be expanded to represent any function). When using GAM or other spline-based approaches, non-linearity is governed by the smoothing function used. Here the issue is not so much how to model non-linearity, but rather how much non-linearity we allow for. Reducing the "wiggliness" of splines (either by stepwise model selection for the number of knots in each predictor ${ }^{9}$ or by shrinkage of spline fits ${ }^{10}$) prevents over-fitting and should be the standard approach.

Interactions are similarly relevant. Statistically, an interaction is the product of the participating main effects. Ecologically, it means that we need to know the value of all variables included in the interaction, not only the main effects. Because this is highly relevant and often difficult for the beginner, let me briefly give an example. Assume that global patterns of plant diversity are well-predicted by the predictors "annual precipitation" and "mean annual temperature" - and their interaction. For the main effects, wet or hot means more species, but not necessarily. When a site is hot, it needs to also be wet to have high species richness; otherwise it may well be a barren desert. But when cold, a site will never support many plant species, independent of precipitation. In this example, neither temperature nor rainfall alone is sufficient to predict species richness at any site, but we need to interpret them in concert.

Classification and regression trees (CARTs) embrace non-linearity and interactions in an elegant and natural way. Their boosted (BRT) or bagging (randomForest) extensions hence do not require specification of non-linearity and interactions.

Model Simplification

One of the fundamental problems in building statistical models is the trade-off between the variance explained by the model, and the bias it produces when

[^5]
Author's Proof

13 Modelling Species' Distributions
validating it on a new, independent data set (variance-bias-trade-off: Hastie et al. 316 2008). Smaller models are more robust, i.e. less biased, at the expense of being not 317 very good in explaining variance. The way to derive the "optimal" model size is 318 through cross-validation (CV). For some modelling approaches this is automatically implemented, but the majority of model types require the user to carry out this step. ${ }^{11} N$-fold cross-validation encompasses a random assignment of data points to the N subset, with N usually between 3 and 10. Care should be taken to have equal prevalence in all subsets, e.g. by randomizing 0 s and 1 s separately (stratified randomization). The model is then fitted to $N-1$ of the N subsets and evaluated on (by predicting to) the remaining subset. This is repeated for all N subsets and evaluations are averaged. Based on these values, we can select the best modelling strategy (both model complexity and model type). An alternative approach is to bootstrap the entire model building process and use bootstrapped measures of model performance. Since a bootstrap requires several thousand runs, and a CV 319 320 321 322 323 324 325 326 327 328 only a few, CV is far more common. 329

Information theoretical approaches are based on analytical methods to describe 331 this CV. Hence Akaike's Information Criterion (AIC) or Schwartz'/Bayesian 332 Information Criterion (BIC) are implicitly also based on cross-validation. While 333 it is clear that too large a model will be over-fitting, and that too small a model will 334 not capture as much of the variation as it should in the data, the "true" model will 335 always remain elusive, and our "optimal" model will only be a caricature of the truth. However, here is much to be learned from this caricature!

Model Type

At this point we have to choose one (or more) method(s) to do our analysis with. 339 The good "traditional" approaches comprise Generalised Linear Models (GLM) 340 and Generalised Additive Models (Guisan and Zimmermann 2000). Discriminant 341 Analysis has been given up on, as have been Neural Networks and CARTs (Guisan 342 and Thuiller 2005). "Modern" approaches are often based on either multidimen- 343 sional extensions of GAMs (such as MARS and SVM) or machine-learning varia- 344 tions of CART (such as BRT and randomForest: Hastie et al. 2008). Anyone using a 345 machine-learning method should familiarize himself with this method. The major- 346 ity of them are performed on real data sets, where the truth is unknown and the 347 performance of a method was hence assessed by cross-validation. These compar- 348 isons show, broadly speaking, that model types sometimes differ dramatically in 349 performance, that each model type can be misused and that both GLM and BRT are 350 reliable methods when used properly.

[^6]
Author's Proof

This is not the place to explain the differences between all of them (see Hastie et al. 2008 for a recent and comprehensive description or Elith and Leathwick 2009a). It has to suffice to make clear the main difference in the machine-learning approach to "traditional" statistical models. In traditional models (e.g. GLM), we specify the functional relationship between the response and its predictors. For example, we decide to include precipitation as a non-linear predictor for plant species richness. This model proposal is then fitted to the data. In machine learning, we propose only the set of predictors, but not the model structure. Here, an algorithm builds a model proposal, fits it to a part of the data set and evaluates its performance on the other part of the data. It then proposes a modification of the original model and so forth. Machine-learning algorithms ${ }^{12}$ differ in scope, origin, complexity, and speed, but they all share this validation step which is used to steer the algorithm towards a better model formulation. There are plenty of studies comparing different modelling approaches (Guisan et al. 2007; Meynard and Quinn 2007; Pearson et al. 2006; Segurado and Araújo 2004). Rather, we shall continue using GLM and BRT as representatives for the two most common good approaches.

The choice of model type has much to do with availability of software, current fashion and, of course, with the specific aim of the study. Further complications arise if the design of the survey may require a mixed model approach (e.g. due to repeated measurements or surveys split across observers), if spatial autocorrelation needs to be addressed, if zero-inflated distributions have to be employed, and if corrections for detection probability shall be modeled. The more additional requirements are imposed on the model, the more GLMs become the sole possible method. ${ }^{13}$ Alternatively, you may want to go for a Bayesian SDM (see Latimer et al. 2006, for a primer).

If your data and model require an unusual combination of steps (say a combination of zero-inflated data with nested design and spatial autocorrelation, while predictors are highly correlated and many values missing, and you develop a way to cook this dish, then you should do (at least) two things: Firstly, evaluate your method for its ability to detect an effect that you know is there ("power"). Secondly, evaluate your method for its sensitivity to detect effects that you know are not there ("type I error"). Both evaluations should be amply replicated, should be based on simulated data (so that you know the truth) and should (finally) confirm that your new methods is reliable!

[^7]
Author's Proof

13 Modelling Species' Distributions

Spatial Autocorrelation

Spatial autocorrelation (SAC) refers to the phenomenon that data points close to each other in space are more alike than those further apart. For example, species richness in 389 a given site is likely to be similar to a site nearby, but very different from sites far away. 390 This is mainly due to the fact that the environment is more similar within a shorter 391 distance. Hence, SAC in the raw data (species richness) is a consequence of SAC in the environment (topography, climate), something Legendre (1993) termed "spatial dependence". In SDMs, we do not care about SAC per se, but about SAC in the model's residuals (i.e. unexplained by the environment), because it distorts model coefficients (Bini et al. 2009; Dormann 2007a). To date it is unclear whether this residual SAC is mainly due to model misspecification (omission of non-linearity and interactions), due to variation in sampling coverage, due to omission of important predictors, or due to ecological processes (territoriality, dispersal). Only with respect to some of these problems can statistical solution be found. The spatial toolbox is rich in approaches (Beale et al. 2010; Carl et al. 2008; Dormann et al. 2007; Mahecha and Schmidtlein 2008). In any case, SDM residuals should be investigated for spatial autocorrelation, and attempts should be made to correct for it. If spatial models yield similar coefficient estimates (GLM) as non-spatial models, then there seems to be little value in "going spatial": the ranges of the spatial autocorrelation may or may not be related to the ecological scale of movement or behavioral patterns (Betts et al. 2009; Dormann 2009). 391
392 393 394 395 396 397 398 399 400 401 402 403 404 405

Tweaking the Model

There are several ways in which the quality of the model can be increased (Maggini 409 et al. 2006). One important start is to investigate the model residuals. They indicate 410 whether model assumptions were violated (e.g. when residuals are highly skewed or 411 their variance is not the same throughout the range of fitted values) or if some non- 412 linear relationship went unnoticed (residuals may, e.g. show a hump-shaped trend 413 against fitted values).

Model diagnostics ${ }^{14}$ will also indicate outliers, i.e. data points that have a high 415 influence on the model coefficients. We can use weights to decrease an outlier's impact. Weights are also useful when the balance between presences and absences is very disturbed. Down-weighting the more common category so that model weights sum to the same value for 0 s and 1 s has been shown to increase the sensitivity of binomial models (Maggini et al. 2006). The same approach is recommended when 420 using pseudo-absences (Elith and Leathwick 2009a). 421

By including data from other scales or broader geographic coverage, regional or 422 local SDMs can also be improved. Pearson et al. (2004) used European distribution 423 and climate data to fit a niche model for four plant species. Predicted probabilities

[^8]
Author's Proof

of occurrence from this model were then used as input variable alongside landcover variables in the second-step model for the UK. Thereby the authors avoided the problem that the climate gradient in the UK is much shorter than of the species' global distribution.

Assessing Model Performance

To quantify how well our model fits the data, we compare model predictions with field data (usually on a hold-out sample; e.g. the subset of a cross-validation). Traditionally, the probability predictions from the model were converted into presences and absences and then a confusion matrix could be used to calculate various parameters of choice (e.g. commission and omission error, kappa, etc: Fielding 2002). The AUC ("area under curve") is currently the most commonly used measure of discriminatory power of a model. Its value (between 0.5 for random and 1 for perfect) quantifies the ability of the model to put the data points into the correct class (i.e. presence or absence), independent of the threshold required by the other measures mentioned. It has recently received justified criticism because its values are not comparable across different prevalences (and the criticism extends to kappa, too; see Lobo et al. 2008). Currently, misclassification rates, commission and omission errors are more en vogue again, because they can be intuitively interpreted. Furthermore, by assigning different weights to false negatives (omission error) and to false positives (commission error), conservation management can come to more sophisticated and balanced decisions (Rondinini et al. 2006).

Only rarely will a second set of data be available to investigate the quality of our model(s) through external validation. A different recording strategy, another time slice or data from a different geographic location represent really independent data, and could thus be considered an external validation. The internal validation (described above as cross-validation) is an optimistic assessment of model quality. When using SDMs to infer underlying mechanisms, external validation is less of an issue than when using them to extrapolate to a future climate or other sites. Because the cross-validated models are optimistic, they give narrower error bands than they should.

13.2.3 Interpretation

Once we have arrived at what we regard as a final model, we should make every effort to understand what it means. A first and most relevant step is to visualize the functional relationships within the model. The plot of how occurrence probability is related to, say, annual precipitation should be accompanied by a confidence band around this line. It may be useful to plot the data as rug (ticks on the axis representing

Author's Proof

13 Modelling Species' Distributions

Fig. 13.3 Functional relationship between an environmental variable and a binary response. Rug (ticks on lower axis) indicate for which x-values data were available. Lines represent a quadratic fit (solid) and its standard deviation (dashed). Thin grey line is the true, underlying, data-generating function. Note the few data points upon which the declining half of the function is based (6 of a total of 50 have a value >0.35)
positions of the data values) into this figure to visualise the support at each point in
For interactions, visualization becomes more difficult. Two-way interactions can 464 still be plotted (e.g. as a 3-D plot or as a contour plot). No confidence bands can be 465 included, though. Here it is again very important to indicate the position of the 466 samples to identify regions of the parameter space that have not been sampled. For 467 higher dimensions, or for a model that averages across many sub-models, we can do 468 the same plots (called marginal plots for main effects because they represent the 469 marginal changes to a predictor, averaging across all other predictors). We can also 470 slice through higher dimensions, i.e. calculate a marginal plot for specific values of 471 other predictors (often their median).472

Spending time plotting is again well invested. We will detect errors in the model, 473 scratch our head over inexplicable (and hence overly complex) patterns, and be 474 forced to extract the main conclusions from it. It is this phase where the traditional 475 GLM is superior to the BRT, because variable interpretation is easier. It is, 476 however, also this phase where we may realize that BRTs are superior to GLMs 477 because they can model step-changes and thresholds much better. Personally, 478

Author's Proof

I think we should not publish patterns we do not understand. There are, as the previous steps have shown, several decisions that could generate artifacts and their publication cannot be seen as progress.

13.3 Beyond Recipes: New Challenges for Species Distribution Models

The above recipe can be used to derive a static description of environmental correlates with distribution data. But they often leave the analyst unsatisfied. Many assumptions might be suspected to be violated (Dormann 2007b), such as stationarity, unbiased coverage, or equilibrium with environment. ${ }^{15}$ There are three key challenges with the following problems of current SDMs: (1) A niche model describes the current niche, and it is unclear which factors will be limiting elsewhere or in the future. (2) Climate change projections delimit only the potential future distribution, and it is unclear whether the species will ever fill this new range; e.g., due to dispersal constraints. And, (3), our understanding of the adaptive potential of a species is currently very poor. This sets, in part, the research agenda for species distribution models. Let us look at these challenges in more detail.

What Limits a Species’ Range?

An organism is constrained in its population dynamics by resources, competitors, predators and diseases, density dependence, reproductive opportunity, mutualists, environmental stochasticity and so forth (e.g. Krebs 2002). The same holds true for its spatial distribution (e.g. Gaston 2009; Holt and Barfield 2009), but additionally spatial constraints come into play (e.g. distance between habitat fragments, minimum territory size, Allee effects due to low population density). With an SDM, we are usually only able to quantify some of these limitations, and, accordingly, SDMs often do not transfer very well to other sites (Schröder and Richter 1999; Randin et al. 2006; Duncan et al. 2009, but see Herborg et al. 2007). In particular, biotic interactions are hardly ever quantified explicitly within SDMs (although some of them will also correlate with the environmental data used). But they matter in real data (e.g. Preston et al. 2008; Schweiger et al. 2008), and they impact model performance and predictive ability (as shown, in a simulation study, by Zurell et al. 2009). It is thus a key challenge to incorporate biotic interactions into SDMs,

[^9]
Author's Proof

13 Modelling Species' Distributions
but to date such attempts are few and far between (e.g. Bjornstad et al. 2002). A 510 recent review (Thuiller et al. 2008) indicates some avenues to do so, but all of them 511 are based on the explicit modelling of populations within cells, if not individuals. It 512 is unclear, how to derive a more general dynamic SDM without spending years per 513 species on incorporating detailed ecological knowledge.

Fundamental, Potential and Realized Niches

The reason why many biogeographers refer to SDMs as "Species Distribution 516 Models" and not as "niche models" is because they do not believe that we model 517 the niche of the target species. In fact, as Jiménez-Valverde et al. (2008) argue, 518 because we do not know why a species is absent in some sites, we are in the dark 519 about its niche. The discussion of what a niche is, and what we are modelling, has 520 sparked several interesting and not always compatible publications (e.g. Kearney 521 2006; Soberón 2007). Hence, Araújo and Guisan (2006) have named the "clarifica- 522 tion of the niche concept" the first of five challenges for SDMs. While we cannot 523 resolve this issue here, it is important to realize that the "niche" based on the 524 correlation between geographic distributions and environmental conditions is quite 525 a bit more vague than the niche discussed in evolutionary ecology, where resources and other causal drivers are envisaged (see, e.g. Losos 2008).

More to the point in this context is the challenge to quantify how much of the 528 fundamental niche is actually covered by the realized niche as extracted from SDMs. If, on one extreme, the realized niche is pretty much also the fundamental niche (i.e. there are no biotic interactions alike to constrain the distribution at the scale we are analyzing), then we can merrily predict future distributions of this species (e.g. under climate or land-use change). At worst, we are overestimating the future, "potential" distribution (if in the future biotic interactions may become limiting or if species do not reach the sites). At the other extreme, if the fundamental niche is considerably wider than what we model, any projection can be fundamentally flawed (Dormann et al. 2010). I am not aware of any study assessing the overlap of realized and fundamental niche for geographic distributions (see also Nogués-Bravo 2009). It could require transplant experiments into areas beyond the current range and the manipulation of biotic interactions there. The few studies going into this direction point at a large discrepancy between fundamental and realized niche. Battisti et al. (2006), for example report on a range shift after a particularly warm summer, which was not reverted afterwards, indicating that it was dispersal limitation that prevented a filling of the niche. Similarly, several studies point at the importance of dispersal limitation (Nekola 1999; Ozinga et al. 2005; Samu et al. 1999; Svenning and Skov 2004), leading to both a bias in the modeled environment-occurrence relationship as well as the width of the niche itself. There is, as yet, no standard way to wed SDMs and dispersal (see Johst et al. 2002; King and With 2002; Lavorel et al. 2000; Lischke et al. 2006; Midgley et al. 2006; Schurr et al. 2007 for attempts, Thuiller 2004).

Author's Proof

Niche Evolution

Another important and fast developing field related to species distribution modelling is the study of niche evolution. I shall use this term very loosely, as is often done, to also include micro-evolutionary changes, genetic (and ecological)drift within species and genotypic plasticity (Pfenninger et al. 2007). Climate change projections using SDMs rely on the assumption that species are not able to adapt significantly to altering environmental conditions. This assumption is implicit in the extrapolation of the fitted niche: if a species was able to adapt rapidly, then the present niche would not be related to its future niche.

The problem is that we have considerable, if patchy, evidence that niches can rapidly evolve (reviewed in Thompson 1998), change within the fundamental niche (Dormann et al. 2010) or at least that variability within a species is large enough to allow it to shift its niche when confronted with novel environments (e.g. Ackerly et al. 2006; Broennimann et al. 2007; Hajkova et al. 2008; Holt 2003; Holt and Gaines 1992). There is, as yet, no synthesis of niche evolution nor, to my knowledge, any mechanistic approach to incorporate geno- and phenotypic plasticity into SDMs or spatial population models. There is, on the other hand, more than anecdotal evidence that microevolutionary processes are at play and matter ecologically (Hampe and Petit 2005; Phillips et al. 2006a). Hence, this field still awaits being embraced by species distribution models.

13.4 Concluding Remarks

This chapter tries to strike a balance between guidance for novices to species distribution modelling - by providing a recipe for the most crucial elements of SDMs - and an embedding of SDMs into the currently most relevant statistical challenges. Analysing a species' distribution can be a very useful starting point for further investigations or process-based modelling attempts. The correlative nature of modelling in general, and species distribution modelling specifically, should always be remembered. Tempting as it may be to incorporate a lot of ecological knowledge into mechanistic or statistical models, only little of this information will actually be relevant at the focal scale. The main intellectual challenges that remain to not over-interpret one's findings and to seek independent corroboration.

Acknowledgments Over the years, many colleagues helped develop the above recipe. I am particularly grateful to Boris Schröder, Björn Reineking and Jane Elith, as well as the many participants of statistical workshops on this topic. I am also grateful to Fred Jopp, Hauke Reuters and Dietmar Kraft for improving a previous version. Funding by the Helmholtz Association is acknowledged (VH-NG-247).

Metadata of the chapter that will be visualized online

Series Title	
Chapter Title	Modelling Species' Distributions
Chapter SubTitle	
Copyright Year	2011
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Dormann
	Particle
	Given Name Carsten F.
	Suffix
	Division Department of Computational Landscape Ecology
	Organization Helmholtz Centre for Environmental Research - UFZ
	Address Permoserstr.15, 04318, Leipzig, Germany
	Email carsten.dormann@ufz.de
Abstract	Species distribution models have become a commonplace exercise over the last 10 years, however, analyses vary due to different traditions, aims of applications and statistical backgrounds. In this chapter, I lay out what I consider to be the most crucial steps in a species distribution analysis: data pre-processing and visualisation, dimensional reduction (including collinearity), model formulation, model simplification, model type, assessment of model performance (incl. spatial autocorrelation) and model interpretation. For each step, the most relevant considerations are discussed, mainly illustrated with Generalised Linear Models and Boosted Regression Trees as the two most contrasting methods. In the second section, I draw attention to the three most challenging problems in species distribution modelling: identifying (and incorporating into the model) the factors that limit a species range; separating the fundamental, realised and potential niche; and niche evolution.

[^0]: C.F. Dormann

 Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr.15, 04318 Leipzig, Germany
 e-mail: carsten.dormann@ufz.de

[^1]: ${ }^{1}$ boxcox in MASS (typewriter and bold are used to refer to a function and its R-package)
 ${ }^{2}$ Phillips et al. (2006b): http://www.cs.princeton.edu/~schapire/maxent/

[^2]: ${ }^{3}$ transcan and aregImpute in Hmisc
 ${ }^{4}$ scale

[^3]: ${ }^{5}$ prcomp
 ${ }^{6}$ isoMDS in MASS or, more conveniently, metaMDS in vegan

[^4]: ${ }^{7}$ pairs

[^5]: ${ }^{8}$ This can be done either manually ($\mathrm{X} 1.2<-\mathrm{X} 1^{\wedge} 2$) or as part of the model formula ($\mathrm{y} \sim \mathrm{X} 1+\mathrm{I}$ (X1^2)); higher-order polynomials should be specified using poly ($\mathrm{y} \sim \operatorname{poly}(\mathrm{X} 1$, degree $=3$)), which calculates orthogonal polynomials.
 ${ }^{9}$ As proposed for the function gam in package gam: see ?gam::step.gam
 ${ }^{10}$ As proposed for the function gam in package mgev: see?mgcv::step.gam.

[^6]: ${ }^{11}$ Do not confuse out-of-bag model weights and alike with cross-validation of the entire model. When data are held back during the building of sub-models (e.g. in randomForest or BRT), this does not represent a cross-validation of the entire model (i.e. the average of sub-models).

[^7]: ${ }^{12} \mathrm{http}: / / \mathrm{www}$. machinelearning.org/ is a good place to start exploring this field
 ${ }^{13}$ Most of these "complications" can be handled by standard extensions of GLMs (see, e.g. Bolker 2008, and various dedicated R-packages). They will, however, make the model less stable, require larger run-times and still rely on getting the distribution right. There is, of course, the alternative of Bayesian implementations. Since these are also fundamentally maximum likelihood approaches, they are similar to sophisticated GLMs. In any case, there is no Bayesian Boosted Regression Tree (not to speak of a combination with spatial terms and mixed effects). It runs against the Bayesian philosophy to use boosting or bagging, and there is no efficient implementation either.

[^8]: ${ }^{14}$ Diagnostics for GLMs fitted in R are given by plotting the model object.

[^9]: ${ }^{15}$ Actually, the term "equilibrium" is a bit misleading. What is meant is that the entire width of its niche is filled. Within this niche, there may well be unoccupied sites, e.g. due to metapopulation dynamics. A problem arises, when a species does not occupy say the dry end of its soil moisture niche for historic reasons. Then the estimate of this end of the niche will be biased.

