
1Chapter 13
2Modelling Species’ Distributions

3Carsten F. Dormann

4Abstract Species distribution models have become a commonplace exercise over
5the last 10 years, however, analyses vary due to different traditions, aims of applica-
6tions and statistical backgrounds. In this chapter, I lay out what I consider to be the
7most crucial steps in a species distribution analysis: data pre-processing and visua-
8lisation, dimensional reduction (including collinearity), model formulation, model
9simplification, model type, assessment of model performance (incl. spatial autocor-
10relation) and model interpretation. For each step, the most relevant considerations are
11discussed, mainly illustrated with Generalised Linear Models and Boosted Regres-
12sion Trees as the two most contrasting methods. In the second section, I draw
13attention to the three most challenging problems in species distribution modelling:
14identifying (and incorporating into the model) the factors that limit a species range;
15separating the fundamental, realised and potential niche; and niche evolution.

1613.1 Introduction

17As more species types undergo rapid human-induced extinction, understanding why
18species occur where they do is becoming a highly relevant, pressing and potentially
19life-saving topic. Conservation actions, such as establishing protected site networks,
20adapting land use, providing stepping-stone habitats all require an idea of how the
21target species will respond. Furthermore, using organisms as a “bioassay technique”,
22i.e. indicators of environmental trends (such as climate change, air pollution, over-
23fishing) demands an intimate knowledge of the organism’s niche. Species distribution
24modelling (SDM) attempts to identify the probable causes of species whereabouts.
25We seek to delineate the realized niche of an organism based on its current distribu-
26tion with respect to the environment (see Elith and Leathwick 2009b for definitions
27and concepts, Guisan and Thuiller 2005; Kearney 2006; Soberón 2007).
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28 Why Species Distribution Modelling?

29 There are several fundamental challenges to this approach (e.g. first and foremost
30 that it is correlative; see Vaughan and Ormerod 2005 and Dormann 2007b for a
31 recent critique), and before jumping into the analysis, it is worth considering
32 whether SDMs are actually useful and fit for the purpose of your specific problem.
33 For example, at very small spatial scales, differences in environmental conditions
34 may be too small to be of predictive value and biotic interactions (competition,
35 predation) may be of crucial importance. In contrast, at the global scale, data
36 become so coarse that we “only” model the climate niche and specific habitat
37 requirements cannot be detected.
38 On the other hand, SDMs try to extract ecological information from a species
39 occurrence pattern when and where it matters. Expert knowledge usually cannot
40 inform us which trait or limitation will be relevant for our problem at hand. We may
41 know that a palm tree does not survive sub-zero temperatures, but the observed
42 distribution will tell you that even 10 ! 10 km grid squares with minimum
43 temperatures well below 0"C harbour this species because of microclimatically
44 suitable places. Thus, at the spatial resolution under investigation, the physiological
45 threshold can be misleading even though it may be true. Overall, SDMs are useful
46 for complementing existing approaches in at least these five areas of research:

47 1. Small-extent, decision-support for conservation biology (such as Biological
48 Action Plans: Zabel et al. 2003, and numerous others)
49 2. Testing specific hypotheses, e.g. on the spatial scale of habitat selection (Graf
50 et al. 2005; Mackey and Lindenmayer 2001), the species-energy hypothesis
51 (Lennon et al. 2000) or range-size effects on diversity pattern (Jetz and Rahbek
52 2002)
53 3. Generating hypotheses, e.g. on correlation of species traits with environmental
54 variables (K€uhn et al. 2006), which can then be tested experimentally
55 4. Identifying hierarchies of environmental drivers (Bjorholm et al. 2005; Borcard
56 and Legendre 2002; Pearson et al. 2004)
57 5. Prospective design of surveys, e.g. optimizing sampling schemes for rare species
58 (Guisan et al. 2006)

59 Now, we shall focus on the technical side, and assume that you know what you
60 are doing, ecologically speaking.
61 Analysing the geographic distribution of species’ occurrence, abundance or
62 diversity is, essentially, a statistical task. As such, the fundamental ideas and
63 principles of good statistics apply (and can be found in the excellent but advanced
64 book of Hastie et al. 2008). There are at least three reasons why methods for
65 describing or modelling these patterns have reached a higher level of sophistica-
66 tion than many other fields in ecology. Firstly, biogeographical data sets are
67 nowadays large (both in terms of number of data points and potentially explanatory
68 variables), necessitating the use of new statistical strategies. Secondly, species
69 distribution data typically carry a largish bunch of common intrinsic statistical

C.F. Dormann



70problems and accordingly several solutions have been tailored to these problems
71(presence-only data, low information content of binary data, spatial autocorrela-
72tion, multi-collinearity, model unidentifiability). Thirdly, species distribution
73modelling (SDM) is “sexy”. As habitat of many species is continually lost, as
74climate changes and as environmental management becomes a matter of human
75survival, scientists, decision makers and the general public look for information
76and predictions of possible future scenarios. Consequently, substantial funding (at
77least for ecological topics) over the last decade has enabled talented scientists to
78make a career from SDMs.

79Aims of This Chapter

80Recent developments have made the field of SDM somewhat complex, diverse and
81confusing for the newcomer. The aim of this chapter is thus to (1) provide a recipe
82for SDM; (2) briefly discuss a few selected “hot” topics; and (3) give an overview of
83challenges of a more ecological modelling type (dispersal, occupancy, biotic inter-
84actions, functional variables, evolution, changing limiting resources). I shall restrict
85citations to fundamental or specific methodological papers and will therefore have
86to ignore the vast amount of good ecological papers that “only” did it right. On the
87other hand, I am not aware of any paper on species distribution modelling that could
88tick all elements of the recipe below.

8913.2 A Species Distribution Modelling Recipe

90A good cook needs no recipe. Alas, we are trained more in ecology than statistics.
91Moreover, without the right ingredients (a.k.a. data) and tools (software), no dish
92will be tasty. Also, I should mention other recipes along this line: see Harrell (2001)
93for a generic statistical recipe, and Pearson (2007) and Elith and Leathwick (2009a,
94b) for a specific one on SDMs. As for “cooking tools”, I highly recommend using
95code-based software so that each step of the analysis is documented and easily
96reproducible. The functions mentioned in this chapter are all from the free R
97environment for statistical programming (R Development Core Team 2008).
98The recipe falls into three sections: pre-processing, modelling and model inter-
99pretation (Fig. 13.1). These sections are somewhat arbitrary, but are useful to
100structure the whole endeavour. We shall assume that you have your ingredients
101well prepared: The observed data are as good as we need them, the explanatory
102variables are ecologically relevant and at the same resolution and your statistical
103tools are laid out in front of you. A worked example is available at http://www.
104mced-ecology.org (Where’s the sperm whale?), which follows the recipe and
105provides example data and R-code.
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106 13.2.1 Pre-processing and Visualization

107 The Response Variable

108 When the data are presence–absence (i.e. binary) no further preparation is needed.
109 When data are counts or continuous, we have to make sure that assumptions of the
110 modelling approach are met. For parametric modelling approaches (regressions by
111 means of GLM or GAM), count data are usually assumed to be Poisson distributed
112 but all too often are not. Continuous responses are generally assumed to be
113 normally distributed. These assumptions can be checked only after modelling,
114 because we need to look at the residuals or compare log-likelihoods of different
115 distributions. Generally, if too many zeros have been observed, the data are over-
116 dispersed and we have to resort to one of three alternative approaches: a quasi-
117 Poisson distribution (where over-dispersion is explicitly modelled); a negative
118 binomial distribution (where a clumping parameter is fitted); or a separate analysis
119 of zeros and non-zeros (as in zero-inflated or other mixed distribution models:

Fig. 13.1 Overview of the species distribution modelling workflow. The three phases contain
various tasks, for which typical examples are given in the right column
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120Bolker 2008). Sometimes people log-transform count data (more precisely: y’ ¼
121log(y+1)), and find the new y’ to be normally distributed.
122Normally (Gaussian) distributed data show a normal distribution in the model
123residuals and a straight 1:1 relationship in a QQ-plot of these residuals. Deviations
124need to be accounted for, e.g. by transforming the data (any good introductory
125textbook, such as Quinn and Keough (2002), will feature a section on transforma-
126tions, including useful ones such as the Box-Cox1 transformation).
127When we have presence-only data (i.e. only locations where a species occurs but
128no information where it does not), two alternative approaches are available. We
129could use purpose-built presence-only methods, or we could use all locations
130without a presence and call them absences (pseudo-absences). Both approaches
131have their difficulties (Brotons et al. 2004; Pearce and Boyce 2006). The first suffers
132from a lack of sound methods (in fact, following e.g. Tsoar et al. 2007 and Elith and
133Graham 2009), I would currently only recommend MaxEnt2 in this direction and
134hope for the approach of Ward et al. (2009) to become publically available). The
135second approach lacks simulation tests on how to select pseudo-absences and how
136to weight them (see Phillips et al. 2009 for the cutting edge in this field), although it
137has been argued that the pseudo-absence approach can be as good or better than the
138purpose-built presence-only methods (Zuo et al. 2008). In what follows, I only
139consider presence-(pseudo)absence data.

140The Explanatory Variables

141Explanatory variables may also require transforming! Consider a relevant explana-
142tory variable which is highly skewed (e.g. log-normally distributed), as is commonly
143the case for land-use proportions. Few high-value data points may completely
144dominate the regression fitted. To give a more balanced influence to all data points,
145we want the values of the predictors to be uniformly distributed over their range.
146This will rarely be achievable, and researchers mostly settle for a more or less
147symmetric distribution of the predictor. Note, however, that ideally we want most
148data points where they help most. For a linear regression, the mean is always best
149described, so we would want most data points at the lowest and highest end of the
150range. For a non-linear function, for example a Michaelis–Menton-like saturation
151curve, wewantmost data points in the steep increase, while there is little gained from
152many points at the high end, once the maximum is reached. As a rule of thumb we
153need many data points where a curve is changing its slope.
154Transformation of explanatory variables is particularly needed for regression-
155type modelling approaches such as GLM and GAM (see below for explanation).
156Regression trees (used, e.g. in Boosted Regression Trees, BRT, or randomForest)
157are far less sensitive, if at all (Hastie et al. 2008). It is a good custom to make a

1boxcox in MASS (typewriter and bold are used to refer to a function and its R-package)
2Phillips et al. (2006b): http://www.cs.princeton.edu/~schapire/maxent/
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158 histogram of each explanatory variable before entering it into an analysis! Trans-
159 formation options are the same as for the response.
160 Missing data are a (very) special case of transformation. Although generally
161 disliked by many analysts, imputation (replacement of missing data) is often a good
162 idea (see Harrell 2001), particularly if missing data are scattered through the data
163 set (i.e. across several variables!) and we would lose many data points if we simply
164 omitted every data point with missing values. Standard imputation uses the other
165 explanatory variables to interpolate a likely value for the missing one.3 Replace-
166 ment by the mean is not an option!
167 “Outliers” are (in general) a red herring: If there is no methodological reason
168 why a data point is extremely high (e.g. one data set being recorded in winter, while
169 all other data points are from the summer), then this datum should also be included
170 in the analysis. Otherwise the data set may be poorly sampled, but the “outlier”
171 would still represent a (potentially) valuable datum. It would be good practice to
172 omit it later on and see if the results are robust to this omission. Furthermore, in
173 multi-dimensional data sets (i.e. those with several explanatory variables), a datum
174 might be an “outlier” in one dimension, but an ordinary data point in all others: why
175 delete it?
176 Finally, all continuous variables should be standardized before the analysis.4

177 This reduces collinearity, particularly with interactions (Quinn and Keough 2002).
178 As a convenient side effect, regression coefficients are now directly comparable:
179 the larger their absolute value, the more important this term is in the model (they
180 become standardized regression coefficients).

181 Collinearity

182 Collinearity refers to the existence of correlated explanatory variables. Some
183 predictors are only proxies for an underlying, latent variable. For example, consider
184 temperature and rainfall, which are largely governed by distance to ocean (ocean-
185 ity), altitude and regional terrain. Collinear predictors can lead to biased models due
186 to inflated variances (Quinn and Keough 2002). There are many cures to this
187 ailment, but no remedy. Logically speaking, if two predictors are tightly linked to
188 an underlying (but elusive) causal variable, there is no way to find out which is the
189 “correct” predictor for our analysis. We may choose precipitation over temperature
190 when modelling plants (or the other way around for insects), but there is no
191 guarantee that this choice allows us a sensible extrapolation of our model. Further-
192 more, using Principal Component Analysis (PCA) or any of the other tailor-made
193 methods for collinearity (Partial Least Squares, penalized regression, latent root
194 regression, sequential regression, and many others) will not solve the ecological
195 problem, only the statistical. These methods will produce either a new data set of

3transcan and aregImpute in Hmisc
4scale
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196uncorrelated variables, or “consider” the correlation when estimating model para-
197meters.
198So where is the problem? Imagine an organism whose distribution is governed
199entirely by its sensitivity to frost. When we combine our climate variables into one
200or more principal components, model the species’ distribution, and then predict to a
201climate change scenario, the fact that both rainfall and mean summer temperature
202are correlated with number of frost days will dilute its impact in the model. The
203total effect of “frost” is distributed over all correlated variables. As a consequence,
204any climate prediction will underestimate the effect of frost and hence yield a
205“wrong” expected future distribution. If we don’t know the true underlying causal
206mechanism, no statistics can help us here (or at least very little). Any ecological
207knowledge used in variable pre-selection, however, will lead to a smaller bias in
208scenario projections!

209Dimensional Reduction

210Often we may have dozens or even hundreds of potential explanatory variables (e.g.
211from multispectral remote sensing or landscape metrics). We should try to reduce
212this set to as few as possible for two reasons: (1) The more variables we have, the
213more they will be correlated. (2) The more variables we have, the more likely one of
214them will spuriously contribute to our model (type I error). For SDMs, Austin
215(2002) and Guisan and Thuiller (2005) argue that we should choose “resource” over
216“direct” and “direct” over “indirect” variables. For example, the abundance of prey
217(hardly ever available) or nesting opportunities will be a resource variable when
218analysing the distribution pattern of a bird of prey. Temperature or human distur-
219bance could be direct variables, impacting on the bird without moderation by other
220variables. Indirect variables would be altitude or length of road in a grid cell, which
221are substitutes, surrogates or proxies for other, more directly acting variables. These
222indirect variables are often not immediately perceivable by the organism (such as
223altitude by a plant or length of road verges by a rodent). So if we have two
224(correlated) variables, we should discard the one “further away” from the species’
225ecology.
226If we are unable to reduce the data set sufficiently (i.e. k$N), we should use
227dimensional reduction techniques, such as Principal Component Analysis5 or its
228more sophisticated variants that also allow categorical variables (nMDS6). The
229scores for the most important axes in this new parameter hyperspace can be used as
230explanatory variables. Note that interpretation is often extremely impaired by
231automatic dimensional reductions. It is thus always advisable to use ecological
232understanding rather than statistical functions at this step!

5prcomp
6isoMDS in MASS or, more conveniently, metaMDS in vegan
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233 An alternative is to “filter” the data by importance. We can use a robust and able
234 technique to tell us which variables are important. Next, we use only those 5 or 12
235 variables filtered from the initial pool of variables, and continue. Regression-tree
236 based methods are very useful for this, and I recommend randomForest and Boosted
237 Regression Trees. If you plan to model your data with BRT anyway, there is little
238 point in reducing the data before.
239 Finally, be aware that any model can only find correlations with the variables
240 provided. Of course, we know that our hypothetical bird of prey depends on specific
241 prey. Without this information, we may actually be modelling the niche of the prey,
242 not of the predator!

243 Exploratory Data Plotting

244 Can we finally start? No! It is both good practice and highly advisable to look at the
245 data by plotting them in any reasonable combination conceivable (see, e.g., Bolker
246 2008). Plot thematically related explanatory variables as scatterplot7 to detect
247 collinearity. Plot each explanatory variable against the response (henceforth called
248 X and y, respectively) and look for nonlinear effects. Plot y against two Xs
249 (Fig. 13.2) and a hull-polygon around the data to see that 40% or so of the parameter
250 space is not in your data set. This is the area outside the convex hull in Fig. 13.2.
251 The more variables (and hence dimensions) your data set has, the more severe this
252 problem becomes. It is so prominent among statisticians (though not among
253 ecologists) that it is referred to as the “curse of dimensionality” (Bellman 1957;
254 Hastie et al. 2008). Repeat this plotting for any number of variables. Getting a
255 feeling for the data is crucial, and many later errors can be avoided. Every minute
256 invested at this stage saves hours later on.

257 13.2.2 Modelling

258 Here, we arbitrarily divide the process of deriving a “usable” model into two steps.
259 The first, model building, selects the variables to be included, the type of non-
260 linearity and order of interactions considered, and the criteria for selecting the final
261 complexity of a model. The second step, model parameterisation, performs the final
262 step of using the data to calculate the best estimates for variable effects. It is this
263 model that we want to use for interpolation, hypothesis testing or extrapolation. Note
264 that in some methods these two steps are implicitly taken care of and that there is no
265 two-step process (mainly machine learning, where model selection is done internally
266 through cross-validation in order to prevent models from being “unreasonably”

7pairs
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267large: e.g. Hastie et al. 2008). For more traditional approaches (and here I am
268thinking of GLMs), we may want to have these steps functionally separated.

269Model Formulation

270We have reduced our data set to a moderate number of predictors in the step
271“Dimensional reduction” above. Now we still need to specify in which functional
272form the predictors are allowed to correlate with the response. In early years, both
273non-linear and interactive model terms were neglected, making many of their
274findings less trustworthy. Modern methods (such as BRT) will automatically have
275non-linearity and interactions build-in. It is still important to understand the rele-
276vance of non-linearity and interactions, even when using the tree-based methods,
277because we still have to be able to interpret the results. The information on the
278importance of a variable often returned by machine-learning algorithms does not
279allow us to see how the variables act. As shown in the case study at http://www.
280mced-ecology.org (Where’s the sperm whale?), the functional relationship must be
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Fig. 13.2 Visualizing the parameter space supported by data. In this case, the top-right and
bottom-left corner of the parameter space of the two predictors has not actually been sampled by
data (despite a low correlation of r ¼ %0.26). The parameter space actually sampled is indicated
by the convex hull covering 57% of the area, declines dramatically with the number of dimensions
(“curse of dimensionality”). In other words: we have few data points to look at interactions of
higher order
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281 plotted to gauge its shape. For interactions we need to plot each variable at each
282 level of the other variable, thus visualizing synergistic or compensatory effects of
283 the two variables.
284 The key idea behind SDM, i.e. the environmental niche of a species, implies a
285 hump-shaped relationship between any environmental predictor and a species’
286 occurrence: there are lower and upper limits. Hence, we must allow the model to
287 be nonlinear. If we happen to only sample a part of the entire gradient, we also
288 need to consider saturation curves, which are again non-linear. The simplest, and
289 generally sufficient, way to include non-linearity is by generating a new, squared
290 dummy variable for each continuous predictor.8 This represents the third element
291 of a Taylor series (which can be expanded to represent any function). When using
292 GAM or other spline-based approaches, non-linearity is governed by the smooth-
293 ing function used. Here the issue is not so much how to model non-linearity, but
294 rather how much non-linearity we allow for. Reducing the “wiggliness” of splines
295 (either by stepwise model selection for the number of knots in each predictor9 or
296 by shrinkage of spline fits10) prevents over-fitting and should be the standard
297 approach.
298 Interactions are similarly relevant. Statistically, an interaction is the product of
299 the participating main effects. Ecologically, it means that we need to know the
300 value of all variables included in the interaction, not only the main effects. Because
301 this is highly relevant and often difficult for the beginner, let me briefly give an
302 example. Assume that global patterns of plant diversity are well-predicted by the
303 predictors “annual precipitation” and “mean annual temperature” – and their
304 interaction. For the main effects, wet or hot means more species, but not necessar-
305 ily. When a site is hot, it needs to also be wet to have high species richness;
306 otherwise it may well be a barren desert. But when cold, a site will never support
307 many plant species, independent of precipitation. In this example, neither tempera-
308 ture nor rainfall alone is sufficient to predict species richness at any site, but we
309 need to interpret them in concert.
310 Classification and regression trees (CARTs) embrace non-linearity and interac-
311 tions in an elegant and natural way. Their boosted (BRT) or bagging (randomFor-
312 est) extensions hence do not require specification of non-linearity and interactions.

313 Model Simplification

314 One of the fundamental problems in building statistical models is the trade-off
315 between the variance explained by the model, and the bias it produces when

8This can be done either manually (X1.2 <- X1^2) or as part of the model formula (y ~ X1 + I
(X1^2)); higher-order polynomials should be specified using poly (y ~ poly(X1, degree¼3)),
which calculates orthogonal polynomials.
9As proposed for the function gam in package gam: see ?gam::step.gam
10As proposed for the function gam in package mgcv: see?mgcv::step.gam.
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316validating it on a new, independent data set (variance-bias-trade-off: Hastie et al.
3172008). Smaller models are more robust, i.e. less biased, at the expense of being not
318very good in explaining variance. The way to derive the “optimal” model size is
319through cross-validation (CV). For some modelling approaches this is automati-
320cally implemented, but the majority of model types require the user to carry out this
321step.11 N-fold cross-validation encompasses a random assignment of data points to
322the N subset, with N usually between 3 and 10. Care should be taken to have equal
323prevalence in all subsets, e.g. by randomizing 0s and 1s separately (stratified
324randomization). The model is then fitted to N%1 of the N subsets and evaluated
325on (by predicting to) the remaining subset. This is repeated for all N subsets and
326evaluations are averaged. Based on these values, we can select the best modelling
327strategy (both model complexity and model type). An alternative approach is to
328bootstrap the entire model building process and use bootstrapped measures of
329model performance. Since a bootstrap requires several thousand runs, and a CV
330only a few, CV is far more common.
331Information theoretical approaches are based on analytical methods to describe
332this CV. Hence Akaike’s Information Criterion (AIC) or Schwartz’/Bayesian
333Information Criterion (BIC) are implicitly also based on cross-validation. While
334it is clear that too large a model will be over-fitting, and that too small a model will
335not capture as much of the variation as it should in the data, the “true” model will
336always remain elusive, and our “optimal” model will only be a caricature of the
337truth. However, here is much to be learned from this caricature!

338Model Type

339At this point we have to choose one (or more) method(s) to do our analysis with.
340The good “traditional” approaches comprise Generalised Linear Models (GLM)
341and Generalised Additive Models (Guisan and Zimmermann 2000). Discriminant
342Analysis has been given up on, as have been Neural Networks and CARTs (Guisan
343and Thuiller 2005). “Modern” approaches are often based on either multidimen-
344sional extensions of GAMs (such as MARS and SVM) or machine-learning varia-
345tions of CART (such as BRT and randomForest: Hastie et al. 2008). Anyone using a
346machine-learning method should familiarize himself with this method. The major-
347ity of them are performed on real data sets, where the truth is unknown and the
348performance of a method was hence assessed by cross-validation. These compar-
349isons show, broadly speaking, that model types sometimes differ dramatically in
350performance, that each model type can be misused and that both GLM and BRT are
351reliable methods when used properly.

11Do not confuse out-of-bag model weights and alike with cross-validation of the entire model.
When data are held back during the building of sub-models (e.g. in randomForest or BRT), this
does not represent a cross-validation of the entire model (i.e. the average of sub-models).
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352 This is not the place to explain the differences between all of them (see Hastie
353 et al. 2008 for a recent and comprehensive description or Elith and Leathwick
354 2009a). It has to suffice to make clear the main difference in the machine-learning
355 approach to “traditional” statistical models. In traditional models (e.g. GLM), we
356 specify the functional relationship between the response and its predictors. For
357 example, we decide to include precipitation as a non-linear predictor for plant
358 species richness. This model proposal is then fitted to the data. In machine learning,
359 we propose only the set of predictors, but not the model structure. Here, an
360 algorithm builds a model proposal, fits it to a part of the data set and evaluates its
361 performance on the other part of the data. It then proposes a modification of the
362 original model and so forth. Machine-learning algorithms12 differ in scope, origin,
363 complexity, and speed, but they all share this validation step which is used to steer
364 the algorithm towards a better model formulation. There are plenty of studies
365 comparing different modelling approaches (Guisan et al. 2007; Meynard and
366 Quinn 2007; Pearson et al. 2006; Segurado and Araújo 2004). Rather, we shall
367 continue using GLM and BRT as representatives for the two most common good
368 approaches.
369 The choice of model type has much to do with availability of software, current
370 fashion and, of course, with the specific aim of the study. Further complications
371 arise if the design of the survey may require a mixed model approach (e.g. due to
372 repeated measurements or surveys split across observers), if spatial autocorrelation
373 needs to be addressed, if zero-inflated distributions have to be employed, and if
374 corrections for detection probability shall be modeled. The more additional require-
375 ments are imposed on the model, the more GLMs become the sole possible
376 method.13 Alternatively, you may want to go for a Bayesian SDM (see Latimer
377 et al. 2006, for a primer).
378 If your data and model require an unusual combination of steps (say a combina-
379 tion of zero-inflated data with nested design and spatial autocorrelation, while
380 predictors are highly correlated and many values missing), and you develop a
381 way to cook this dish, then you should do (at least) two things: Firstly, evaluate
382 your method for its ability to detect an effect that you know is there (“power”).
383 Secondly, evaluate your method for its sensitivity to detect effects that you know
384 are not there (“type I error”). Both evaluations should be amply replicated, should
385 be based on simulated data (so that you know the truth) and should (finally) confirm
386 that your new methods is reliable!

12http://www.machinelearning.org/ is a good place to start exploring this field
13Most of these “complications” can be handled by standard extensions of GLMs (see, e.g. Bolker
2008, and various dedicated R-packages). They will, however, make the model less stable, require
larger run-times and still rely on getting the distribution right. There is, of course, the alternative of
Bayesian implementations. Since these are also fundamentally maximum likelihood approaches,
they are similar to sophisticated GLMs. In any case, there is no Bayesian Boosted Regression Tree
(not to speak of a combination with spatial terms and mixed effects). It runs against the Bayesian
philosophy to use boosting or bagging, and there is no efficient implementation either.
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387Spatial Autocorrelation

388Spatial autocorrelation (SAC) refers to the phenomenon that data points close to each
389other in space are more alike than those further apart. For example, species richness in
390a given site is likely to be similar to a site nearby, but very different from sites far away.
391This is mainly due to the fact that the environment is more similar within a shorter
392distance.Hence, SAC in the raw data (species richness) is a consequence of SAC in the
393environment (topography, climate), something Legendre (1993) termed “spatial
394dependence”. In SDMs, we do not care about SAC per se, but about SAC in the
395model’s residuals (i.e. unexplained by the environment), because it distorts model
396coefficients (Bini et al. 2009; Dormann 2007a). To date it is unclear whether this
397residual SAC is mainly due to model misspecification (omission of non-linearity and
398interactions), due to variation in sampling coverage, due to omission of important
399predictors, or due to ecological processes (territoriality, dispersal). Only with respect
400to some of these problems can statistical solution be found. The spatial toolbox is rich
401in approaches (Beale et al. 2010; Carl et al. 2008; Dormann et al. 2007; Mahecha and
402Schmidtlein 2008). In any case, SDM residuals should be investigated for spatial
403autocorrelation, and attempts should be made to correct for it. If spatial models yield
404similar coefficient estimates (GLM) as non-spatial models, then there seems to be little
405value in “going spatial”: the ranges of the spatial autocorrelation may or may not be
406related to the ecological scale of movement or behavioral patterns (Betts et al. 2009;
407Dormann 2009).

408Tweaking the Model

409There are several ways in which the quality of the model can be increased (Maggini
410et al. 2006). One important start is to investigate the model residuals. They indicate
411whether model assumptions were violated (e.g. when residuals are highly skewed or
412their variance is not the same throughout the range of fitted values) or if some non-
413linear relationship went unnoticed (residuals may, e.g. show a hump-shaped trend
414against fitted values).
415Model diagnostics14 will also indicate outliers, i.e. data points that have a high
416influence on the model coefficients. We can use weights to decrease an outlier’s
417impact. Weights are also useful when the balance between presences and absences is
418very disturbed. Down-weighting the more common category so that model weights
419sum to the same value for 0s and 1s has been shown to increase the sensitivity of
420binomial models (Maggini et al. 2006). The same approach is recommended when
421using pseudo-absences (Elith and Leathwick 2009a).
422By including data from other scales or broader geographic coverage, regional or
423local SDMs can also be improved. Pearson et al. (2004) used European distribution
424and climate data to fit a niche model for four plant species. Predicted probabilities

14Diagnostics for GLMs fitted in R are given by plotting the model object.
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425 of occurrence from this model were then used as input variable alongside land-
426 cover variables in the second-step model for the UK. Thereby the authors avoided
427 the problem that the climate gradient in the UK is much shorter than of the species’
428 global distribution.

429 Assessing Model Performance

430 To quantify how well our model fits the data, we compare model predictions with
431 field data (usually on a hold-out sample; e.g. the subset of a cross-validation).
432 Traditionally, the probability predictions from the model were converted into
433 presences and absences and then a confusion matrix could be used to calculate
434 various parameters of choice (e.g. commission and omission error, kappa, etc:
435 Fielding 2002). The AUC (“area under curve”) is currently the most commonly
436 used measure of discriminatory power of a model. Its value (between 0.5 for
437 random and 1 for perfect) quantifies the ability of the model to put the data points
438 into the correct class (i.e. presence or absence), independent of the threshold
439 required by the other measures mentioned. It has recently received justified criti-
440 cism because its values are not comparable across different prevalences (and the
441 criticism extends to kappa, too; see Lobo et al. 2008). Currently, misclassification
442 rates, commission and omission errors are more en vogue again, because they can
443 be intuitively interpreted. Furthermore, by assigning different weights to false
444 negatives (omission error) and to false positives (commission error), conservation
445 management can come to more sophisticated and balanced decisions (Rondinini
446 et al. 2006).
447 Only rarely will a second set of data be available to investigate the quality of our
448 model(s) through external validation. A different recording strategy, another time
449 slice or data from a different geographic location represent really independent data,
450 and could thus be considered an external validation. The internal validation
451 (described above as cross-validation) is an optimistic assessment of model quality.
452 When using SDMs to infer underlying mechanisms, external validation is less of
453 an issue than when using them to extrapolate to a future climate or other sites.
454 Because the cross-validated models are optimistic, they give narrower error bands
455 than they should.

456 13.2.3 Interpretation

457 Once we have arrived at what we regard as a final model, we should make every
458 effort to understand what it means. A first and most relevant step is to visualize the
459 functional relationships within the model. The plot of how occurrence probability
460 is related to, say, annual precipitation should be accompanied by a confidence band
461 around this line. It may be useful to plot the data as rug (ticks on the axis representing
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462positions of the data values) into this figure to visualise the support at each point in
463parameter space (Fig. 13.3).
464For interactions, visualization becomes more difficult. Two-way interactions can
465still be plotted (e.g. as a 3-D plot or as a contour plot). No confidence bands can be
466included, though. Here it is again very important to indicate the position of the
467samples to identify regions of the parameter space that have not been sampled. For
468higher dimensions, or for a model that averages across many sub-models, we can do
469the same plots (called marginal plots for main effects because they represent the
470marginal changes to a predictor, averaging across all other predictors). We can also
471slice through higher dimensions, i.e. calculate a marginal plot for specific values of
472other predictors (often their median).
473Spending time plotting is again well invested. We will detect errors in the model,
474scratch our head over inexplicable (and hence overly complex) patterns, and be
475forced to extract the main conclusions from it. It is this phase where the traditional
476GLM is superior to the BRT, because variable interpretation is easier. It is,
477however, also this phase where we may realize that BRTs are superior to GLMs
478because they can model step-changes and thresholds much better. Personally,

Fig. 13.3 Functional relationship between an environmental variable and a binary response. Rug
(ticks on lower axis) indicate for which x-values data were available. Lines represent a quadratic fit
(solid) and its standard deviation (dashed). Thin grey line is the true, underlying, data-generating
function. Note the few data points upon which the declining half of the function is based (6 of a
total of 50 have a value >0.35)
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479 I think we should not publish patterns we do not understand. There are, as the
480 previous steps have shown, several decisions that could generate artifacts and their
481 publication cannot be seen as progress.

482 13.3 Beyond Recipes: New Challenges for Species
483 Distribution Models

484 The above recipe can be used to derive a static description of environmental
485 correlates with distribution data. But they often leave the analyst unsatisfied.
486 Many assumptions might be suspected to be violated (Dormann 2007b), such as
487 stationarity, unbiased coverage, or equilibrium with environment.15 There are three
488 key challenges with the following problems of current SDMs: (1) A niche model
489 describes the current niche, and it is unclear which factors will be limiting elsewhere
490 or in the future. (2) Climate change projections delimit only the potential future
491 distribution, and it is unclear whether the species will ever fill this new range; e.g.,
492 due to dispersal constraints. And, (3), our understanding of the adaptive potential of
493 a species is currently very poor. This sets, in part, the research agenda for species
494 distribution models. Let us look at these challenges in more detail.

495 What Limits a Species’ Range?

496 An organism is constrained in its population dynamics by resources, competitors,
497 predators and diseases, density dependence, reproductive opportunity, mutualists,
498 environmental stochasticity and so forth (e.g. Krebs 2002). The same holds true for
499 its spatial distribution (e.g. Gaston 2009; Holt and Barfield 2009), but additionally
500 spatial constraints come into play (e.g. distance between habitat fragments, mini-
501 mum territory size, Allee effects due to low population density). With an SDM, we
502 are usually only able to quantify some of these limitations, and, accordingly, SDMs
503 often do not transfer very well to other sites (Schr€oder and Richter 1999; Randin
504 et al. 2006; Duncan et al. 2009, but see Herborg et al. 2007). In particular, biotic
505 interactions are hardly ever quantified explicitly within SDMs (although some of
506 them will also correlate with the environmental data used). But they matter in real
507 data (e.g. Preston et al. 2008; Schweiger et al. 2008), and they impact model
508 performance and predictive ability (as shown, in a simulation study, by Zurell
509 et al. 2009). It is thus a key challenge to incorporate biotic interactions into SDMs,

15Actually, the term “equilibrium” is a bit misleading. What is meant is that the entire width of its
niche is filled. Within this niche, there may well be unoccupied sites, e.g. due to metapopulation
dynamics. A problem arises, when a species does not occupy say the dry end of its soil moisture
niche for historic reasons. Then the estimate of this end of the niche will be biased.
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510but to date such attempts are few and far between (e.g. Bjornstad et al. 2002). A
511recent review (Thuiller et al. 2008) indicates some avenues to do so, but all of them
512are based on the explicit modelling of populations within cells, if not individuals. It
513is unclear, how to derive a more general dynamic SDM without spending years per
514species on incorporating detailed ecological knowledge.

515Fundamental, Potential and Realized Niches

516The reason why many biogeographers refer to SDMs as “Species Distribution
517Models” and not as “niche models” is because they do not believe that we model
518the niche of the target species. In fact, as Jiménez-Valverde et al. (2008) argue,
519because we do not know why a species is absent in some sites, we are in the dark
520about its niche. The discussion of what a niche is, and what we are modelling, has
521sparked several interesting and not always compatible publications (e.g. Kearney
5222006; Soberón 2007). Hence, Araújo and Guisan (2006) have named the “clarifica-
523tion of the niche concept” the first of five challenges for SDMs. While we cannot
524resolve this issue here, it is important to realize that the “niche” based on the
525correlation between geographic distributions and environmental conditions is quite
526a bit more vague than the niche discussed in evolutionary ecology, where resources
527and other causal drivers are envisaged (see, e.g. Losos 2008).
528More to the point in this context is the challenge to quantify how much of the
529fundamental niche is actually covered by the realized niche as extracted from
530SDMs. If, on one extreme, the realized niche is pretty much also the fundamental
531niche (i.e. there are no biotic interactions alike to constrain the distribution at the
532scale we are analyzing), then we can merrily predict future distributions of this
533species (e.g. under climate or land-use change). At worst, we are overestimating the
534future, “potential” distribution (if in the future biotic interactions may become
535limiting or if species do not reach the sites). At the other extreme, if the fundamental
536niche is considerably wider than what we model, any projection can be fundamen-
537tally flawed (Dormann et al. 2010). I am not aware of any study assessing the
538overlap of realized and fundamental niche for geographic distributions (see also
539Nogués-Bravo 2009). It could require transplant experiments into areas beyond the
540current range and the manipulation of biotic interactions there. The few studies
541going into this direction point at a large discrepancy between fundamental and
542realized niche. Battisti et al. (2006), for example report on a range shift after a
543particularly warm summer, which was not reverted afterwards, indicating that it
544was dispersal limitation that prevented a filling of the niche. Similarly, several
545studies point at the importance of dispersal limitation (Nekola 1999; Ozinga et al.
5462005; Samu et al. 1999; Svenning and Skov 2004), leading to both a bias in the
547modeled environment-occurrence relationship as well as the width of the niche
548itself. There is, as yet, no standard way to wed SDMs and dispersal (see Johst et al.
5492002; King and With 2002; Lavorel et al. 2000; Lischke et al. 2006; Midgley et al.
5502006; Schurr et al. 2007 for attempts, Thuiller 2004).
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551 Niche Evolution

552 Another important and fast developing field related to species distribution model-
553 ling is the study of niche evolution. I shall use this term very loosely, as is often
554 done, to also include micro-evolutionary changes, genetic (and ecological) drift
555 within species and genotypic plasticity (Pfenninger et al. 2007). Climate change
556 projections using SDMs rely on the assumption that species are not able to adapt
557 significantly to altering environmental conditions. This assumption is implicit in the
558 extrapolation of the fitted niche: if a species was able to adapt rapidly, then the
559 present niche would not be related to its future niche.
560 The problem is that we have considerable, if patchy, evidence that niches can
561 rapidly evolve (reviewed in Thompson 1998), change within the fundamental niche
562 (Dormann et al. 2010) or at least that variability within a species is large enough to
563 allow it to shift its niche when confronted with novel environments (e.g. Ackerly
564 et al. 2006; Broennimann et al. 2007; Hajkova et al. 2008; Holt 2003; Holt and
565 Gaines 1992). There is, as yet, no synthesis of niche evolution nor, to my knowledge,
566 any mechanistic approach to incorporate geno- and phenotypic plasticity into SDMs
567 or spatial population models. There is, on the other hand, more than anecdotal
568 evidence that microevolutionary processes are at play and matter ecologically
569 (Hampe and Petit 2005; Phillips et al. 2006a). Hence, this field still awaits being
570 embraced by species distribution models.

571 13.4 Concluding Remarks

572 This chapter tries to strike a balance between guidance for novices to species
573 distribution modelling – by providing a recipe for the most crucial elements of
574 SDMs – and an embedding of SDMs into the currently most relevant statistical
575 challenges. Analysing a species’ distribution can be a very useful starting point for
576 further investigations or process-based modelling attempts. The correlative nature
577 of modelling in general, and species distribution modelling specifically, should
578 always be remembered. Tempting as it may be to incorporate a lot of ecological
579 knowledge into mechanistic or statistical models, only little of this information will
580 actually be relevant at the focal scale. The main intellectual challenges that remain
581 to not over-interpret one’s findings and to seek independent corroboration.
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Species distribution models have become a commonplace exercise over the last 10 years, however,
analyses vary due to different traditions, aims of applications and statistical backgrounds. In this chapter,
I lay out what I consider to be the most crucial steps in a species distribution analysis: data pre-processing
and visualisation, dimensional reduction (including collinearity), model formulation, model simplification,
model type, assessment of model performance (incl. spatial autocorrelation) and model interpretation.
For each step, the most relevant considerations are discussed, mainly illustrated with Generalised Linear
Models and Boosted Regression Trees as the two most contrasting methods. In the second section, I
draw attention to the three most challenging problems in species distribution modelling: identifying (and
incorporating into the model) the factors that limit a species range; separating the fundamental, realised
and potential niche; and niche evolution.
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