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Highlights
Our success in predicting general
community-level interaction patterns
contrasts with our limitations to predict
pairwise plant–pollinator interactions.

Limitations to predict pairwise interac-
tions come frommultiple gaps in our un-
derstanding of plant–pollinator
interactions, model implementations,
and data.

Different phenomenological and mecha-
nistic modeling approaches attempt to
predict plant–pollinator pairwise interac-
Plant–pollinator interactions are ecologically and economically important, and,
as a result, their prediction is a crucial theoretical and applied goal for ecologists.
Although various analytical methods are available, we still have a limited ability to
predict plant–pollinator interactions. The predictive ability of different plant–
pollinator interaction models depends on the specific definitions used to concep-
tualize and quantify species attributes (e.g., morphological traits), sampling effects
(e.g., detection probabilities), and data resolution and availability. Progress in the
study of plant–pollinator interactions requires conceptual and methodological
advances concerning the mechanisms and species attributes governing interac-
tions as well as improved modeling approaches to predict interactions. Current
methods to predict plant–pollinator interactions present ample opportunities for
improvement and spark new horizons for basic and applied research.
tions, although we still lack an equitable
comparison between these different ap-
proaches to accurately determine differ-
ences in their predictive ability.

Model predictive ability could be im-
proved by accounting for heterogeneous
detection probabilities of interactions re-
sulting from sampling effects, estimating
interaction predictors with greater accu-
racy and building models with more
plausible assumptions.
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The importance of predicting interactions
Species interactions (see Glossary) constitute key determinants of ecological community struc-
ture and functions [1]. Therefore, understanding and predicting ecological interactions represents
an essential asset for advancing ecological knowledge and for decision-making in environmental
management, conservation, and restoration [2–5]. Forecasting which species will interact under
certain conditions and in future ecological scenarios becomes especially important given anthropo-
genic pressures on ecosystems and the need for effective interventions to protect species, their
interactions, and the essential ecosystem functions and services that they provide to humanity
[6,7]. Furthermore, species interactions might serve as an early warning system for biodiversity
conservation, as they can be lost before the species themselves [8,9]. For example, predictions
indicating that certain species would lose their interactions under future land use or climate change
would provide valuable information for conservation planning and actions. Likewise, predicting
with reasonable certainty the interactions between resident species and new species entering a
community (resulting, for example, from range shifts due to climate change, biological invasions,
or community restoration [10,11]) would allow forecasting the impacts of the colonizer on the
resident community. Predictive models also represent useful alternatives to experiments that
ecologists cannot conduct in the field. For instance, predictive models allow simulating species
introductions or extinctions to understand spatial and temporal population and community dynamics.
Furthermore, deviations of model predictions from empirical observations point toward incomplete
knowledge and help to generate new hypotheses and theories [12].

In natural ecosystems, plants and pollinators engage in ephemeral interactions in which flowers
provide food resources to floral visitors, which in turn often provide essential pollination services
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to plants [13,14]. Although forecasting pollination success might be the ultimate goal in ecology,
the first necessary step is to predict plant–pollinator interactions. Despite our current under-
standing of how and why plants and pollinators interact, including our relative success in
predicting the structure of plant–pollinator interaction networks [15,16], our ability to predict
specific pairwise interactions within these networks still represents a major scientific challenge.
Several mechanisms have been identified as responsible for community-level interaction patterns
[17] and allow the development of reasonable predictions of interaction network structure. How-
ever, the poor prediction of pairwise interactions poses a conundrum, as predictive models use
biological mechanisms assumed to influence pairwise interactions. Specifically, if we fail to predict
pairwise interactions, we might be predicting community interaction patterns correctly but
neglecting the underlying mechanisms [17] and the consequences for ecosystem functioning.
In addition, predicting pairwise interactions involves particular species with specific traits and
functional roles, which represents a better target to manage populations, community structure,
and ecosystem functions [18].

Existing models vary widely in their success to predict pairwise plant–pollinator interactions, al-
though it still remains unclear what drives model predictive ability: the type of model, the attributes
included in the model for prediction, and/or the methods and datasets used to estimate such
attributes. In this review, we provide an overview of the approaches and methods currently
available to predict pairwise plant–pollinator interactions, discuss the challenges in measuring
species attributes, and identify the paths forward to improve model predictive ability.

Methods for predicting plant–pollinator interactions
Mechanistic models and phenomenological models are used to understand and predict
noisy and hugely complex ecological systems. Mechanistic models focus on the underlying
processes deemed ecologically relevant to drive patterns in the data with biologically meaningful
parameters that can typically be measured empirically. For instance, existing mechanistic models
for predicting plant–pollinator interactions usually encompass one or a combination of species
attributes that represent processes assumed to influence interactions. These attributes include
species abundances, traits, spatial and temporal distributions, and phylogenies (e.g., [12,19]).
Alternatively, phenomenological models attempt to reproduce empirically observed patterns
based on the statistical fitting of parameters that best describe the data. Phenomenological
models used for plant–pollinator interaction prediction do not explicitly focus on the underlying
mechanisms or processes that drive interactions but rather intend to reproduce observed inter-
action patterns (e.g., [20,21]).

Mechanistic models that directly represent the matching of plant and pollinator attributes can be
fitted to the data in a probabilistic way [12,19,22]. For instance, the tapnet framework [22]
generates interaction probabilities from abundance (where abundant species have a higher
probability of interacting), trait matching (with flexible trait-matching functions), and phyloge-
nies (modeled as latent traits). This approach combines the species pairwise interaction probabilities
generated by the different matching attributes to obtain a unique species pairwise interaction
probability. The fact that species interactions within a community do not occur independently
from each other poses a challenge for this method, requiring a sophisticated formulation of
the likelihood.

Although not strictly mechanistic, generalized linear models( GLMs) are used in predicting
plant–pollinator interactions (Table S1 in the supplemental information online), where parameters
can be constrained by priors to positive or negative values, representing the direction of an
assumed causal effect. Dredging through predictors by model selection is not compatible with
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Glossary
Forbidden links: species pairwise
interactions that do not occur due to
biological constraints.
Generalized linear model: statistical
technique where a response variable is
expressed as a linear combination of
predictor variables.
Machine learning model: an algorithm
used to flexibly represent data to which it
is trained.
Mechanistic model: mathematical
representation of relationships among
variables, where its parameters are
defined based on biological definitions.
Mechanistic models focus on the
underlying processes deemed
ecologically relevant for driving patterns
in the data, with biologically meaningful
parameters.
Phenomenological model:
mathematical representation of
relationships among variables where the
parameters are defined to best represent
the relationship. Phenomenological
models used for the prediction of plant–
pollinator interactions do not explicitly
focus on the underlying mechanisms
or processes that drive interactions
but rather intend to reproduce
interaction patterns with the help of
‘big data’.
Phylogeny: representation of a
hypothesis about the evolutionary
history and relationships among a group
of taxa.
Plant–pollinator interaction
networks: webs of mutualistic
interactions between a set of plant
species and a set of pollinator species.
Plant–pollinator interactions:
interactions between flower reproductive
parts and their animal visitors.
Sampling effects: deviation from reality
in the observation or representation of
nature due to artifacts in the collection of
samples.
Species attributes: qualities or features
characteristic of a species.
Species distribution: temporal and/or
spatial (geographic) arrangement of
species.
Species interactions: relationships
among organisms that have positive,
negative, or neutral effects on each
other.
Species traits: morphological,
physiological, and behavioral
characteristics of organisms.
Trait matching: alignment of the
morphological (or physiological or
behavioral) traits of species.
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a mechanistic use of GLMs. With GLMs, one or several variables predict the occurrence or
frequency of interactions. For example, the abundance of flowers of a plant species may predict
the number of interactions with its pollinators. Straightforward to implement, GLMs can encom-
pass a variety of model structures, distributions, and assumptions, such as non-normal re-
sponses, and can be extended to incorporate random effects [generalized linear mixed models
(GLMMs)]. For instance, including plant and pollinator species identities as random effects allows
fitting species-specific unknown effects, such as the nonindependence of interactions within
species [23]. Thus, GLMMs can account for the fact that the occurrence and frequency of
an interaction between a plant and a pollinator species pair depend not only on the particular
attributes included as fixed factors in the model (e.g., abundance) but also on unmeasured
attributes and additional interactions that these species have with other species in the
community. Furthermore, some extensions of these models, such as structural equation
models, allow estimating indirect effects among multiple predictor variables, a useful feature
to deal with more complex causal structures, such as the effects of climate conditions or
predators [24–26].

Alternatively, among phenomenological models, machine learning models use algorithms to
recognize patterns of interactions in a training dataset and then use this information to predict
new interactions. Several studies have usedmachine learningmethods to predict plant–pollinator
interactions, including k-nearest neighbor (KNN), random forest, and neural networks [20,21].
Some machine learning algorithms, such as KNN, compute similarities between species
(e.g., based on traits and phylogenies) and predict new interactions for a given species based
on its traits and phylogenetic position [20]. In contrast, random forest models use decision
trees to learn the combination of interacting species attributes that characterize an interaction
to predict other interactions [27,28]. Neural networks, however, represent a collection of intercon-
nected units (neurons or processors) in which each unit receives multiple input data, combines
them linearly, and passes it onto the next unit until obtaining the final output [20]. Although
these data-driven approaches may make successful predictions [20], they do not necessarily
represent scientific understanding of the mechanisms driving plant–pollinator interactions, and
they assume independence of the observed interactions. An additional limitation of machine
learning approaches comes from their need for large amounts of data, which may exceed data
available from empirical studies.

The previously-mentionedmodels for predicting species interactionsmay differ in the attributes of
interactions that they attempt to predict; some predict the occurrence (presence–absence) of
interactions, while others predict interaction frequencies. Although interaction occurrence consti-
tutes a first goal in the prediction of interactions, interaction frequencies contain additional infor-
mation, as they can inform about the strength of the effect of one species on another [29,30]
and interaction-dependent ecosystem functions [23]. Furthermore, to make robust predictions,
all the aforementioned modeling approaches require a substantial number of observations and,
hence, sufficient sampling effort.

Species attributes used to predict plant–pollinator interactions
Ideally, we aim to predict interactions based on species attributes: tell me about you, and I will tell
you who you go with. Previous studies attempting to predict plant–pollinator interactions from
species attributes have used species abundances, morphological traits, phenologies, spatial
and temporal distributions, and phylogenies [31]. Part of the challenge in predicting interactions
from these attributes lies in their multiple (sometimes conflicting) definitions, the methodological
differences in their quantification, and in the selection of a single or a combination of species attri-
butes that link to interaction probability (Figure 1). Although the attributes discussed are population
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Trait-matching functions:
mathematical expressions involving two
or more variables that define the way in
which trait matching is mapped to
interaction probability.
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attributes, we refer to them as species attributes as the aim is to predict interactions among
different species present in a local community.

Abundance
Plant and pollinator abundance influences the random encounter probability among species.
Abundant species will tend to encounter and interact more frequently and with more species
[19,32]. When quantifying abundance to predict plant–pollinator interactions, our abundance
measurements should capture the availability of pollinators as pollen vectors and the availability
of plants as floral food resources [12]. Unfortunately, however, obtaining accurate estimates of
abundance represents a challenge. For instance, researchers usually estimate pollinator abun-
dance as the number of flowers visited by a certain pollinator species, hence conflating abun-
dance with activity [17]. This measure of pollinator abundance reflects interaction frequency,
which might correlate with species relative abundance in a community [33], although not neces-
sarily strongly [34], as other factors beyond abundance can determine interaction frequency,
including species traits and pollinator behavior and preferences. Therefore, to avoid confounding
the influence of abundance on interactions with that of other attributes (e.g., species preferences
and traits), ideally, we should estimate abundance independently from interactions. A better
measure of pollinator abundance would therefore assess the number of individuals of a particular
pollinator species within a community with methods that do not involve sampling plant–pollinator
interactions. However, different samplingmethods, such as pan traps, transect walks, or timed ob-
servations at flowers, often lead to dramatically different results even within the same taxonomic
group [34–36] and ecosystem, thus rendering conflicting estimates of pollinator abundance. This
issue arises especially when comparing different pollinator groups, such as birds, bats, and various
insect taxa, as they require different methodological approaches to estimate their abundance, such
as daytime versus nocturnal sampling and fixed mist nets versus transect walks.

In studies of plant–pollinator interactions, estimates of plant abundance usually include the number
of plant individuals, the number of flowers or inflorescences, or the relative cover of flowers.
Arguably, measuring abundance in terms of flowers and their resources represents a measure of
functional abundance more meaningful for this type of interaction than the number of individuals
or biomass (given the high variation among plant species in the number of flowers per individual
or unit biomass), which does not necessarily have a clear functional interpretation. Because pollina-
tors search for pollen, nectar, and other floral rewards, estimating plant abundance in terms of
nectar or pollen abundance [37] might prove more informative for predicting plant–pollinator inter-
actions (but see [38]). Importantly, plant reward abundance varies greatly through time, imposing
high turnover in functional species abundance. For example, flowers of some plant species may
offer copious nectar and pollen resources in the morning but few in the afternoon [39] in response
to consumption by pollinators or to other environmental factors [40,41]. Furthermore, flower or
Figure 1. The influence of species attributes and sampling effects on the prediction of plant–pollinator interactions. (A) Differentmethods used tomeasure or
estimate attributes will influence interaction probabilities. (B) The abundance of plant species can be estimated as the number of plant individuals, the number of flowers or
inflorescences, or the relative cover of flowers. To calculate interaction probabilities, we multiply the relative abundances of each pair of interacting species. For instance,
pollinator species a has a relative abundance of 3/4 = 0.75, while plant species i also has a relative abundance of 3/4 = 0.75; thus, these two species have a probability of
interacting with each other of 0.75 × 0.75 = 0.56. (C) The selection of plant and pollinator traits used to assess trait matching may determine our predictive performance.
Traits of plants and pollinators jointly determine interaction probabilities following particular trait-matching rules (Box 1). (D) Sampling effects include insufficient sampling
effort, low taxonomic resolution, and unequal probabilities of recording species and their interactions. For example, under low taxonomic resolution, taxa b1 and b2 are both
identified as b, which affects the estimation of plant–pollinator interaction probabilities. Additionally, (E) representing the overlap in the spatial and temporal distributions of
interacting species based on species presence/absence or accounting for species abundances leads to different interaction probabilities. Finally, (F) the phylogenies of
plants and pollinators can also influence their interaction probabilities. Differences in the type of data used to construct phylogenies (taxonomic versus molecular)
influence estimates of phylogenetic rate of change and hence the phylogenetic distances among plants and pollinators, which in turn influences the estimation of latent
traits and plant–pollinator interaction probability.
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inflorescence size represents a perching area for visitors, defining a physical constraint [42] and
potentially a measure of reward amount [43] per flower unit. Therefore, combining flower density
with resource quantity per flower and flower size may constitute a better estimate of plant abun-
dance from a pollinator’s perspective, capturing resource abundance more effectively than the
abundance of individual plants while focusing on the flower as the packaging unit for pollen and
nectar resources [12].

Morphological, chemical, and behavioral traits
The morphological, physiological, and behavioral traits of organisms may represent barriers for
interactions, determining their occurrence probability. Floral visual and olfactory signals and floral
rewards attract pollinators [44,45], and pollinator traits determine their responses to different
flower attractants [46,47]. For example, volatiles attractive to pollinators often repel floral antago-
nists such as ants and other arthropods, thus shaping the interaction probabilities between
flowers and their different visitors [48]. Morphological traits, such as corolla width and depth,
pollinator proboscis or bird beak width and length, and body size, can also affect plant–pollinator
interaction probability [23,49,50]. Although relatively straightforward to measure using calipers or
software associated with a microscope, deciding which plant and pollinator traits to measure and
their functional interpretation poses a challenge. Furthermore, some traits can be challenging or
idiosyncratic (hairs adapted to a certain pollen type, buzzing ability, facial structures for scraping
pollen, and nutritional status), which makes measuring them unfeasible for the whole community.
In addition, when it comes to using traits to predict interactions, we should consider how trait
matching operates. Different available methods compare interacting species traits, which will
define interaction probabilities (Box 1).

Spatial and temporal distributions
For a plant and a pollinator species to interact, partners need to co-occur in space and time
[23,51]. Furthermore, plant and pollinator species abundances, traits, and species degree of
generalization can vary across the spatial and temporal species distribution [52,53], affecting
their interaction probability. For example, species abundances tend to vary widely across their
geographic range [54]; similarly, the abundance of plant and pollinator species is likely to be low-
est at the beginning and the end of their flowering/flight period. Therefore, plant–pollinator inter-
action probability relies on the degree of spatial and temporal overlap between the interacting
partners.

Incorporating spatial co-occurrence in models predicting plant–pollinator interactions requires
data on geographic range sizes. Although for most plant and pollinator species obtaining even
coarse estimates of their geographic ranges poses a challenge, national flora and fauna mapping
schemes or species distribution models or records could provide useful information [55,56]. An
alternative to estimate the spatial overlap of interacting partners is to focus on finer spatial scales,
such as assessing the presence of plant and pollinator species in a set of sites sampled in the
study area [12].

Likewise, incorporating species temporal distribution to predict plant–pollinator interactions
requires phenological data, such as flowering times and pollinator diel and seasonal activity pat-
terns [57]. Species phenology is usually inferred from field surveys, museum collections [58,59],
or phenological models that predict flowering and insect emergence [60]. Although
phenology is sometimes estimated from data on first flowering date/first emergence date, more
robust phenological descriptors include the weighted mean of flowering dates or smoothing
techniques, such as generalized additive models. Finally, plant and pollinator phenologies can
vary in response to temperature, day length, rainfall, nutrient availability, timing of snowmelt, and
Trends in Ecology & Evolution, May 2024, Vol. 39, No. 5 499
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biotic interactions, all of which may vary both naturally and in response to global environmental
change [61–63].

Phylogeny
A phylogeny represents the evolutionary history and relationships among groups of organisms,
such as species. Although we cannot infer ecological mechanisms through phylogenies, they
may help predict species interactions as they can act as surrogates for unknown or unmeasured
(‘latent’) traits that influence the occurrence of interactions [22,64,65]. However, to predict inter-
actions from phylogenies, we need to assume that trait similarity results from evolutionary related-
ness, such that traits of closely related species are more alike than those of distantly related
species, even though they could also emerge from evolutionary convergence.

Molecular, morphological, and taxonomic data allow the reconstruction of phylogenies of varying
resolution. Different methods can also deal with incomplete phylogenies, for example, combining
taxonomic trees with diversification times from molecular phylogenies [66–68]. Furthermore,
methods used to construct a phylogeny influence its branch lengths, which in turn determines
the cophenetic distances among species (Figure 1). The increasing availability of highly resolved
phylogenetic trees allows using phylogenies to predict interactions for some groups, particularly
plants, birds, and other animals [69,70], although for some of the most widely studied pollinators,
such as most insects, we still lack complete, fully resolved phylogenies.

Sampling effects on the prediction of interactions
The way we perceive interactions with our observations may be blurred by several types of
sampling effects resulting from insufficient sampling effort, low taxonomic resolution, and
unequal detection probabilities of species and their interactions, which can influence interaction
prediction. Although we probably never record all the plant–pollinator interactions that truly
occur, insufficient sampling effort hinders the detection of interactions and leads to a far less
Box 1. Trait-matching rules

Multiple models used to predict species interactions incorporate the idea of alignment of interacting species traits, usually
referred to as trait matching. Trait matching can influence the occurrence of plant–pollinator interactions through two main
mechanisms: exploitation barriers and trait complementarity [92]. The similarity in the traits of interaction partners defines
the level of barrier/complementarity (Figure I). For instance, nectar tube length may impose a barrier to pollinators with
shorter proboscises, preventing them from reaching the reward. In turn, trait complementarity means that plant and
pollinator species with reciprocal trait values will have a greater probability of interacting.

Trait matching is usually estimated from one pair of traits [93,94], albeit multiple traits operate simultaneously in more complex
ways, such as simultaneously matching pollinator body size and proboscis length with flower nectar tube length. Currently
available methods [22] allowmatchingmultiple pollinator traits against flower traits by building multiple trait-matchingmatrices,
each with a different trait combination, and multiplying them to estimate interaction probabilities. For instance, we can obtain
interaction probabilities by combining a matrix representing the match between pollinator proboscis width and corolla tube
width with another matrix representing the match between pollinator body size and corolla tube width. However, when using
multiple traits for the aforementioned estimation, the nonindependence between trait-matching matrices estimated from the
same traits, or from correlated traits, could bias our estimates of interaction probabilities.

An alternative, albeit phenomenological, approach that allows the simultaneous use of multiple nonindependent traits
involves calculating trait congruence among interacting species in multivariate space [23]. Specifically, the fourth-corner anal-
ysis [95,96] uses similarities among a suite of plant and pollinator traits to estimate whether these traits predict plant–pollinator
interactions. Applying thismethod todifferent sets of traits could help identify themost relevant traits that determine interactions.
Furthermore, multivariate trait space approaches can also incorporate proxy traits not directly linked to the interaction. For in-
stance, we can superimpose the position of pollinator species on their multivariate trait space with the positions of their inter-
action centroids in plant multivariate trait space [97]. Statistical methods such as Procrustes analysis can be used to
maximize this superimposition, and the resulting distances among the corresponding points in the different ordinations (trait
space of pollinators and trait space of plants) indicate the trait-matchingmagnitude, which could be used to predict interactions.
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Figure I. Trait complementarity and barrier mechanisms affecting plant–pollinator interaction probability.
(A and B) The difference between pollinator and plant traits (A) determines the extent of trait matching among
interacting species, which, in turn, influences species interaction probability through trait complementarity and barrier
mechanisms (B). Trait complementarity assumes that plant and pollinator trait similarity determines species interaction
probability. For instance, a difference of zero between pollinator proboscis length and nectar tube length maximizes
species interaction probability, whereas greater differences in traits of interacting partners result in lower interaction
probabilities. The barrier mechanism assumes that morphological constraints, such as a proboscis shorter than a nectar
tube, result in forbidden links.

Trends in Ecology & Evolution
complete representation of the realized interactions [12,31]. Consequently, some species
characteristics, such as their interaction breadth and the properties of interaction networks,
can change substantially with sampling effort [71,72]. In turn, low taxonomic resolution may result
in the aggregation of species whose taxonomic identities remain unresolved, influencing ob-
served interaction patterns [73]. Low taxonomic resolution may also apply to the intraspecific
level, as males and females of the same pollinator species sometimes interact with different
plant species [74], influencing the prediction of their interactions.

The biased representation of plant–pollinator interactions in a community can also result from
unequal recording probabilities for species and their interactions, coming from skewed distribu-
tions of abundances, geographic ranges, phenologies, and trait values. For instance, interactions
involving rare species should have lower probabilities of being recorded than interactions
involving abundant species [75], whereas traits, such as large body size or diurnal flight time,
make some species and their interactions more conspicuous than others [12]. Furthermore, in
Trends in Ecology & Evolution, May 2024, Vol. 39, No. 5 501
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most studies, data collection involves sampling from the perspective of a focal group, such as
plants (e.g., observing flowers) or pollinators (e.g., collecting pollen from bee bodies), which
may also introduce a bias in the interaction data [76–78]. While focusing on one group may im-
prove the detection of interactions for that group, it may not represent the interactions in nonfocal
groups well. For example, plant–pollinator interaction data coming from visitation records
likely lead to more complete sampling of interactions for plants than for flower visitors. Further-
more, studies focusing solely on a particular subgroup, such as bees, exclude other pollinator
groups, offering a partial representation of the community interaction pattern.

Gaps, challenges, and the way forward to predict interactions
Although we have taken important steps in our quest to predict interactions, we still have a long
way to go in this predictive endeavor. First, we need to account for heterogeneous detection
probabilities of interactions resulting from sampling effects. Potential ways to solve this problem
include increasing the number of replicates in time and space to improve sampling completeness
and prediction of spatio-temporal variability of interactions. To avoid focal group bias and improve
sampling completeness, we can combine species interaction data [79] collected using different
methodologies, such as flower visitation, pollen loads [78,80], and emerging approaches, such
as DNAmetabarcoding [81,82]. Additionally, we should use statistical methods to estimate inter-
actions occurring in nature but not present in our observations [83,84] andmethods that take into
account sources of bias such as species abundance [84]. Furthermore, we should measure
attributes of species recorded in our study systems, even those not observed interacting, as
this information potentially carries predictive value.

Second, we need to improve our estimates of the predictors of interactions (abundance, spatio-
temporal distributions, traits, and phylogenies) and how they combine to determine interactions.
For instance, we need to record abundances independently from interactions if wewant to under-
stand the role abundance plays in predicting interaction frequencies [85]. Moreover, for plants, we
should focus not only on the abundance of flowers but also on floral rewards, which play a key
role in attracting pollinators. In addition to collecting information on the morphological traits of
the interacting species and data relevant for the interactions to occur, many other understudied
chemical and behavioral traits, such as floral scent, pollen nutrition, nectar sugar composition,
and pollinator sensory and cognitive abilities, also seemessential to predict interaction probabilities.
However, we acknowledge that measuring all these traits simultaneously may be unfeasible and
that trait values may change with environmental conditions [86]. Stronger collaborative efforts
might provide an alternative to increase the amount of data collected. Furthermore, the application
of standardized data collection protocols across studies could allow model evaluation under different
local scenarios.

Third, from a modeling perspective, we have multiple issues to tackle. To start, we should conduct
a thorough comparison of the predictive ability of the different available approaches using the same
attributes and datasets. Ideally, comparing model outcomes from multiple datasets, collected in
different geographical locations and with different sample sizes, would allow us to determine the
generality of model predictions. Moreover, most models make several simplifying assumptions, in-
cluding that different traits weigh equally for all species, operate simultaneously and independently
from each other, and assume no intraspecific variation (one trait value per species). However, these
assumptions seem unrealistic as, for example, different traits might contribute differently to interac-
tions for different species pairs, depending on other attributes [87,88], the population’s demo-
graphic stage (e.g., the reproductive stage), or predominant environmental conditions [89].
Intraspecific trait variability could also play a key role in determining realized interactions [90], yet,
we currently have a limited understanding of how intraspecific trait variability affects plant–pollinator
502 Trends in Ecology & Evolution, May 2024, Vol. 39, No. 5
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How should predictive models
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dynamics to improve the prediction of
species interactions?

Can we tease apart sampling effects
from true ecological mechanisms
driving species interactions?
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prediction?
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interactions. Furthermore, selecting traits might pose a challenge when trying to predict interac-
tions from dissimilar pollinator groups, such as birds and bees. Novel approaches address these
issues in a functional context by using the partners’ traits to define the functional space of a species
[91]. In addition, the lack of comparative data has prevented us from using behavioral attributes,
such as foraging, to predict plant–pollinator interactions. Although we do not know which, if any,
of these additional attributes will improve our predictive ability of interactions, they all make biological
sense and represent avenues for future research.

Concluding remarks
Ecology has increasingly become a predictive science in response to the need to understand
natural environments and predict how they respond to human activities. This need is pushing
ecologists toward improving methods for predicting species interactions. Numerous methods
are available to predict pairwise plant–pollinator interactions based on species attributes. All
methods present ample opportunities for improvement and spark new horizons for research
(see Outstanding questions). Improving plant–pollinator interaction prediction will allow us to
increase our knowledge of interactions and boost a more meaningful ecological understanding
of plant–pollinator interaction networks.
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