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Abstract
The choice of temporal resolution has high importance in ecological modeling, which 
can greatly affect the identification of the main drivers of an organism's distribution, 
considering the spatiotemporal dynamism of environmental predictors as well as or-
ganisms’ abundance. The present study aimed to identify the spatiotemporal distribu-
tion patterns of Caspian Kutum, Rutilus frisii, along the southern coast of the Caspian 
Sea, north of Iran, evaluating multiple temporal resolutions of data. The boosted re-
gression trees (BRT) method was used to model fish catch distribution using a set 
of environmental predictors. Three temporal scales of data, including seasonal, sub-
seasonal, and monthly time frames over the catch season (October–April), were con-
sidered in our modeling analyses. The monthly models, utilizing more detailed data 
scales, exhibited the highest potential in identifying the overall distribution patterns 
of the fish, compared to temporally-coarse BRT models. The best models were the 
BRTs fitted using data from March and April, which represented the final months of 
the catch season with the highest catch levels. In the monthly models, the main de-
terminants of the Kutum's aggregation points were found to be dynamic variables 
including sea surface temperature, particulate organic and inorganic carbon, as op-
posed to static topographic parameters such as distance to river inlets. Seasonal and 
sub-seasonal models identified particulate inorganic matter and distance to river in-
lets as the predictors with the highest influence on fish distribution. The geographical 
distributions of fish biomass hotspots revealed the presence of a stable number of 
fish aggregation hotspot points along the eastern coast, while some cold-spot points 
were identified along the central and western coasts of the Caspian Sea. Our findings 
indicate that utilizing fine time scales in modeling analyses can result in a more reliable 
explanation and prediction of fish distribution dynamics. The investigated approach 
allows for the identification of intra-seasonal fluctuations in environmental condi-
tions, particularly dynamic parameters, and their relationship with fish aggregation.
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1  |  INTRODUC TION

Modeling and predicting the distribution and abundance of fish spe-
cies is crucial for effective fisheries management (Li et  al.,  2016). 
Understanding the spatial distribution of fish species is essential for 
successful fisheries management, conservation planning, and as-
sessing the impacts of environmental changes (Pennino et al., 2020). 
As a result, fish distribution modeling has received considerable at-
tention (Giannoulaki et al., 2013; Guisan & Zimmermann, 2000).

The temporal resolution of data is an important factor in spe-
cies distribution modeling analyses and can greatly influence the 
explanatory and predictive ability of models. Identifying appropri-
ate distributional patterns of organisms requires determining the 
suitable temporal resolution of data (Fernandez et al., 2017; Scales 
et  al.,  2017), considering the ecological or management question 
(Mannocci et al., 2014, 2017), and spatiotemporal variability of envi-
ronmental variables (Redfern et al., 2006). The temporal resolution 
of available environmental datasets is another important factor that 
typically affects the time frame of species modeling analyses (Jetz 
et al., 2012). Basic knowledge of the ecological characteristics of the 
species (e.g., migratory behavior) and variable dynamism (i.e., tempo-
ral variability) could be effective in selecting relevant environmental 
predictors and proper time resolutions (Fernandez et al., 2017). The 
limited studies that have examined the effects of temporal scale 
on the performance of distribution models suggested applying fine 
temporal resolutions to improve descriptive and predictive ability of 
models (Becker et al., 2016; Fernandez et al., 2017, 2018; Mannocci 
et al., 2017; Stelzenmüller et al., 2013).

Various computational techniques, including machine learning, 
have been employed to identify the habitat features that influence 
fish distributions (Elith et al., 2008; Froeschke & Froeschke, 2011; 
Hua et al., 2020; Li et al., 2015). Among the machine learning tech-
niques, regression trees (RT) and boosted regression trees (BRT) 
modeling methods, which combine statistical and machine learn-
ing approaches, have been widely used to establish relationships 
between fish distribution patterns and environmental predic-
tors (Anderson et  al.,  2016; Froeschke et  al.,  2010; Froeschke & 
Froeschke, 2011, 2016; Knudby et al., 2010; Leathwick et al., 2008; 
Pittman et  al.,  2007). More explanatory power and better predic-
tive performance of this modeling technique have been reported 
compared to some commonly used statistical approaches, for ex-
ample, the generalized additive model (GAM), which has extensive 
applications in ecological studies (Elith et  al.,  2006; Froeschke & 
Froeschke, 2016; Leathwick et al., 2006; Moisen et al., 2006).

Caspian Kutum (Rutilus frisii, Nordmann 1840), from the 
Leuciscidae family (Eagderi et  al.,  2022), is an endemic species of 
the Caspian Sea being distributed from the mouth of the Terek River 
in the north of the Caspian Sea, along the west and south coast to 
the mouth of the Atrak River (Rabazanov et al., 2019). Kutum with 
a life span of up to 9 years (average: 4.5 years) can reach a maxi-
mum length and weight of 58 cm and 3.5 kg, respectively (average 
length: 47.1 cm; average weight: 1.7 kg) (Khodorevskaya et al., 2014). 
Males and females mature at 2–3 and 3–4 years old, respectively 

(Khodorevskaya et  al.,  2014). Kutum has wintering and spawning 
migrations and as a migratory anadromous fish, it migrates into 
the rivers for spawning during March and April, with its peak in 
April (Afraei Bandpei et al., 2009). After spawning, the fish migrate 
back into the sea for feeding. The wintering migration of the fish 
takes place during December and January into deep waters (Afraei 
Bandpei et al., 2009).

Kutum is mainly an omnivorous fish. During the early stages of life 
history, it feeds on phyto- and zooplankton and insect larvae (Valipour 
et al., 2011), but the adult fish diets are mostly mollusks (especially 
bivalves), crustaceans, and polychaetes (Abdolmalaki et  al.,  2009; 
Khodorevskaya et al., 2014). The intensity of the feeding behavior of 
Kutum has temporal fluctuations, where the lowest feeding was re-
ported during wintering and spawning migration periods (December 
to January, and April, respectively) (Afraei Bandpei et al., 2009).

In the Caspian Sea, sturgeons (especially in their fry stage) 
and fishes of the family Cyprinidae are the main species that feed 
on benthic organisms and may compete for prey items with the 
Caspian Kutum. However, considering the critical decreases in their 
abundance during the last decades (Fazli & Daryanabard,  2020; 
Karpinsky, 2010), it is not expected that this competition has had 
decreasing effects on the stocks of Kutum. Also, based on the con-
ducted studies (Cites, 2017; Fazli et al., 2017; Tavakoli et al., 2019), 
population collapses of the main predators, including Caspian Seal 
(Phoca caspica) and sturgeon fishes (which can feed on young Kutum 
in their adult stage), have lowered predation pressure on Kutum's 
populations. Therefore, during the last two decades, nutritional 
competition and predation pressure have not been critical biotic fac-
tors influencing Kutum abundance.

Caspian Kutum has contributed nearly >70% of the total yearly 
catch of the bony fishes in Iranian waters (Esmaeili et al., 2015; Ghasemi 
et  al.,  2014) and thus has high commercial importance (Abdolhay 
et  al.,  2012). Kutum is mainly caught by small fishing cooperatives 
along the southern coastline of the Caspian Sea using beach seine. 
The catch season starts in September and lasts until April. The Iranian 
Fisheries Organization (IFO) conducted re-stocking programs by re-
leasing artificially-produced fingerlings into the Sea (140–400 million 
fingerlings in 2000–2009; IFO, 2013). However, the catch has dropped 
from 1.9 × 104 tons in 2000 to 1.6 × 104 tons in 2014. Accordingly, the 
number of active fishing cooperatives decreased from >150 to <120 
(IFO, 2013). Such decline stemmed from overfishing, water pollution, 
and degradation of riverine spawning areas (Ghani Nejhad et al., 2000; 
Rabazanov et al., 2019; Razavi Sayyad, 1999).

During the last three decades, fishing points of Kutum were in fixed 
locations over the Iranian coastal waters of the Caspian Sea, and it is 
not clear how the geographical positions of these fishing grounds were 
designated. Apparently, they are distributed randomly along the south-
ern coastline of the Caspian Sea. Considering the overall decreasing 
trend in catch levels of the Kutum during the last decade and also, the 
consequent reduction in the number of active fisheries cooperatives, 
understanding the spatio-temporal dynamics of the fish distribution 
patterns over southern Caspian Sea coastal waters and the roles of 
the relevant environmental variables in affecting its fluctuations is of 
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high importance in planning effective conservation and management 
programs. In this regard, the present study aimed to: (1) model the spa-
tiotemporal distribution of Kutum through the relationships between 
the fish catch and environmental parameters; (2) assess the effects of 
temporal resolution of the modeling analyses on descriptive and pre-
dictive performance of distribution models; (3) gain some knowledge 
about the effects of the most relevant environmental predictors and 
their temporal dynamics on fish distribution patterns; and (4) identify 
spatiotemporal patterns of fish distribution hot/cold-spots occurrence.

2  |  MATERIAL S AND METHODS

2.1  |  Fish catch data

The catch data of Kutum were obtained from the Iranian Fisheries 
Organization (IFO) for over 150 fishing points (cooperatives) along the 
Iranian coast of the Caspian Sea (Figure 1). The data included catch 

values (kg), fishing time (hours), and the number of dragged seine nets, 
covering the catch seasons from 2002/3 to 2011/12. The seine nets 
used had a length of 1200 m, a depth of 12 m, and mesh sizes of 33 and 
45 mm at the bag and wings, respectively. Each fishing cooperative 
was assigned a specific geographical fishing zone. Out of the coopera-
tives, only 90 were consistently active throughout the study period, 
and their data were used for the modeling analysis. The catch season 
for the Caspian Kutum extends from September to April of the fol-
lowing year, with September excluded due to limited or no data avail-
able during that month. There was an increasing trend in catch levels 
over the catch season with a steep increase from February to March, 
when over 65% of the total seasonal catch occurred (Figure 2). Hence, 
three temporal frameworks were considered for modeling analyses: 
(1) monthly (the catch data were averaged over each month), (2) sub-
seasonal (the catch data were averaged over two periods: the early 
fishing period (EFP) from October to February and the last fishing pe-
riod (LFP) from March to April), and (3) seasonal (the catch data were 
averaged over the whole catch season).

F I G U R E  1 Geographical distribution 
of fishing cooperatives locations (•) for 
Caspian Kutum, Rutilus frisii, along the 
southern coast of the Caspian Sea.
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To standardize fish abundance, the catch levels were converted 
to catch per unit of effort (CPUE) using the following equation 
(Equation 1):

where CPUEijz is the CPUE (kg net
−1 h−1) for the time period i, catch 

season j, and fishing location z.

2.2  |  Environmental data

Based on the prior studies, relevant remotely sensed environmen-
tal variables with reported potential ecological effects on fish dis-
tribution were selected as explanatory predictors to model CPUE 

distribution of Kutum over the fishing points (Griffiths et al., 2017; 
Guo et  al.,  2022; Ito et  al.,  2016; Mahowald et  al.,  2018; Moëzzi 
et  al.,  2022; Olsen,  2019; Parra et  al.,  2017; Pirtle et  al.,  2019; 
Stamoulis et al., 2018). The variables were the day-time sea surface 
temperature (SST), near-surface chlorophyll-a concentration (CHL), 
aerosol optical thickness (ASL), particulate organic carbon (POC), 
particulate inorganic carbon (PIC), depth, slope, aspect, and distance 
to river inlets at fishing points (Table 1).

The depth was calculated as bathymetric data minus 27 as the 
water level difference between the Caspian Sea and open oceanic 
waters equals 27 m (Chen et al., 2017; Moëzzi et al., 2022). Slope and 
aspect maps were created from the bathymetry map. The distance 
of the fishing locations to the main water inlets was calculated as 
their nearest direct distance to the mouth of the main rivers along 
the coast. Data were converted to raster layers using the raster 
package (Hijmans, 2021) in R 4.1.2 (R Core Team, 2021).

The collinearity of predictor variables was assessed using 
Pearson correlation. Since all of the correlation coefficients were 
<0.7, there was no problematic collinearity among the predictors 
(Schickele et al., 2020), and all of them were used in fitting BRTs.

2.3  |  Model fitting and evaluation

Boosted regression trees (BRT) were used to investigate relationships 
between Kutum distribution and potential environmental predictors. 
BRT models explain response–predictor relationships using recur-
sive binary splits and creating ensembles of regression trees (Elith 
et al., 2008). This modeling technique can handle missing values, cap-
ture non-linear relationships, and minimize prediction errors when 
examining the correlations between predictor and response variables 
(Li et al., 2015). BRT model is applicable for continuous or categorical 

(1)CPUEijz =
Catchijz

Number of seine netsijz × Fishing timeijz

F I G U R E  2 Overall monthly proportions of catch per unit of 
effort (CPUE) for Caspian Kutum, Rutilus frisii, during catch seasons 
(2002/3–2011/12).

Variable Unit

Resolution

Source/referenceSpatial Temporal

Day-time sea surface temperature 
(SST)

°C 4 km Monthly 
(2002–2012)

MODIS (2021)a

Near surface chlorophyll-a 
concentration (CHL)

mg m−3

Aerosol optical thickness (ASL) –

Particulate organic carbon (POC) mg m−3

Particulate inorganic carbon (PIC) mol m−3

Depth m 4 km 2021 GEBCO (2021)b

Slope ° 4 km 2021 Created using the 
bathymetric map

Aspect ° 4 km 2021 Created using the 
bathymetric map

Distance to the river inlets km 4 km 2021 Local maps

aMODIS: Moderate Resolution Imaging Spectroradiometer, United States National Aeronautics 
and Space Administration (NASA) Goddard Space Flight Center, Ocean Ecology Laboratory, 2021 
(https://​modis.​gsfc.​nasa.​gov/​).
bGEBCO: General Bathymetric Chart of the Oceans, 2021 (http://​www.​gebco.​net).

TA B L E  1 Environmental variables used 
as predictors in the boosted regression 
trees models.
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predictor variables and is not affected by data transformations or ex-
treme observations (Froeschke & Froeschke,  2016). Moreover, this 
model can assess the relative importance of habitat predictors in re-
lation to the response variable (Elith et  al.,  2008; Xue et  al.,  2017). 
BRT models were fitted using the gbm R package (Elith et al., 2008; 
Greenwell et al., 2020), with all environmental variables as predictors 
and CPUE as the response variable. Model parameters were automati-
cally tested until obtaining the best fit using an interaction depth of 
3, a learning rate of 0.01–0.001, a bag fraction of 0.75, and maximum 
trees of 10,000 with a Gaussian error distribution (Sievers et al., 2020). 
For each temporal scale, 80% of data (first eight catch seasons) were 
selected for model training, and the models were cross-validated using 
the bootstrapping method (100 iterations; Kuhn & Johnson,  2013). 
Considering the probable tendency of BRT models to over-fit train-
ing data, the remaining 20% of data (i.e., the last two catch seasons) 
were used as a completely unknown dataset for testing of the mod-
els (Li et al., 2017). The goodness-of-fit of the models was assessed 
using adjusted R-squared (adj-R2). The models fitted for each temporal 
scale were examined using the testing datasets of all temporal scales, 
and their predictive performance was evaluated using normalized root 
mean squared error (nRMSE) scores, calculated as follows:

where xi is the raw value, x̂i is the predicted value, N is the number of 
observations, and xmax and xmin are the maximum and minimum scores 
of the raw data, respectively. Also, correlation coefficients (r) of fitted 
linear models between raw and fitted values of the models (for both 
training and testing data) were calculated for examining the accuracy 
of the model's predictions.

The relative importance (RI) scores of predictor variables were cal-
culated using the VarImp function of the caret package in R (Kuhn & 
Johnson, 2013). Since there were nine predictors and the total values 
of RIs should equal 100%, variables with mean RI scores greater than 

11.11% (=100/9) were considered as influencing predictors (Thorn 
et al., 2016). The difference in mean RIs of each predictor from this 
significance level (11.11%) was statistically assessed using a one-
sample t-test (α = 0.05). Partial dependency plots of significant vari-
ables were used to examine fluctuations in CPUE over the ranges of 
the predictors.

2.4  |  Fish hot/cold-spot determination

A 0.8-quantile of the raw and estimated CPUE values was used as 
the threshold to determine fish distribution hot- and cold-spots (Li 
et al., 2016), where a hot-spot was defined as a fishing point with 
CPUE ≥0.8-quantile and the rest of the points as cold-spot locations. 
The spatiotemporal accuracy of BRT models in predicting the occur-
rence of hot/cold-spots was evaluated and compared between dif-
ferent temporal scales by overlaying observed and predicted CPUEs.

3  |  RESULTS

3.1  |  Model performance

Fitting BRT models to training datasets with different temporal res-
olutions showed that monthly models had generally higher explana-
tory power compared to sub-seasonal (EFP and LFP) and seasonal 
models (Table 2). Among the monthly models, the best fitted models 
were obtained for October, March, and April (having higher adj-R2). 
These models showed higher correlation coefficients (rTrain) between 
fitted and observed values of training datasets (Table 2). The models 
of the other months showed similar weak fits. However, predicting 
testing data using fitted models demonstrated that March and April 
BRTs with the lowest nRMSE scores (0.49 ± 0.19 and 0.35 ± 0.12, re-
spectively) had the best predictive performance (Table 3). Predictions 
of other monthly models presented lower predictability compared to 

(2)
nRMSE =

�

∑N

i=1(xi−x̂i)
2

N
�

xmax − xmin

�

Model Adj.R2 rTrain rTest

Monthly October 0.358 ± 0.033 0.59 ± 0.11 0.09 ± 0.05

November 0.167 ± 0.063 0.41 ± 0.08 0.27 ± 0.12

December 0.143 ± 0.091 0.37 ± 0.06 0.04 ± 0.03

January 0.158 ± 0.084 0.41 ± 0.07 0.02 ± 0.02

February 0.205 ± 0.111 0.45 ± 0.12 0.23 ± 0.11

March 0.324 ± 0.072 0.57 ± 0.09 0.49 ± 0.19

April 0.288 ± 0.095 0.43 ± 0.06 0.35 ± 0.12

Sub-seasonal EFP 0.148 ± 0.043 0.41 ± 0.08 0.08 ± 0.04

LFP 0.185 ± 0.019 0.42 ± 0.07 0.22 ± 0.08

Seasonal 0.112 ± 0.037 0.33 ± 0.09 0.19 ± 0.10

Note: Bold rows show months with models selected for further analysis.
Abbreviations: Adj.R2, Adjusted R2; EFP, Early fishing period; LFP, Last fishing period; rTrain, 
Correlation coefficient between raw and estimated values for training data; rTest, Correlation 
coefficient between raw and estimated values for testing data.

TA B L E  2 Boosted regression trees 
(BRT) models performance measures 
(mean ± standard deviation) averaged over 
100 bootstrapped iterations.
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the sub-seasonal and seasonal BRTs. Also, predictions of March and 
April BRTs for testing datasets of other temporal scales generally 
led to more accurate estimates (with lower nRMSE and higher rTest 
values) compared to the predictions obtained for other BRTs with 
non-identical testing datasets (Tables  2 and 3). Accordingly, BRT 
models of March and April were selected as the models with the 
best performance.

3.2  |  Environmental predictors

Different environmental predictors were identified as the main driv-
ers of Kutum distribution in the fitted BRTs. Among all predictors, 
SST had a significant influence in all monthly models, with the high-
est RI scores observed in October, February, and March (Figure 3), 
as well as in the EFP (Figure 4). Particulate inorganic carbon (PIC) 

TA B L E  3 Averaged normalized root mean squared error (nRMSE) scores for predicting all testing datasets by fitted boosted regression 
trees (BRT) models.

Testing data

Oct Nov Dec Jan Feb Mar Apr EFP LFP Season

Model Oct 1.157 1.113 3.328 2.913 2.891 4.896 8.166 3.274 8.782 3.579

Nov 1.344 1.132 1.830 1.736 1.733 2.614 4.376 1.871 5.013 2.343

Dec 1.235 1.008 1.192 1.745 1.463 1.985 2.917 1.264 3.023 1.533

Jan 1.078 0.993 1.129 1.127 1.130 1.468 1.625 1.067 1.875 1.095

Feb 1.269 1.136 1.033 1.351 1.043 1.211 1.231 1.001 1.812 1.035

Mar 1.366 1.277 1.141 1.229 1.212 0.927 1.078 1.208 1.003 1.162

Apr 1.583 1.510 1.288 1.430 1.305 1.080 0.984 1.322 1.032 1.284

EFP 1.461 1.132 1.587 1.801 2.065 2.861 4.695 1.132 5.029 2.164

LFP 1.568 1.484 1.288 1.363 1.241 1.053 1.059 1.364 1.079 1.312

Season 1.615 1.399 1.008 1.301 1.079 1.123 1.811 1.158 1.920 1.118

Note: Shaded cells indicate the lowest nRMSE scores.
Abbreviations: EFP, Early fishing period; LFP, Last fishing period.

F I G U R E  3 Mean (±SD) relative importance (RI [%]) of environmental predictors in monthly models. The horizontal dotted line shows the 
significance level of relative importance scores (11.11%). The vertical bars in red indicate a significant RI score for the variables. ASL, Aerosol 
optical thickness; CHL, Near surface chlorophyll-a concentration; Distance, Distance to the river inlets; PIC, Particulate inorganic carbon; 
POC, Particulate organic carbon; SST, Day-time sea surface temperature.
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had considerable effects on Kutum CPUEs in the EFP, LFP, and sea-
sonal models (Figure 4). Additionally, PIC was found to be an influ-
ential predictor in January, February, and March. The RI scores of 
POC were significant for BRT models of November, April, and LFP. 
Aerosol optical thickness (ASL) was an effective predictor in models 
from October to December and March. CHL (Chlorophyll-a concen-
tration) showed low but significant RI scores in BRTs of November 
to January, April, and also in the EFP. Among the topographical 

parameters, the RI score for distance from the river mouth was sig-
nificant in December, EFP, and seasonal BRT models. Other topo-
graphic parameters such as depth, slope, and aspect influenced fish 
CPUEs only in one or some of the monthly models.

The relationships between CPUE fluctuations and environmental 
predictors were assessed using partial dependence plots (Figure 5). 
SST had a clear increasing trend over the period of February to April 
with maximum effects at higher temperatures, while there was a de-
creasing trend for EFP. In all BRT models with PIC as a significant 
predictor, its highest partial effects were found at the range from 
0.00 to 0.01 mol m−3. There were increasing trends for POC effects 
with the highest influences being found from 2000 to 4000 mg m−3 
in April and for concentrations greater than 1000 mg m−3 in LFP. The 
ranges of CHL and ASL with the highest partial effect were differ-
ent between models. The maximum effects of distance from river 
inlets were found in a distance range lower than 2 km in December 
and EFP models, while for the seasonal model, the highest effects 
belonged to a more extended distance range (0–10 km). The fishing 
points with depths less than 10 m, slopes between 0.2–0.4°, and as-
pect <40°and >300° were areas with the highest partial effects of 
these parameters obtained from the BRTs with the significant RIs of 
these variables.

3.3  |  The distribution of the hot−/coldspot points

Comparing the spatial incidence of observed and predicted hot−/
coldspots of Kutum distribution showed that BRT models of March 
and April had higher accuracy in identifying hot−/coldspots than the 
seasonal model in each and all catch seasons (Figure 6). The high-
est proportion of hotspot locations was found in March. There were 
higher differences between predicted and observed total CPUEs of 
hot−/coldspots for the seasonal model than those of the March and 
April BRTs (Figure 7), except for catch seasons of 2005/6 to 2008/9, 
where higher differences existed between predicted and real CPUEs 
for all models.

Spatial distributions of fish hotspot locations for monthly (March 
and April) and seasonal models (Figure 6) indicated that the hotspot 
points of Kutum were mainly located in the eastern coast of the 
southern Caspian Sea. There was a considerable number of fish 
hotspots in April during catch seasons 2005/6 to 2008/9 in the cen-
tral and western regions of the coastal line, which were not identi-
fied using the seasonal model outputs.

Based on the March and April models, the proportions of the 
hotspot points increased from zero in the catch season of 2002/3 
to the highest number in 2005/6–2008/9, and then decreased until 
the last catch season (Figure 8). The rate of such increase was higher 
in March than in April. In contrast, the outputs of the seasonal BRT 
showed irregular changes in the hot−/coldspot proportions of fishing 
points during the catch seasons. The observed and predicted hot−/
coldspot points overlapped at a higher rate in the selected monthly 
models than those of the seasonal models.

F I G U R E  4 Mean (± standard deviation) relative importance 
(RI [%]) of environmental predictors in sub-seasonal (EFP, Early 
fishing period; and LFP, Last fishing period) and seasonal models. 
The horizontal dotted line shows the significance level of relative 
influence scores (11.11%). The vertical bars in red indicate a 
significant RI score for the variables. ASL, Aerosol optical thickness; 
CHL, Near surface chlorophyll-a concentration; Distance, Distance 
to the river inlets; PIC, Particulate inorganic carbon; POC, 
Particulate organic carbon; SST, Day-time sea surface temperature.
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8 of 17  |     MOËZZI et al.

F I G U R E  5 Mean partial effect plots of the environmental predictors with significant influence on catch per unit of effort (CPUE) for 
monthly, sub-seasonal (early fishing period and last fishing period), and seasonal boosted regression trees (BRT) models. ASL, Aerosol optical 
thickness; CHL, Near surface chlorophyll-a concentration; Distance, Distance to the river inlets; PIC, Particulate inorganic carbon; POC, 
Particulate organic carbon; SST, Day-time sea surface temperature.
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4  |  DISCUSSION

The Caspian Sea, the largest enclosed body of water on Earth, is home 
to a diverse range of fish species. Understanding the distribution 

patterns of these species is of great importance for effective fish-
ery management and conservation efforts. In the present study, 
we aimed to investigate the spatiotemporal distribution dynamics 
of Caspian Kutum (Rutilus frisii) in the Caspian Sea emphasizing the 

F I G U R E  5  (Continued)
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influence of data temporal resolution on the distribution modeling 
accuracy.

The choice of temporal resolution in ecological modeling is a 
critical consideration, and the present study that focused on the 
Caspian Kutum distribution modeling has demonstrated that tem-
porally fine-resolution data, specifically on a monthly basis, yield 
the most robust and informative models. The best describing and 
predictive performance of models were obtained with BRTs fitted 
to the finest-scaled data (i.e., monthly models) but with considerably 
higher proportions of catch (i.e., March and April). Also, according 
to the differences in estimations for total CPUEs than the observed 
values (Figure  6), and trends in predicted and observed hotspot 
proportions and their spatial overlap (Figures 7 and 8), it was clear 
that monthly models had better performance and higher accuracy 
than the seasonal model. Although using data with a smaller time 
scale has led to the best estimates of the species distribution, but 
this situation has only been found for time intervals when the fish 
had a non-random distribution over fishing points. This finding may 
suggest that Kutum occurs sporadically and unpredictably along the 
Caspian Sea coast from summer to winter. However, it is abundant 
in spring almost in every place of the Sea. It has been suggested to 
use appropriate temporal partitioning in species distribution model-
ing, considering the ecological characteristics of the species and the 
environmental variability of the ecosystem (Mannocci et al., 2017; 
Roberts et al., 2016). The importance of incorporating the season in 
studying the distribution of Caspian Kutum has already been used 
(Fazli et al., 2010; Valipour et al., 2011), and it has been reported that 

Kutum is sparsely distributed over shallow coastal waters during 
winter (Afraei Bandpei et al., 2009). The models that used low win-
ter catch data as fish abundance measure (directly in monthly BRTs 
of October to February and indirectly in EFP and seasonal BRTs), as 
well as the unrelated or weakly related environmental covariates for 
these time frames, entered outlying data into the modeling process 
and consequently led to inconsistent predictions of fish distribution 
patterns. Thus, it may be necessary to use relevant and desired tem-
poral slices of data (e.g., species abundance and environmental vari-
ables) to obtain reliable distribution models.

The dynamism of the environmental predictors is one of the main 
factors in studying the effects of temporal resolution of data on the 
performance of species distribution models, where the effects of 
highly dynamic variables can be revealed only in finer temporal res-
olutions (Fernandez et al., 2017). Such factors are of greater impor-
tance for organisms having movement behaviors dependent on the 
changes in environmental conditions (e.g., feeding or breeding mi-
grations) (Mannocci et al., 2017); in other words, the distribution pat-
terns of species like Kutum with migratory behavior that takes place 
over yearly periods, can be explained more based on the spatiotem-
poral changes in dynamic parameters rather than being a function 
of static parameters such as topographical variables. In general, dy-
namic variables (e.g., SST, CHL, ASL, PIC, and POC) had larger contri-
butions in monthly models, especially for March and April (with the 
highest catch levels), which was also evident for LFP. However, most 
topographic parameters (as static variables) had lower significance in 
defining fish distribution in these models. On the other hand, there 

F I G U R E  6 Visualization of normalized predicted catch per unit of effort (CPUE) of March, April, and seasonal boosted regression trees 
(BRT) models for catch seasons 2002/3 to 2011/12. The (⬨) symbol indicates a hotspot point, as a fishing point with CPUEs >0.8-quantile of 
observed CPUE data, over each temporal scale.
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    |  11 of 17MOËZZI et al.

were only PIC and distance from the river inlets, as the main pre-
dictors in the seasonal models, both of them with a distinct limited 
range of high effects. In these models, averaging the data over the 
entire fishing seasons led to hiding the fluctuations and variances 
of the dynamic parameters; therefore, only the factors with a lim-
ited effective range related to the fish abundance, especially for 
PIC (which in most models had similar marginal effect trends), were 

determined as the main factors affecting the distribution of fish. 
Consequently, the failure to recognize strong relationships between 
fish abundance and the real influencing environmental variables re-
sulted in less accurate and unreliable model predictions (Fernandez 
et al., 2017). Therefore, using finer resolution of data could help us 
in finding relevant species-environment relationships and obtaining 
distribution models with much better performances.

F I G U R E  7 Total catch per unit of effort (CPUE) (ton/net. hour) in predicted and observed hot−/coldspot points for the monthly (March 
and April) and seasonal models during catch seasons of 2002/3 to 2011/2012.
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The findings from monthly models as well as monthly catch pro-
portions largely reflect the life history of Kutum. From October to 
January, as a result of the decline in water temperature and forma-
tion of thermal stratification, the fish migrates into deep offshore 
waters for wintering leading to decreases in its abundance over shal-
low coastal regions. In all of the monthly models, SST was one of 

the main parameters affecting fish distribution, while for the models 
with lower temporal resolution, this variable was only significant in 
EFP at low contributions. The sea-surface temperature was the first 
and the third important predictor of Kutum abundance in March 
and April, respectively, where higher abundances of fish were ob-
served with an increase in temperature, while in the EFP model, an 

F I G U R E  8 Predicted and observed hot−/coldspot point proportions of landing points for the monthly (March and April) and seasonal 
models during catch seasons of 2002/3 to 2011/2012. The values on the bars show the overlap (%) of predicted and observed hotspot and 
coldspot points in each catch season.
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irrelevant decreasing trend of CPUEs was observed over the SST 
range. The increase in occurrence over high SSTs indicated that 
Kutum preferred high temperatures in the range of 8–20°C. In fact, 
the highest abundance coincided with temperatures of 16–20°C in 
April. Temperature, as an effective environmental factor in relation 
to fish distribution, controls survival and growth (Hua et al., 2020; 
Kempf et al., 2013; Olsen, 2019; Youcef et al., 2013), and winter mi-
gration of Kutum to deep offshore waters (Fazli et al., 2010; Valipour 
et  al.,  2011). Moreover, an increase in the temperature in coastal 
waters is indirectly coincided with high nutrient levels and hence 
availability of the prey (Pang et al., 2015). However, the water tem-
perature has seldom been reported as an insignificant factor in the 
distribution of this species (Vayghan et  al.,  2013). Such contradic-
tion may be related to the higher effect of this parameter in shal-
low coastal waters compared to deep offshore regions reported by 
Vayghan et al. (2013).

Our findings significantly depicted a clear temporal shift in 
main predictors of Kutum distribution across March and April (i.e., 
months with the highest catch levels), from mainly physical (SST, 
aspect, slope, and ASL) to mostly nutritional variables (POC, PIC, 
and SST). The LFP model also showed this situation with only 
POC and PIC as factors determining Kutum distribution. In April, 
when water temperature increased over most fishing locations, 
nutritional factors like POC and PIC became more important in 
providing the optimal habitat range for Kutum. This fish starts its 
migration to the coastal waters for feeding with increasing water 
temperature during this period. These two factors reflect the pro-
ductivity of the water environment (Griffiths et al., 2017; Groom & 
Holligan, 1987; Kutti et al., 2008; Perea-Blazquez et al., 2012; Rost 
& Riebesell, 2004). Higher POC and PIC levels are related to higher 
fluxes of carbon to the sea floor from overlying water column 
(Groom & Holligan, 1987; Kutti et al., 2008; Rost & Riebesell, 2004) 
which can lead to improving secondary production of benthic in-
vertebrates (Griffiths et  al.,  2017) especially in coastal regions 
(Perea-Blazquez et al., 2012), which are the main food elements for 
Kutum. An increasing trend of fish biomass was found over POC 
of 0–3500 mg m−3. However, the narrow optimum range of PIC 
(<0.01 mol m−3) preferred by the fish could be related to the nega-
tive effect of PIC on light penetration into the water body, since its 
high concentrations can cause between 10% and 90% light back-
scattering in marine systems (Balch et al., 1991, 1999). Accordingly, 
we can suggest that the distribution of Kutum in the last months 
of the catch season is firstly dependent on water temperature ele-
vation, and after that, the incidence of favorable feeding grounds 
could be identified with their high POC contents.

Considering the reproductive migration of Kutum, which takes 
place over March to April, the highest densities of fish must have 
been observed in fishing points near the mouths of the main riv-
ers entering the southern Caspian Sea. However, distance from the 
river inlet was not among the significant parameters of March and 
April, nor the LFP BRTs. Due to the lack of data about the biological 
characteristics of the catch (e.g., length, weight, and reproductive 
status of fish) in our dataset, it is not possible to explain this situation 

accurately. However, without a relevant relationship between dis-
tance and fish abundance during the period of fish reproductive 
migration, it can be said using sein nets with stable characteristics 
(i.e., mesh size) for more than one decade has led to declines in fish 
size and age at maturity with harvested fishes mainly having a size 
range larger than a fixed threshold, which has been reported in some 
studies that performed biological analysis of Kutum catch over lim-
ited coastal extents (Afraei Bandpei et al., 2009; Fazli et al., 2010). 
Therefore, in our modeling analyses, the importance of the repro-
ductive migration of fish on its distribution was less inferable com-
pared to its migration into the proper coastal feeding grounds, over 
the studied time period.

In the present study, the biotic relationships of the Kutum with 
its predator and prey species were not considered in the modeling 
process due to the lack of data for the studied decadal period and 
over the broad geographical extent of the fishing points. However, 
incorporating such data in the distribution modeling of this species 
could lead to models with much higher explaining and predictive 
power. Therefore, using these predictors in modeling analyses is 
suggested for future research works. Also, based on some of the 
conducted studies, it has been proposed to consider the lagged-time 
effects of environmental parameters, especially SST and chlorophyll 
concentration, in the distribution modeling of marine organisms at 
higher trophic levels (Olden & Neff, 2001; Trujillo & Thurman, 2016; 
Wang et al., 2018). In our research, due to the use and comparison of 
different temporal frameworks of data in modeling analyses, it was 
not possible to apply such lagged effects for the seasonal and sub-
seasonal datasets; however, the use of such terms in monthly models 
can improve recognizing the temporal trends of the influencing lev-
els of these variables on fish distribution.

Geographical distribution of fish hot−/coldspots obtained from 
the monthly BRT models mainly showed multiple hot-spot incidence 
ranges over the western, central and eastern parts of the southern 
Caspian Sea coast. However, the temporal stability of hotspot occur-
rence over the eastern coasts was higher which was observed from 
the monthly (March and April) and seasonal models, while fish bio-
mass hotspots over the central and western coastal regions which 
were obtained from the March model, were only observed during 
catch seasons 2005/6 to 2008/9. This temporal pattern in spatial oc-
currence indicated higher stability of environmental and ecological 
habitat conditions in the eastern coastal ranges preferred by Kutum. 
Vayghan et al. (2013) reported a spatial pattern of suitable habitat dis-
tribution with the highest suitability for Kutum in offshore waters in 
central and eastern coastal regions that partly supported our results. 
Considering these distributions, it could be said that, using monthly 
models, we can identify intra-seasonal fluctuations in fish abundance 
hotspots, which were not obtained from the seasonal model.

5  |  CONCLUSION

In the present research, we attempted to understand the spatiotem-
poral dynamics of Caspian Kutum distribution over the southern 
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coastal waters of the Caspian Sea, emphasizing the effect of tem-
poral resolution of data on modeling performance and predictions. 
The combined use of the different temporal resolutions of data from 
different sources and boosted regression trees (BRT) modeling tech-
nique, considering the general temporal patterns of fish catch and eco-
logical characteristics of the studied species with migratory behavior, 
led to the recognition of some key points related to its spatiotempo-
ral dynamism. Our findings indicated that using finer time scales in 
modeling analyses could lead to more reliable explanations and pre-
dictions of fish distribution dynamics by identifying the intra-seasonal 
fluctuations of environmental conditions, especially for the dynamic 
parameters, and their relations with fish aggregation. Based on the 
results, incorporating the data of time periods with low catch levels in 
the averaged dataset with coarser temporal resolution can musk the 
real patterns and dynamism of habitat parameters and consequently 
fish distribution. For the Kutum, with considerably much higher catch 
levels during the last months of the catch season, we found that de-
spite the reproductive migration of the fish, water temperature and 
nutritional factors (e.g., POC) were the main detrimental drivers of fish 
hotspot delineation, which could only be detected using monthly BRT 
models. Also, predictions obtained from the monthly models obviously 
showed the key role of the temporal framework of data in determining 
the intra- and inter-seasonal spatial changes in fish hotspot incidence 
over the decadal study period. The obtained results of this study could 
practically help Iranian fisheries managers to adopt more appropriate 
management policies regarding Kutum fisheries with special attention 
to the spatiotemporal distribution dynamics.
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