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Abstract
The	choice	of	temporal	resolution	has	high	importance	in	ecological	modeling,	which	
can	greatly	affect	the	identification	of	the	main	drivers	of	an	organism's	distribution,	
considering	the	spatiotemporal	dynamism	of	environmental	predictors	as	well	as	or-
ganisms’	abundance.	The	present	study	aimed	to	identify	the	spatiotemporal	distribu-
tion	patterns	of	Caspian	Kutum,	Rutilus frisii,	along	the	southern	coast	of	the	Caspian	
Sea,	north	of	Iran,	evaluating	multiple	temporal	resolutions	of	data.	The	boosted	re-
gression	 trees	 (BRT)	method	was	used	 to	model	 fish	 catch	distribution	using	a	 set	
of	environmental	predictors.	Three	temporal	scales	of	data,	including	seasonal,	sub-	
seasonal,	and	monthly	time	frames	over	the	catch	season	(October–April),	were	con-
sidered	 in	our	modeling	analyses.	The	monthly	models,	utilizing	more	detailed	data	
scales,	exhibited	the	highest	potential	in	identifying	the	overall	distribution	patterns	
of	the	fish,	compared	to	temporally-	coarse	BRT	models.	The	best	models	were	the	
BRTs	fitted	using	data	from	March	and	April,	which	represented	the	final	months	of	
the	catch	season	with	the	highest	catch	levels.	In	the	monthly	models,	the	main	de-
terminants	of	 the	Kutum's	 aggregation	points	were	 found	 to	be	dynamic	 variables	
including	sea	surface	temperature,	particulate	organic	and	 inorganic	carbon,	as	op-
posed	to	static	topographic	parameters	such	as	distance	to	river	inlets.	Seasonal	and	
sub-	seasonal	models	identified	particulate	inorganic	matter	and	distance	to	river	in-
lets	as	the	predictors	with	the	highest	influence	on	fish	distribution.	The	geographical	
distributions	of	fish	biomass	hotspots	revealed	the	presence	of	a	stable	number	of	
fish	aggregation	hotspot	points	along	the	eastern	coast,	while	some	cold-	spot	points	
were	identified	along	the	central	and	western	coasts	of	the	Caspian	Sea.	Our	findings	
indicate	that	utilizing	fine	time	scales	in	modeling	analyses	can	result	in	a	more	reliable	
explanation	and	prediction	of	fish	distribution	dynamics.	The	investigated	approach	
allows	 for	 the	 identification	 of	 intra-	seasonal	 fluctuations	 in	 environmental	 condi-
tions,	particularly	dynamic	parameters,	and	their	relationship	with	fish	aggregation.
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boosted	regression	trees,	Caspian	Sea,	data	resolution,	distribution	modeling,	fishing	zones,	
Rutilus frisii,	spatiotemporal	dynamics

https://doi.org/10.1002/ece3.70259
http://www.ecolevol.org
mailto:
https://orcid.org/0000-0001-8522-4975
mailto:
https://orcid.org/0000-0003-0546-8713
mailto:
https://orcid.org/0000-0001-8649-9452
https://orcid.org/0009-0004-9256-810X
https://orcid.org/0000-0002-9835-1794
http://creativecommons.org/licenses/by/4.0/
mailto:moezifateh@ut.ac.ir
mailto:poorbagher@ut.ac.ir
mailto:poorbagher@ut.ac.ir
mailto:soheil.eagderi@ut.ac.ir
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.70259&domain=pdf&date_stamp=2024-09-23


2 of 17  |     MOËZZI et al.

1  |  INTRODUC TION

Modeling	and	predicting	the	distribution	and	abundance	of	fish	spe-
cies	 is	 crucial	 for	 effective	 fisheries	management	 (Li	 et	 al.,	 2016).	
Understanding	the	spatial	distribution	of	fish	species	is	essential	for	
successful	 fisheries	 management,	 conservation	 planning,	 and	 as-
sessing	the	impacts	of	environmental	changes	(Pennino	et	al.,	2020).	
As	a	result,	fish	distribution	modeling	has	received	considerable	at-
tention	(Giannoulaki	et	al.,	2013;	Guisan	&	Zimmermann,	2000).

The	 temporal	 resolution	of	data	 is	 an	 important	 factor	 in	 spe-
cies	 distribution	 modeling	 analyses	 and	 can	 greatly	 influence	 the	
explanatory	and	predictive	ability	of	models.	 Identifying	appropri-
ate	 distributional	 patterns	 of	 organisms	 requires	 determining	 the	
suitable	temporal	resolution	of	data	(Fernandez	et	al.,	2017;	Scales	
et al., 2017),	 considering	 the	 ecological	 or	 management	 question	
(Mannocci	et	al.,	2014, 2017),	and	spatiotemporal	variability	of	envi-
ronmental	variables	(Redfern	et	al.,	2006).	The	temporal	resolution	
of	available	environmental	datasets	is	another	important	factor	that	
typically	affects	the	time	frame	of	species	modeling	analyses	(Jetz	
et al., 2012).	Basic	knowledge	of	the	ecological	characteristics	of	the	
species	(e.g.,	migratory	behavior)	and	variable	dynamism	(i.e.,	tempo-
ral	variability)	could	be	effective	in	selecting	relevant	environmental	
predictors	and	proper	time	resolutions	(Fernandez	et	al.,	2017).	The	
limited	 studies	 that	 have	 examined	 the	 effects	 of	 temporal	 scale	
on	the	performance	of	distribution	models	suggested	applying	fine	
temporal	resolutions	to	improve	descriptive	and	predictive	ability	of	
models	(Becker	et	al.,	2016;	Fernandez	et	al.,	2017, 2018;	Mannocci	
et al., 2017;	Stelzenmüller	et	al.,	2013).

Various	 computational	 techniques,	 including	machine	 learning,	
have	been	employed	to	identify	the	habitat	features	that	influence	
fish	distributions	 (Elith	et	al.,	2008;	Froeschke	&	Froeschke,	2011; 
Hua	et	al.,	2020; Li et al., 2015).	Among	the	machine	learning	tech-
niques,	 regression	 trees	 (RT)	 and	 boosted	 regression	 trees	 (BRT)	
modeling	 methods,	 which	 combine	 statistical	 and	 machine	 learn-
ing	 approaches,	 have	 been	 widely	 used	 to	 establish	 relationships	
between	 fish	 distribution	 patterns	 and	 environmental	 predic-
tors	 (Anderson	 et	 al.,	 2016;	 Froeschke	 et	 al.,	 2010;	 Froeschke	 &	
Froeschke,	2011, 2016;	Knudby	et	al.,	2010; Leathwick et al., 2008; 
Pittman	 et	 al.,	2007).	More	 explanatory	 power	 and	better	 predic-
tive	 performance	 of	 this	 modeling	 technique	 have	 been	 reported	
compared	 to	 some	 commonly	 used	 statistical	 approaches,	 for	 ex-
ample,	the	generalized	additive	model	 (GAM),	which	has	extensive	
applications	 in	 ecological	 studies	 (Elith	 et	 al.,	 2006;	 Froeschke	 &	
Froeschke,	2016; Leathwick et al., 2006;	Moisen	et	al.,	2006).

Caspian	 Kutum	 (Rutilus frisii,	 Nordmann	 1840),	 from	 the	
Leuciscidae	 family	 (Eagderi	 et	 al.,	2022),	 is	 an	 endemic	 species	 of	
the	Caspian	Sea	being	distributed	from	the	mouth	of	the	Terek	River	
in	the	north	of	the	Caspian	Sea,	along	the	west	and	south	coast	to	
the	mouth	of	the	Atrak	River	(Rabazanov	et	al.,	2019).	Kutum	with	
a	 life	 span	 of	 up	 to	 9 years	 (average:	 4.5 years)	 can	 reach	 a	maxi-
mum	length	and	weight	of	58 cm	and	3.5 kg,	 respectively	 (average	
length:	47.1 cm;	average	weight:	1.7 kg)	(Khodorevskaya	et	al.,	2014).	
Males	 and	 females	mature	 at	 2–3	 and	 3–4 years	 old,	 respectively	

(Khodorevskaya	 et	 al.,	 2014).	 Kutum	 has	 wintering	 and	 spawning	
migrations	 and	 as	 a	 migratory	 anadromous	 fish,	 it	 migrates	 into	
the	 rivers	 for	 spawning	 during	 March	 and	 April,	 with	 its	 peak	 in	
April	(Afraei	Bandpei	et	al.,	2009).	After	spawning,	the	fish	migrate	
back	 into	 the	 sea	 for	 feeding.	 The	wintering	migration	of	 the	 fish	
takes	place	during	December	and	January	into	deep	waters	(Afraei	
Bandpei	et	al.,	2009).

Kutum	is	mainly	an	omnivorous	fish.	During	the	early	stages	of	life	
history,	it	feeds	on	phyto-		and	zooplankton	and	insect	larvae	(Valipour	
et al., 2011),	but	 the	adult	 fish	diets	are	mostly	mollusks	 (especially	
bivalves),	 crustaceans,	 and	 polychaetes	 (Abdolmalaki	 et	 al.,	 2009; 
Khodorevskaya	et	al.,	2014).	The	intensity	of	the	feeding	behavior	of	
Kutum	has	temporal	fluctuations,	where	the	 lowest	feeding	was	re-
ported	during	wintering	and	spawning	migration	periods	(December	
to	January,	and	April,	respectively)	(Afraei	Bandpei	et	al.,	2009).

In	 the	 Caspian	 Sea,	 sturgeons	 (especially	 in	 their	 fry	 stage)	
and	fishes	of	the	family	Cyprinidae	are	the	main	species	that	feed	
on	 benthic	 organisms	 and	 may	 compete	 for	 prey	 items	 with	 the	
Caspian	Kutum.	However,	considering	the	critical	decreases	in	their	
abundance	 during	 the	 last	 decades	 (Fazli	 &	 Daryanabard,	 2020; 
Karpinsky,	2010),	 it	 is	 not	 expected	 that	 this	 competition	has	had	
decreasing	effects	on	the	stocks	of	Kutum.	Also,	based	on	the	con-
ducted	studies	(Cites,	2017;	Fazli	et	al.,	2017; Tavakoli et al., 2019),	
population	collapses	of	the	main	predators,	 including	Caspian	Seal	
(Phoca caspica)	and	sturgeon	fishes	(which	can	feed	on	young	Kutum	
in	 their	 adult	 stage),	 have	 lowered	predation	pressure	on	Kutum's	
populations.	 Therefore,	 during	 the	 last	 two	 decades,	 nutritional	
competition	and	predation	pressure	have	not	been	critical	biotic	fac-
tors	influencing	Kutum	abundance.

Caspian	Kutum	has	 contributed	 nearly	>70%	of	 the	 total	 yearly	
catch	of	the	bony	fishes	in	Iranian	waters	(Esmaeili	et	al.,	2015;	Ghasemi	
et al., 2014)	 and	 thus	 has	 high	 commercial	 importance	 (Abdolhay	
et al., 2012).	 Kutum	 is	 mainly	 caught	 by	 small	 fishing	 cooperatives	
along	 the	 southern	 coastline	 of	 the	Caspian	 Sea	 using	 beach	 seine.	
The	catch	season	starts	in	September	and	lasts	until	April.	The	Iranian	
Fisheries	Organization	 (IFO)	 conducted	 re-	stocking	 programs	by	 re-
leasing	artificially-	produced	fingerlings	into	the	Sea	(140–400	million	
fingerlings	in	2000–2009;	IFO,	2013).	However,	the	catch	has	dropped	
from	1.9 × 104	tons	in	2000	to	1.6 × 104	tons	in	2014.	Accordingly,	the	
number	of	active	fishing	cooperatives	decreased	from	>150 to <120 
(IFO,	2013).	Such	decline	stemmed	from	overfishing,	water	pollution,	
and	degradation	of	riverine	spawning	areas	(Ghani	Nejhad	et	al.,	2000; 
Rabazanov	et	al.,	2019;	Razavi	Sayyad,	1999).

During	the	last	three	decades,	fishing	points	of	Kutum	were	in	fixed	
locations	over	the	Iranian	coastal	waters	of	the	Caspian	Sea,	and	it	is	
not	clear	how	the	geographical	positions	of	these	fishing	grounds	were	
designated.	Apparently,	they	are	distributed	randomly	along	the	south-
ern	coastline	of	 the	Caspian	Sea.	Considering	 the	overall	decreasing	
trend	in	catch	levels	of	the	Kutum	during	the	last	decade	and	also,	the	
consequent	reduction	in	the	number	of	active	fisheries	cooperatives,	
understanding	 the	 spatio-	temporal	 dynamics	 of	 the	 fish	 distribution	
patterns	 over	 southern	Caspian	 Sea	 coastal	waters	 and	 the	 roles	 of	
the	relevant	environmental	variables	in	affecting	its	fluctuations	is	of	
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high	importance	in	planning	effective	conservation	and	management	
programs.	In	this	regard,	the	present	study	aimed	to:	(1)	model	the	spa-
tiotemporal	distribution	of	Kutum	through	the	relationships	between	
the	fish	catch	and	environmental	parameters;	(2)	assess	the	effects	of	
temporal	resolution	of	the	modeling	analyses	on	descriptive	and	pre-
dictive	performance	of	distribution	models;	 (3)	gain	some	knowledge	
about	the	effects	of	the	most	relevant	environmental	predictors	and	
their	temporal	dynamics	on	fish	distribution	patterns;	and	(4)	identify	
spatiotemporal	patterns	of	fish	distribution	hot/cold-	spots	occurrence.

2  |  MATERIAL S AND METHODS

2.1  |  Fish catch data

The	 catch	 data	 of	Kutum	were	 obtained	 from	 the	 Iranian	 Fisheries	
Organization	(IFO)	for	over	150	fishing	points	(cooperatives)	along	the	
Iranian	coast	of	the	Caspian	Sea	 (Figure 1).	The	data	 included	catch	

values	(kg),	fishing	time	(hours),	and	the	number	of	dragged	seine	nets,	
covering	the	catch	seasons	from	2002/3	to	2011/12.	The	seine	nets	
used	had	a	length	of	1200 m,	a	depth	of	12 m,	and	mesh	sizes	of	33	and	
45 mm	at	 the	bag	 and	wings,	 respectively.	 Each	 fishing	 cooperative	
was	assigned	a	specific	geographical	fishing	zone.	Out	of	the	coopera-
tives,	only	90	were	consistently	active	throughout	the	study	period,	
and	their	data	were	used	for	the	modeling	analysis.	The	catch	season	
for	 the	Caspian	Kutum	extends	from	September	 to	April	of	 the	fol-
lowing	year,	with	September	excluded	due	to	limited	or	no	data	avail-
able	during	that	month.	There	was	an	increasing	trend	in	catch	levels	
over	the	catch	season	with	a	steep	increase	from	February	to	March,	
when	over	65%	of	the	total	seasonal	catch	occurred	(Figure 2).	Hence,	
three	temporal	 frameworks	were	considered	for	modeling	analyses:	
(1)	monthly	(the	catch	data	were	averaged	over	each	month),	(2)	sub-	
seasonal	 (the	catch	data	were	averaged	over	 two	periods:	 the	early	
fishing	period	(EFP)	from	October	to	February	and	the	last	fishing	pe-
riod	(LFP)	from	March	to	April),	and	(3)	seasonal	(the	catch	data	were	
averaged	over	the	whole	catch	season).

F I G U R E  1 Geographical	distribution	
of	fishing	cooperatives	locations	(•)	for	
Caspian	Kutum,	Rutilus frisii, along the 
southern	coast	of	the	Caspian	Sea.
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To	standardize	fish	abundance,	the	catch	levels	were	converted	
to	 catch	 per	 unit	 of	 effort	 (CPUE)	 using	 the	 following	 equation	
(Equation 1):

where	CPUEijz	 is	 the	CPUE	 (kg	net
−1 h−1)	 for	 the	 time	period	 i, catch 

season j,	and	fishing	location	z.

2.2  |  Environmental data

Based	on	the	prior	studies,	 relevant	remotely	sensed	environmen-
tal	variables	with	reported	potential	ecological	effects	on	fish	dis-
tribution	were	 selected	 as	 explanatory	 predictors	 to	model	CPUE	

distribution	of	Kutum	over	the	fishing	points	(Griffiths	et	al.,	2017; 
Guo	 et	 al.,	2022; Ito et al., 2016;	Mahowald	 et	 al.,	2018;	Moëzzi	
et al., 2022; Olsen, 2019; Parra et al., 2017; Pirtle et al., 2019; 
Stamoulis	et	al.,	2018).	The	variables	were	the	day-	time	sea	surface	
temperature	(SST),	near-	surface	chlorophyll-	a	concentration	(CHL),	
aerosol	 optical	 thickness	 (ASL),	 particulate	 organic	 carbon	 (POC),	
particulate	inorganic	carbon	(PIC),	depth,	slope,	aspect,	and	distance	
to	river	inlets	at	fishing	points	(Table 1).

The	depth	was	calculated	as	bathymetric	data	minus	27	as	the	
water	 level	difference	between	the	Caspian	Sea	and	open	oceanic	
waters	equals	27 m	(Chen	et	al.,	2017;	Moëzzi	et	al.,	2022).	Slope	and	
aspect	maps	were	created	from	the	bathymetry	map.	The	distance	
of	 the	 fishing	 locations	 to	 the	main	water	 inlets	was	calculated	as	
their	nearest	direct	distance	to	the	mouth	of	the	main	rivers	along	
the	 coast.	 Data	 were	 converted	 to	 raster	 layers	 using	 the	 raster	
package	(Hijmans,	2021)	in	R	4.1.2	(R	Core	Team,	2021).

The	 collinearity	 of	 predictor	 variables	 was	 assessed	 using	
Pearson	 correlation.	 Since	 all	 of	 the	 correlation	 coefficients	were	
<0.7,	 there	was	 no	 problematic	 collinearity	 among	 the	 predictors	
(Schickele	et	al.,	2020),	and	all	of	them	were	used	in	fitting	BRTs.

2.3  |  Model fitting and evaluation

Boosted	regression	trees	(BRT)	were	used	to	investigate	relationships	
between	Kutum	distribution	and	potential	environmental	predictors.	
BRT	 models	 explain	 response–predictor	 relationships	 using	 recur-
sive	 binary	 splits	 and	 creating	 ensembles	 of	 regression	 trees	 (Elith	
et al., 2008).	This	modeling	technique	can	handle	missing	values,	cap-
ture	 non-	linear	 relationships,	 and	 minimize	 prediction	 errors	 when	
examining	the	correlations	between	predictor	and	response	variables	
(Li	et	al.,	2015).	BRT	model	is	applicable	for	continuous	or	categorical	

(1)CPUEijz =
Catchijz

Number of seine netsijz × Fishing timeijz

F I G U R E  2 Overall	monthly	proportions	of	catch	per	unit	of	
effort	(CPUE)	for	Caspian	Kutum,	Rutilus frisii,	during	catch	seasons	
(2002/3–2011/12).

Variable Unit

Resolution

Source/referenceSpatial Temporal

Day-	time	sea	surface	temperature	
(SST)

°C 4 km Monthly	
(2002–2012)

MODIS	(2021)a

Near	surface	chlorophyll-	a 
concentration	(CHL)

mg m−3

Aerosol	optical	thickness	(ASL) –

Particulate	organic	carbon	(POC) mg m−3

Particulate	inorganic	carbon	(PIC) mol m−3

Depth m 4 km 2021 GEBCO	(2021)b

Slope ° 4 km 2021 Created	using	the	
bathymetric	map

Aspect ° 4 km 2021 Created	using	the	
bathymetric	map

Distance to the river inlets km 4 km 2021 Local	maps

aMODIS:	Moderate	Resolution	Imaging	Spectroradiometer,	United	States	National	Aeronautics	
and	Space	Administration	(NASA)	Goddard	Space	Flight	Center,	Ocean	Ecology	Laboratory,	2021	
(https://	modis.	gsfc.	nasa.	gov/	).
bGEBCO:	General	Bathymetric	Chart	of	the	Oceans,	2021	(http:// www. gebco. net).

TA B L E  1 Environmental	variables	used	
as predictors in the boosted regression 
trees	models.
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predictor	variables	and	is	not	affected	by	data	transformations	or	ex-
treme	 observations	 (Froeschke	 &	 Froeschke,	 2016).	 Moreover,	 this	
model	can	assess	the	relative	importance	of	habitat	predictors	in	re-
lation	 to	 the	 response	variable	 (Elith	 et	 al.,	2008;	Xue	et	 al.,	2017).	
BRT	models	were	fitted	using	the	gbm	R	package	(Elith	et	al.,	2008; 
Greenwell	et	al.,	2020),	with	all	environmental	variables	as	predictors	
and	CPUE	as	the	response	variable.	Model	parameters	were	automati-
cally	tested	until	obtaining	the	best	fit	using	an	interaction	depth	of	
3,	a	learning	rate	of	0.01–0.001,	a	bag	fraction	of	0.75,	and	maximum	
trees	of	10,000	with	a	Gaussian	error	distribution	(Sievers	et	al.,	2020).	
For	each	temporal	scale,	80%	of	data	(first	eight	catch	seasons)	were	
selected	for	model	training,	and	the	models	were	cross-	validated	using	
the	 bootstrapping	method	 (100	 iterations;	 Kuhn	&	 Johnson,	2013).	
Considering	 the	probable	 tendency	of	BRT	models	 to	over-	fit	 train-
ing	data,	the	remaining	20%	of	data	(i.e.,	the	last	two	catch	seasons)	
were	used	as	a	completely	unknown	dataset	for	testing	of	the	mod-
els	 (Li	et	al.,	2017).	The	goodness-	of-	fit	of	the	models	was	assessed	
using	adjusted	R-	squared	(adj-	R2).	The	models	fitted	for	each	temporal	
scale	were	examined	using	the	testing	datasets	of	all	temporal	scales,	
and	their	predictive	performance	was	evaluated	using	normalized	root	
mean	squared	error	(nRMSE)	scores,	calculated	as	follows:

where xi	is	the	raw	value,	x̂i	is	the	predicted	value,	N	is	the	number	of	
observations, and xmax and xmin	are	the	maximum	and	minimum	scores	
of	the	raw	data,	respectively.	Also,	correlation	coefficients	(r)	of	fitted	
linear	models	between	raw	and	fitted	values	of	the	models	(for	both	
training	and	testing	data)	were	calculated	for	examining	the	accuracy	
of	the	model's	predictions.

The	relative	importance	(RI)	scores	of	predictor	variables	were	cal-
culated	using	the	VarImp	function	of	the	caret	package	in	R	(Kuhn	&	
Johnson,	2013).	Since	there	were	nine	predictors	and	the	total	values	
of	RIs	should	equal	100%,	variables	with	mean	RI	scores	greater	than	

11.11%	 (=100/9)	were	 considered	 as	 influencing	 predictors	 (Thorn	
et al., 2016).	The	difference	 in	mean	RIs	of	each	predictor	from	this	
significance	 level	 (11.11%)	 was	 statistically	 assessed	 using	 a	 one-	
sample	 t-	test	 (α = 0.05).	Partial	dependency	plots	of	 significant	vari-
ables	were	used	to	examine	fluctuations	in	CPUE	over	the	ranges	of	
the predictors.

2.4  |  Fish hot/cold- spot determination

A	0.8-	quantile	of	the	raw	and	estimated	CPUE	values	was	used	as	
the	threshold	to	determine	fish	distribution	hot-		and	cold-	spots	(Li	
et al., 2016),	where	a	hot-	spot	was	defined	as	a	 fishing	point	with	
CPUE	≥0.8-	quantile	and	the	rest	of	the	points	as	cold-	spot	locations.	
The	spatiotemporal	accuracy	of	BRT	models	in	predicting	the	occur-
rence	of	hot/cold-	spots	was	evaluated	and	compared	between	dif-
ferent	temporal	scales	by	overlaying	observed	and	predicted	CPUEs.

3  |  RESULTS

3.1  |  Model performance

Fitting	BRT	models	to	training	datasets	with	different	temporal	res-
olutions	showed	that	monthly	models	had	generally	higher	explana-
tory	power	compared	to	sub-	seasonal	 (EFP	and	LFP)	and	seasonal	
models	(Table 2).	Among	the	monthly	models,	the	best	fitted	models	
were	obtained	for	October,	March,	and	April	(having	higher	adj-	R2).	
These	models	showed	higher	correlation	coefficients	(rTrain)	between	
fitted	and	observed	values	of	training	datasets	(Table 2).	The	models	
of	the	other	months	showed	similar	weak	fits.	However,	predicting	
testing	data	using	fitted	models	demonstrated	that	March	and	April	
BRTs	with	the	lowest	nRMSE	scores	(0.49 ± 0.19	and	0.35 ± 0.12,	re-
spectively)	had	the	best	predictive	performance	(Table 3).	Predictions	
of	other	monthly	models	presented	lower	predictability	compared	to	

(2)
nRMSE =

�

∑N

i=1(xi−x̂i)
2

N
�

xmax − xmin

�

Model Adj.R2 rTrain rTest

Monthly October 0.358 ± 0.033 0.59 ± 0.11 0.09 ± 0.05

November 0.167 ± 0.063 0.41 ± 0.08 0.27 ± 0.12

December 0.143 ± 0.091 0.37 ± 0.06 0.04 ± 0.03

January 0.158 ± 0.084 0.41 ± 0.07 0.02 ± 0.02

February 0.205 ± 0.111 0.45 ± 0.12 0.23 ± 0.11

March 0.324 ± 0.072 0.57 ± 0.09 0.49 ± 0.19

April 0.288 ± 0.095 0.43 ± 0.06 0.35 ± 0.12

Sub-	seasonal EFP 0.148 ± 0.043 0.41 ± 0.08 0.08 ± 0.04

LFP 0.185 ± 0.019 0.42 ± 0.07 0.22 ± 0.08

Seasonal 0.112 ± 0.037 0.33 ± 0.09 0.19 ± 0.10

Note:	Bold	rows	show	months	with	models	selected	for	further	analysis.
Abbreviations:	Adj.R2,	Adjusted	R2;	EFP,	Early	fishing	period;	LFP,	Last	fishing	period;	rTrain, 
Correlation	coefficient	between	raw	and	estimated	values	for	training	data;	rTest, Correlation 
coefficient	between	raw	and	estimated	values	for	testing	data.

TA B L E  2 Boosted	regression	trees	
(BRT)	models	performance	measures	
(mean ± standard	deviation)	averaged	over	
100 bootstrapped iterations.

 20457758, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70259 by A

lbert-L
udw

igs-U
niversitaet, W

iley O
nline L

ibrary on [24/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 17  |     MOËZZI et al.

the	sub-	seasonal	and	seasonal	BRTs.	Also,	predictions	of	March	and	
April	 BRTs	 for	 testing	 datasets	 of	 other	 temporal	 scales	 generally	
led	to	more	accurate	estimates	(with	lower	nRMSE	and	higher	rTest 
values)	compared	 to	 the	predictions	obtained	 for	other	BRTs	with	
non-	identical	 testing	 datasets	 (Tables 2 and 3).	 Accordingly,	 BRT	
models	 of	March	 and	April	were	 selected	 as	 the	models	with	 the	
best	performance.

3.2  |  Environmental predictors

Different	environmental	predictors	were	identified	as	the	main	driv-
ers	of	Kutum	distribution	 in	the	fitted	BRTs.	Among	all	predictors,	
SST	had	a	significant	influence	in	all	monthly	models,	with	the	high-
est	RI	scores	observed	in	October,	February,	and	March	(Figure 3),	
as	well	 as	 in	 the	EFP	 (Figure 4).	Particulate	 inorganic	 carbon	 (PIC)	

TA B L E  3 Averaged	normalized	root	mean	squared	error	(nRMSE)	scores	for	predicting	all	testing	datasets	by	fitted	boosted	regression	
trees	(BRT)	models.

Testing data

Oct Nov Dec Jan Feb Mar Apr EFP LFP Season

Model Oct 1.157 1.113 3.328 2.913 2.891 4.896 8.166 3.274 8.782 3.579

Nov 1.344 1.132 1.830 1.736 1.733 2.614 4.376 1.871 5.013 2.343

Dec 1.235 1.008 1.192 1.745 1.463 1.985 2.917 1.264 3.023 1.533

Jan 1.078 0.993 1.129 1.127 1.130 1.468 1.625 1.067 1.875 1.095

Feb 1.269 1.136 1.033 1.351 1.043 1.211 1.231 1.001 1.812 1.035

Mar 1.366 1.277 1.141 1.229 1.212 0.927 1.078 1.208 1.003 1.162

Apr 1.583 1.510 1.288 1.430 1.305 1.080 0.984 1.322 1.032 1.284

EFP 1.461 1.132 1.587 1.801 2.065 2.861 4.695 1.132 5.029 2.164

LFP 1.568 1.484 1.288 1.363 1.241 1.053 1.059 1.364 1.079 1.312

Season 1.615 1.399 1.008 1.301 1.079 1.123 1.811 1.158 1.920 1.118

Note:	Shaded	cells	indicate	the	lowest	nRMSE	scores.
Abbreviations:	EFP,	Early	fishing	period;	LFP,	Last	fishing	period.

F I G U R E  3 Mean	(±SD)	relative	importance	(RI	[%])	of	environmental	predictors	in	monthly	models.	The	horizontal	dotted	line	shows	the	
significance	level	of	relative	importance	scores	(11.11%).	The	vertical	bars	in	red	indicate	a	significant	RI	score	for	the	variables.	ASL,	Aerosol	
optical	thickness;	CHL,	Near	surface	chlorophyll-	a	concentration;	Distance,	Distance	to	the	river	inlets;	PIC,	Particulate	inorganic	carbon;	
POC,	Particulate	organic	carbon;	SST,	Day-	time	sea	surface	temperature.
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    |  7 of 17MOËZZI et al.

had	considerable	effects	on	Kutum	CPUEs	in	the	EFP,	LFP,	and	sea-
sonal	models	(Figure 4).	Additionally,	PIC	was	found	to	be	an	influ-
ential	predictor	 in	 January,	February,	and	March.	The	RI	 scores	of	
POC	were	significant	for	BRT	models	of	November,	April,	and	LFP.	
Aerosol	optical	thickness	(ASL)	was	an	effective	predictor	in	models	
from	October	to	December	and	March.	CHL	(Chlorophyll-	a	concen-
tration)	showed	low	but	significant	RI	scores	in	BRTs	of	November	
to	 January,	 April,	 and	 also	 in	 the	 EFP.	 Among	 the	 topographical	

parameters,	the	RI	score	for	distance	from	the	river	mouth	was	sig-
nificant	 in	December,	EFP,	and	seasonal	BRT	models.	Other	 topo-
graphic	parameters	such	as	depth,	slope,	and	aspect	influenced	fish	
CPUEs	only	in	one	or	some	of	the	monthly	models.

The	relationships	between	CPUE	fluctuations	and	environmental	
predictors	were	assessed	using	partial	dependence	plots	(Figure 5).	
SST	had	a	clear	increasing	trend	over	the	period	of	February	to	April	
with	maximum	effects	at	higher	temperatures,	while	there	was	a	de-
creasing	 trend	 for	EFP.	 In	all	BRT	models	with	PIC	as	a	significant	
predictor,	 its	highest	partial	effects	were	 found	at	 the	 range	 from	
0.00	to	0.01 mol m−3.	There	were	increasing	trends	for	POC	effects	
with	the	highest	influences	being	found	from	2000	to	4000 mg m−3 
in	April	and	for	concentrations	greater	than	1000 mg m−3	in	LFP.	The	
ranges	of	CHL	and	ASL	with	the	highest	partial	effect	were	differ-
ent	between	models.	The	maximum	effects	of	distance	 from	river	
inlets	were	found	in	a	distance	range	lower	than	2 km	in	December	
and	EFP	models,	while	for	the	seasonal	model,	the	highest	effects	
belonged	to	a	more	extended	distance	range	(0–10 km).	The	fishing	
points	with	depths	less	than	10 m,	slopes	between	0.2–0.4°,	and	as-
pect <40°and >300°	were	areas	with	the	highest	partial	effects	of	
these	parameters	obtained	from	the	BRTs	with	the	significant	RIs	of	
these variables.

3.3  |  The distribution of the hot−/coldspot points

Comparing	 the	 spatial	 incidence	 of	 observed	 and	 predicted	 hot−/
coldspots	of	Kutum	distribution	showed	that	BRT	models	of	March	
and	April	had	higher	accuracy	in	identifying	hot−/coldspots	than	the	
seasonal	model	 in	each	and	all	catch	seasons	 (Figure 6).	The	high-
est	proportion	of	hotspot	locations	was	found	in	March.	There	were	
higher	differences	between	predicted	and	observed	total	CPUEs	of	
hot−/coldspots	for	the	seasonal	model	than	those	of	the	March	and	
April	BRTs	(Figure 7),	except	for	catch	seasons	of	2005/6	to	2008/9,	
where	higher	differences	existed	between	predicted	and	real	CPUEs	
for	all	models.

Spatial	distributions	of	fish	hotspot	locations	for	monthly	(March	
and	April)	and	seasonal	models	(Figure 6)	indicated	that	the	hotspot	
points	 of	 Kutum	were	mainly	 located	 in	 the	 eastern	 coast	 of	 the	
southern	 Caspian	 Sea.	 There	 was	 a	 considerable	 number	 of	 fish	
hotspots	in	April	during	catch	seasons	2005/6	to	2008/9	in	the	cen-
tral	and	western	regions	of	the	coastal	line,	which	were	not	identi-
fied	using	the	seasonal	model	outputs.

Based	 on	 the	March	 and	April	models,	 the	 proportions	 of	 the	
hotspot	points	 increased	from	zero	 in	the	catch	season	of	2002/3	
to	the	highest	number	in	2005/6–2008/9,	and	then	decreased	until	
the	last	catch	season	(Figure 8).	The	rate	of	such	increase	was	higher	
in	March	than	in	April.	In	contrast,	the	outputs	of	the	seasonal	BRT	
showed	irregular	changes	in	the	hot−/coldspot	proportions	of	fishing	
points	during	the	catch	seasons.	The	observed	and	predicted	hot−/
coldspot	points	overlapped	at	a	higher	rate	in	the	selected	monthly	
models	than	those	of	the	seasonal	models.

F I G U R E  4 Mean	(±	standard	deviation)	relative	importance	
(RI	[%])	of	environmental	predictors	in	sub-	seasonal	(EFP,	Early	
fishing	period;	and	LFP,	Last	fishing	period)	and	seasonal	models.	
The	horizontal	dotted	line	shows	the	significance	level	of	relative	
influence	scores	(11.11%).	The	vertical	bars	in	red	indicate	a	
significant	RI	score	for	the	variables.	ASL,	Aerosol	optical	thickness;	
CHL,	Near	surface	chlorophyll-	a concentration; Distance, Distance 
to	the	river	inlets;	PIC,	Particulate	inorganic	carbon;	POC,	
Particulate	organic	carbon;	SST,	Day-	time	sea	surface	temperature.
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8 of 17  |     MOËZZI et al.

F I G U R E  5 Mean	partial	effect	plots	of	the	environmental	predictors	with	significant	influence	on	catch	per	unit	of	effort	(CPUE)	for	
monthly,	sub-	seasonal	(early	fishing	period	and	last	fishing	period),	and	seasonal	boosted	regression	trees	(BRT)	models.	ASL,	Aerosol	optical	
thickness;	CHL,	Near	surface	chlorophyll-	a	concentration;	Distance,	Distance	to	the	river	inlets;	PIC,	Particulate	inorganic	carbon;	POC,	
Particulate	organic	carbon;	SST,	Day-	time	sea	surface	temperature.
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    |  9 of 17MOËZZI et al.

4  |  DISCUSSION

The	Caspian	Sea,	the	largest	enclosed	body	of	water	on	Earth,	is	home	
to	 a	 diverse	 range	 of	 fish	 species.	 Understanding	 the	 distribution	

patterns	of	 these	species	 is	of	great	 importance	 for	effective	 fish-
ery	 management	 and	 conservation	 efforts.	 In	 the	 present	 study,	
we	 aimed	 to	 investigate	 the	 spatiotemporal	 distribution	 dynamics	
of	Caspian	Kutum	(Rutilus frisii)	 in	the	Caspian	Sea	emphasizing	the	

F I G U R E  5 	(Continued)
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10 of 17  |     MOËZZI et al.

influence	of	data	 temporal	 resolution	on	 the	distribution	modeling	
accuracy.

The	 choice	 of	 temporal	 resolution	 in	 ecological	 modeling	 is	 a	
critical	 consideration,	 and	 the	 present	 study	 that	 focused	 on	 the	
Caspian	Kutum	distribution	modeling	has	demonstrated	 that	 tem-
porally	 fine-	resolution	 data,	 specifically	 on	 a	 monthly	 basis,	 yield	
the	most	 robust	 and	 informative	models.	 The	best	 describing	 and	
predictive	performance	of	models	were	obtained	with	BRTs	 fitted	
to	the	finest-	scaled	data	(i.e.,	monthly	models)	but	with	considerably	
higher	proportions	of	catch	 (i.e.,	March	and	April).	Also,	according	
to	the	differences	in	estimations	for	total	CPUEs	than	the	observed	
values	 (Figure 6),	 and	 trends	 in	 predicted	 and	 observed	 hotspot	
proportions	and	their	spatial	overlap	(Figures 7 and 8),	 it	was	clear	
that	monthly	models	had	better	performance	and	higher	accuracy	
than	 the	 seasonal	model.	Although	using	data	with	a	 smaller	 time	
scale	has	 led	to	the	best	estimates	of	the	species	distribution,	but	
this	situation	has	only	been	found	for	time	intervals	when	the	fish	
had	a	non-	random	distribution	over	fishing	points.	This	finding	may	
suggest	that	Kutum	occurs	sporadically	and	unpredictably	along	the	
Caspian	Sea	coast	from	summer	to	winter.	However,	it	is	abundant	
in	spring	almost	in	every	place	of	the	Sea.	It	has	been	suggested	to	
use	appropriate	temporal	partitioning	in	species	distribution	model-
ing,	considering	the	ecological	characteristics	of	the	species	and	the	
environmental	variability	of	 the	ecosystem	 (Mannocci	et	al.,	2017; 
Roberts et al., 2016).	The	importance	of	incorporating	the	season	in	
studying	the	distribution	of	Caspian	Kutum	has	already	been	used	
(Fazli	et	al.,	2010;	Valipour	et	al.,	2011),	and	it	has	been	reported	that	

Kutum	 is	 sparsely	 distributed	 over	 shallow	 coastal	 waters	 during	
winter	(Afraei	Bandpei	et	al.,	2009).	The	models	that	used	low	win-
ter	catch	data	as	fish	abundance	measure	(directly	in	monthly	BRTs	
of	October	to	February	and	indirectly	in	EFP	and	seasonal	BRTs),	as	
well	as	the	unrelated	or	weakly	related	environmental	covariates	for	
these	time	frames,	entered	outlying	data	into	the	modeling	process	
and	consequently	led	to	inconsistent	predictions	of	fish	distribution	
patterns.	Thus,	it	may	be	necessary	to	use	relevant	and	desired	tem-
poral	slices	of	data	(e.g.,	species	abundance	and	environmental	vari-
ables)	to	obtain	reliable	distribution	models.

The	dynamism	of	the	environmental	predictors	is	one	of	the	main	
factors	in	studying	the	effects	of	temporal	resolution	of	data	on	the	
performance	 of	 species	 distribution	models,	where	 the	 effects	 of	
highly	dynamic	variables	can	be	revealed	only	in	finer	temporal	res-
olutions	(Fernandez	et	al.,	2017).	Such	factors	are	of	greater	impor-
tance	for	organisms	having	movement	behaviors	dependent	on	the	
changes	 in	environmental	conditions	 (e.g.,	 feeding	or	breeding	mi-
grations)	(Mannocci	et	al.,	2017);	in	other	words,	the	distribution	pat-
terns	of	species	like	Kutum	with	migratory	behavior	that	takes	place	
over	yearly	periods,	can	be	explained	more	based	on	the	spatiotem-
poral	changes	 in	dynamic	parameters	rather	than	being	a	function	
of	static	parameters	such	as	topographical	variables.	In	general,	dy-
namic	variables	(e.g.,	SST,	CHL,	ASL,	PIC,	and	POC)	had	larger	contri-
butions	in	monthly	models,	especially	for	March	and	April	(with	the	
highest	catch	levels),	which	was	also	evident	for	LFP.	However,	most	
topographic	parameters	(as	static	variables)	had	lower	significance	in	
defining	fish	distribution	in	these	models.	On	the	other	hand,	there	

F I G U R E  6 Visualization	of	normalized	predicted	catch	per	unit	of	effort	(CPUE)	of	March,	April,	and	seasonal	boosted	regression	trees	
(BRT)	models	for	catch	seasons	2002/3	to	2011/12.	The	(⬨)	symbol	indicates	a	hotspot	point,	as	a	fishing	point	with	CPUEs	>0.8-	quantile	of	
observed	CPUE	data,	over	each	temporal	scale.
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    |  11 of 17MOËZZI et al.

were	only	PIC	and	distance	 from	the	river	 inlets,	as	 the	main	pre-
dictors	in	the	seasonal	models,	both	of	them	with	a	distinct	limited	
range	of	high	effects.	In	these	models,	averaging	the	data	over	the	
entire	 fishing	 seasons	 led	 to	hiding	 the	 fluctuations	 and	variances	
of	the	dynamic	parameters;	 therefore,	only	the	factors	with	a	 lim-
ited	 effective	 range	 related	 to	 the	 fish	 abundance,	 especially	 for	
PIC	(which	in	most	models	had	similar	marginal	effect	trends),	were	

determined	 as	 the	 main	 factors	 affecting	 the	 distribution	 of	 fish.	
Consequently,	the	failure	to	recognize	strong	relationships	between	
fish	abundance	and	the	real	influencing	environmental	variables	re-
sulted	in	less	accurate	and	unreliable	model	predictions	(Fernandez	
et al., 2017).	Therefore,	using	finer	resolution	of	data	could	help	us	
in	finding	relevant	species-	environment	relationships	and	obtaining	
distribution	models	with	much	better	performances.

F I G U R E  7 Total	catch	per	unit	of	effort	(CPUE)	(ton/net.	hour)	in	predicted	and	observed	hot−/coldspot	points	for	the	monthly	(March	
and	April)	and	seasonal	models	during	catch	seasons	of	2002/3	to	2011/2012.
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The	findings	from	monthly	models	as	well	as	monthly	catch	pro-
portions	largely	reflect	the	life	history	of	Kutum.	From	October	to	
January,	as	a	result	of	the	decline	in	water	temperature	and	forma-
tion	of	 thermal	 stratification,	 the	 fish	migrates	 into	deep	offshore	
waters	for	wintering	leading	to	decreases	in	its	abundance	over	shal-
low	coastal	 regions.	 In	all	of	 the	monthly	models,	 SST	was	one	of	

the	main	parameters	affecting	fish	distribution,	while	for	the	models	
with	lower	temporal	resolution,	this	variable	was	only	significant	in	
EFP	at	low	contributions.	The	sea-	surface	temperature	was	the	first	
and	 the	 third	 important	 predictor	 of	 Kutum	 abundance	 in	March	
and	April,	 respectively,	where	higher	abundances	of	 fish	were	ob-
served	with	an	increase	in	temperature,	while	in	the	EFP	model,	an	

F I G U R E  8 Predicted	and	observed	hot−/coldspot	point	proportions	of	landing	points	for	the	monthly	(March	and	April)	and	seasonal	
models	during	catch	seasons	of	2002/3	to	2011/2012.	The	values	on	the	bars	show	the	overlap	(%)	of	predicted	and	observed	hotspot	and	
coldspot points in each catch season.
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irrelevant	 decreasing	 trend	 of	 CPUEs	was	 observed	 over	 the	 SST	
range.	 The	 increase	 in	 occurrence	 over	 high	 SSTs	 indicated	 that	
Kutum	preferred	high	temperatures	in	the	range	of	8–20°C.	In	fact,	
the	highest	abundance	coincided	with	temperatures	of	16–20°C	in	
April.	Temperature,	as	an	effective	environmental	factor	in	relation	
to	fish	distribution,	controls	survival	and	growth	(Hua	et	al.,	2020; 
Kempf	et	al.,	2013; Olsen, 2019;	Youcef	et	al.,	2013),	and	winter	mi-
gration	of	Kutum	to	deep	offshore	waters	(Fazli	et	al.,	2010;	Valipour	
et al., 2011).	Moreover,	 an	 increase	 in	 the	 temperature	 in	 coastal	
waters	 is	 indirectly	 coincided	with	 high	 nutrient	 levels	 and	 hence	
availability	of	the	prey	(Pang	et	al.,	2015).	However,	the	water	tem-
perature	has	seldom	been	reported	as	an	insignificant	factor	in	the	
distribution	of	 this	 species	 (Vayghan	et	 al.,	2013).	 Such	contradic-
tion	may	be	 related	 to	 the	higher	effect	of	 this	parameter	 in	shal-
low	coastal	waters	compared	to	deep	offshore	regions	reported	by	
Vayghan	et	al.	(2013).

Our	 findings	 significantly	 depicted	 a	 clear	 temporal	 shift	 in	
main	predictors	of	Kutum	distribution	across	March	and	April	(i.e.,	
months	with	 the	highest	 catch	 levels),	 from	mainly	physical	 (SST,	
aspect,	slope,	and	ASL)	to	mostly	nutritional	variables	 (POC,	PIC,	
and	 SST).	 The	 LFP	 model	 also	 showed	 this	 situation	 with	 only	
POC	and	PIC	as	 factors	determining	Kutum	distribution.	 In	April,	
when	 water	 temperature	 increased	 over	 most	 fishing	 locations,	
nutritional	 factors	 like	 POC	 and	 PIC	 became	 more	 important	 in	
providing	the	optimal	habitat	range	for	Kutum.	This	fish	starts	its	
migration	to	the	coastal	waters	for	feeding	with	 increasing	water	
temperature	during	this	period.	These	two	factors	reflect	the	pro-
ductivity	of	the	water	environment	(Griffiths	et	al.,	2017;	Groom	&	
Holligan,	1987;	Kutti	et	al.,	2008;	Perea-	Blazquez	et	al.,	2012; Rost 
&	Riebesell,	2004).	Higher	POC	and	PIC	levels	are	related	to	higher	
fluxes	 of	 carbon	 to	 the	 sea	 floor	 from	 overlying	 water	 column	
(Groom	&	Holligan,	1987;	Kutti	et	al.,	2008;	Rost	&	Riebesell,	2004)	
which	can	 lead	to	 improving	secondary	production	of	benthic	 in-
vertebrates	 (Griffiths	 et	 al.,	 2017)	 especially	 in	 coastal	 regions	
(Perea-	Blazquez	et	al.,	2012),	which	are	the	main	food	elements	for	
Kutum.	An	 increasing	 trend	of	 fish	biomass	was	 found	over	POC	
of	 0–3500 mg m−3.	 However,	 the	 narrow	 optimum	 range	 of	 PIC	
(<0.01 mol m−3)	preferred	by	the	fish	could	be	related	to	the	nega-
tive	effect	of	PIC	on	light	penetration	into	the	water	body,	since	its	
high	concentrations	can	cause	between	10%	and	90%	light	back-
scattering	in	marine	systems	(Balch	et	al.,	1991, 1999).	Accordingly,	
we	can	suggest	that	the	distribution	of	Kutum	in	the	 last	months	
of	the	catch	season	is	firstly	dependent	on	water	temperature	ele-
vation,	and	after	that,	the	incidence	of	favorable	feeding	grounds	
could	be	identified	with	their	high	POC	contents.

Considering	 the	 reproductive	migration	of	Kutum,	which	 takes	
place	over	March	 to	April,	 the	highest	densities	of	 fish	must	have	
been	 observed	 in	 fishing	 points	 near	 the	mouths	 of	 the	main	 riv-
ers	entering	the	southern	Caspian	Sea.	However,	distance	from	the	
river	inlet	was	not	among	the	significant	parameters	of	March	and	
April,	nor	the	LFP	BRTs.	Due	to	the	lack	of	data	about	the	biological	
characteristics	of	 the	 catch	 (e.g.,	 length,	weight,	 and	 reproductive	
status	of	fish)	in	our	dataset,	it	is	not	possible	to	explain	this	situation	

accurately.	However,	without	 a	 relevant	 relationship	between	dis-
tance	 and	 fish	 abundance	 during	 the	 period	 of	 fish	 reproductive	
migration,	 it	can	be	said	using	sein	nets	with	stable	characteristics	
(i.e.,	mesh	size)	for	more	than	one	decade	has	led	to	declines	in	fish	
size	and	age	at	maturity	with	harvested	fishes	mainly	having	a	size	
range	larger	than	a	fixed	threshold,	which	has	been	reported	in	some	
studies	that	performed	biological	analysis	of	Kutum	catch	over	lim-
ited	coastal	extents	(Afraei	Bandpei	et	al.,	2009;	Fazli	et	al.,	2010).	
Therefore,	 in	our	modeling	analyses,	 the	 importance	of	 the	repro-
ductive	migration	of	fish	on	its	distribution	was	less	inferable	com-
pared	to	its	migration	into	the	proper	coastal	feeding	grounds,	over	
the	studied	time	period.

In	the	present	study,	the	biotic	relationships	of	the	Kutum	with	
its	predator	and	prey	species	were	not	considered	in	the	modeling	
process	due	to	the	lack	of	data	for	the	studied	decadal	period	and	
over	the	broad	geographical	extent	of	the	fishing	points.	However,	
incorporating	such	data	in	the	distribution	modeling	of	this	species	
could	 lead	 to	models	 with	much	 higher	 explaining	 and	 predictive	
power.	 Therefore,	 using	 these	 predictors	 in	 modeling	 analyses	 is	
suggested	 for	 future	 research	works.	 Also,	 based	 on	 some	 of	 the	
conducted	studies,	it	has	been	proposed	to	consider	the	lagged-	time	
effects	of	environmental	parameters,	especially	SST	and	chlorophyll	
concentration,	 in	the	distribution	modeling	of	marine	organisms	at	
higher	trophic	levels	(Olden	&	Neff,	2001;	Trujillo	&	Thurman,	2016; 
Wang	et	al.,	2018).	In	our	research,	due	to	the	use	and	comparison	of	
different	temporal	frameworks	of	data	in	modeling	analyses,	it	was	
not	possible	to	apply	such	lagged	effects	for	the	seasonal	and	sub-	
seasonal	datasets;	however,	the	use	of	such	terms	in	monthly	models	
can	improve	recognizing	the	temporal	trends	of	the	influencing	lev-
els	of	these	variables	on	fish	distribution.

Geographical	 distribution	 of	 fish	 hot−/coldspots	 obtained	 from	
the	monthly	BRT	models	mainly	showed	multiple	hot-	spot	incidence	
ranges	over	 the	western,	central	and	eastern	parts	of	 the	southern	
Caspian	Sea	coast.	However,	the	temporal	stability	of	hotspot	occur-
rence	over	the	eastern	coasts	was	higher	which	was	observed	from	
the	monthly	 (March	and	April)	and	seasonal	models,	while	 fish	bio-
mass	 hotspots	 over	 the	 central	 and	western	 coastal	 regions	which	
were	 obtained	 from	 the	March	model,	 were	 only	 observed	 during	
catch	seasons	2005/6	to	2008/9.	This	temporal	pattern	in	spatial	oc-
currence	 indicated	 higher	 stability	 of	 environmental	 and	 ecological	
habitat	conditions	in	the	eastern	coastal	ranges	preferred	by	Kutum.	
Vayghan	et	al.	(2013)	reported	a	spatial	pattern	of	suitable	habitat	dis-
tribution	with	the	highest	suitability	for	Kutum	in	offshore	waters	in	
central	and	eastern	coastal	regions	that	partly	supported	our	results.	
Considering	these	distributions,	 it	could	be	said	that,	using	monthly	
models,	we	can	identify	intra-	seasonal	fluctuations	in	fish	abundance	
hotspots,	which	were	not	obtained	from	the	seasonal	model.

5  |  CONCLUSION

In	the	present	research,	we	attempted	to	understand	the	spatiotem-
poral	 dynamics	 of	 Caspian	 Kutum	 distribution	 over	 the	 southern	

 20457758, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70259 by A

lbert-L
udw

igs-U
niversitaet, W

iley O
nline L

ibrary on [24/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 17  |     MOËZZI et al.

coastal	 waters	 of	 the	 Caspian	 Sea,	 emphasizing	 the	 effect	 of	 tem-
poral	 resolution	 of	 data	 on	modeling	 performance	 and	 predictions.	
The	combined	use	of	the	different	temporal	resolutions	of	data	from	
different	sources	and	boosted	regression	trees	(BRT)	modeling	tech-
nique,	considering	the	general	temporal	patterns	of	fish	catch	and	eco-
logical	characteristics	of	the	studied	species	with	migratory	behavior,	
led	to	the	recognition	of	some	key	points	related	to	its	spatiotempo-
ral	 dynamism.	Our	 findings	 indicated	 that	using	 finer	 time	 scales	 in	
modeling	analyses	could	lead	to	more	reliable	explanations	and	pre-
dictions	of	fish	distribution	dynamics	by	identifying	the	intra-	seasonal	
fluctuations	of	environmental	conditions,	especially	for	the	dynamic	
parameters,	 and	 their	 relations	with	 fish	 aggregation.	Based	on	 the	
results,	incorporating	the	data	of	time	periods	with	low	catch	levels	in	
the	averaged	dataset	with	coarser	temporal	resolution	can	musk	the	
real	patterns	and	dynamism	of	habitat	parameters	and	consequently	
fish	distribution.	For	the	Kutum,	with	considerably	much	higher	catch	
levels	during	the	last	months	of	the	catch	season,	we	found	that	de-
spite	the	reproductive	migration	of	the	fish,	water	temperature	and	
nutritional	factors	(e.g.,	POC)	were	the	main	detrimental	drivers	of	fish	
hotspot	delineation,	which	could	only	be	detected	using	monthly	BRT	
models.	Also,	predictions	obtained	from	the	monthly	models	obviously	
showed	the	key	role	of	the	temporal	framework	of	data	in	determining	
the	intra-		and	inter-	seasonal	spatial	changes	in	fish	hotspot	incidence	
over	the	decadal	study	period.	The	obtained	results	of	this	study	could	
practically	help	Iranian	fisheries	managers	to	adopt	more	appropriate	
management	policies	regarding	Kutum	fisheries	with	special	attention	
to	the	spatiotemporal	distribution	dynamics.
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