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a b s t r a c t

The distribution of Caspian Kutum, Rutilus kutum, an economically important fish species with a
limited understanding of its ecology, was investigated along the southern Caspian Sea coast to
identify the environmental drivers of its occurrence. The environmental predictors including sea
surface temperature, chlorophyll-a concentration, particulate organic and inorganic carbon, aerosol
optical thickness, depth, bottom slope, coastline aspect and distance to rivers, and long-term monthly
commercial beach seine catch data, procured from 2002 to 2012, were analysed. Using two alternative
approaches to describe catch per unit effort (CPUE), a multiplicative effect of predictors was found
that is often being used in fishery studies (the so-called continued product model, HSICPM) to perform
weaker than a Generalized Additive Model (GAM). The highly variable CPUE was strongly related to
sea surface temperature, bottom slope, aerosol optical thickness and distance to rivers using HSICPM,
but coastline aspect, particulate inorganic carbon and bottom slope in the GAM. The steps involved
in computing the HSICPM led to a biased fit. This study provides a robust quantification of habitat
characteristics of Caspian Kutum that can be used to inform management plans with both commercial
and conservation goals.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Conservation and management of a species depend on a sound
patio-temporal understanding of its presence and survival (Gi-
nnoulaki et al., 2013). Determining the environmental factors
nfluencing the spatial distribution of fishes have become a main-
tay of ecological investigations being studied through habitat
valuation models (Giannoulaki et al., 2013; Guisan and Zimmer-
ann, 2000). These models indicate principally the relationship
etween environmental and occurrence data describing the ap-
ropriateness of a habitat for a given species (Su et al., 2020;
wolinski et al., 2011). Such models have greatly been employed
n aerial assessment and management of commercial fish species
Ramirez-Llodra et al., 2011; Tian et al., 2009). Finding reliable
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data may thus be challenging task in fisheries ecosystem manage-
ment to identify optimum core habitats of target species (Chang
et al., 2012; Liu et al., 2019; Vinagre et al., 2006).

Among the wide range of modelling techniques being used
to quantify the relationship between fish occurrence and habitat
quality, empirical habitat suitability index (HSI) models have been
extensively used by ecologists (Ahmadi-Nedushan et al., 2006;
Brown et al., 2000; Druon, 2010; Su et al., 2020; Vadas and
Orth, 2001; Valavanis et al., 2004). HSI models are also applied
in the studies on the distribution of commercial fish species
(Druon, 2010; Yen et al., 2012). The information from those mod-
els has high importance in defining fish’s key habitats and helps
find optimum fishing locations (Chang et al., 2012). These non-
statistical HSI models are based on observed preferences along
univariate habitat factors (i.e. suitability indexes (SIs)), which are
then mathematically combined to estimate and predict habitat
quality (Chen et al., 2010; Tian et al., 2009), and may hence
delimit the optimal fishing zones (Chang et al., 2012).

The Generalized Additive Models (GAM) are frequently used
to assess non-linear relationships between occurrence and envi-
ronmental variables (Knudby et al., 2010; Leathwick et al., 2006;
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arra et al., 2017; Schismenou et al., 2017; Su et al., 2020).
AM models have been used to explain relationships between
ish abundance and environmental factors (Murase et al., 2009;
ezaei and Sengül, 2018) and predict the relative fish abundance
Drexler and Ainsworth, 2013; Parra et al., 2017; Schismenou
t al., 2017). These models have been utilized to define fish habi-
at preference functions in other habitat modelling frameworks
Grüss et al., 2018). A good performance and predictive ability
f GAM in modelling the relationship between fish biomass and
abitat parameters, compared to empirical HSI models and ma-
hine learning techniques, have been reported in several studies
Knudby et al., 2010; Parra et al., 2017; Schismenou et al., 2017;
u et al., 2020).
Caspian Kutum (Rutilus kutum Kamensky 1901) is an endemic

pecies of the Caspian Sea belonged to the family Cyprinidae with
igh commercial importance (Abdolhay et al., 2012; Afraei Band-
ei et al., 2011; Fazli et al., 2013). This species is mainly dis-
ributed over southern and south-western coastal waters of the
aspian Sea (Valipour et al., 2011). Kutum is an anadromous
ish that migrates into the rivers of the northern regions of
ran for spawning between March and April, and after that, it
eturns to the sea (Afraei Bandpei et al., 2011). Although Kutum
s an omnivorous fish, it mainly feeds on bivalves and benthic
nvertebrates (Valipour et al., 2011; Naderi Jolodar et al., 2013).
his species accounts for more than 70% of the teleost fish total
atch and fisheries income along the southern Iranian coast of
he Caspian Sea (Esmaeili et al., 2014; Ghasemi et al., 2014).
owever, during the last decades, overfishing, excessive pollu-
ion and degradation of riverine nursery habitats have impacted
he abundance and distribution of this species (Ghani Nejhad
t al., 2000; Razavi Sayyad, 1999). Therefore, updated information
n the spatial and temporal dynamics of catch distribution and
nalysing the habitat characteristics of Caspian Kutum is neces-
ary for appropriate exploitation, conservation and recovery of its
opulations (Gheshlaghi et al., 2012; Vayghan et al., 2016).
Few studies investigated the habitat preferences of Caspian

utum (Vayghan et al., 2013, 2016). In these studies, fish oc-
urrence data obtained from research bottom trawl surveys con-
ucted on short periods. However, this species is not restricted
o benthic habitats and thus the bottom trawl is likely to miss a
ortion of its environmental niche. The present study, for the first
ime, used the commercial beach seine fishing data of Caspian
utum for a period of 10 consecutive catch seasons (2002/3–
011/12) at almost 100 fixed fishing locations along the southern
oast of the Caspian Sea to investigate habitat preferences of this
pecies. The objectives of our study were to (1) find the most
elevant habitat predictors driving the distribution of R. kutum,
nd their optimum ranges; (2) compare the performance and
redictive ability of two practical modelling approaches, HSI and
AM, in assessing habitat quality of the fish.

. Material and methods

.1. Fishery data

Catch season of the Caspian Kutum along the southern coast
f the Caspian Sea lasts from mid-September and to mid-April.
aily catch data of Caspian Kutum during catch season, from
002/3 to 2011/12, were obtained from Iran Fisheries Organiza-
ion (IFO). The catch data included beach seine fishing records
t 125 fishing points comprising fish biomass (kg), number of
ragged seine nets (each with a mean length of 1200 m), and the
uration of fishing operation (hour). Among all fishing points, 90
tations had complete temporal coverage during the study period
2002/3–2011/12) and were thus selected for further analysis.
ig. 1 represents the spatial distribution of the selected fishing
oints along the Iranian Caspian Sea coast.
2

To standardize catch data, the mean monthly catch per unit of
effort (CPUE) was calculated as below:

CPUE(kg seine−1 h−1)

=
catchbiomass (kg)

number of seine nets × duration of fishing period (h)
(1)

Finally, averages of mean monthly CPUE values for all the catch
season were calculated and used in subsequent data analyses and
modelling.

2.2. Environmental habitat predictors

Environmental variables including day-time sea surface tem-
perature (SST (◦C)), aerosol optical thickness (ASL (unitless)),
particulate organic carbon (POC (mg m−3)), particulate inorganic
carbon (PIC (mol m−3)), near surface chlorophyll-a concentration
(CHL (mg m−3)), distance to rivers (km), depth (m), bottom slope
(◦) and coastline aspect (◦) at the fishing points were considered
as potential environmental predictors. These variables can have
direct or indirect effects on the water environment in relation
to the presence of fish (SST Chen et al., 2012; Hua et al., 2020;
PIC Hopkins et al., 2019; Mitchell et al., 2017; POC Zhang et al.,
2019; ASL Mahowald et al., 2018; CHL Giannoulaki et al., 2013;
Depth Vayghan et al., 2013, 2016; Slope Parin et al., 2010; Parra
et al., 2017; Aspect Parra et al., 2017; Pirtle et al., 2019; Distance
to rivers Froeschke et al., 2013). Data of SST, ASL, POC, PIC and CHL
for the period of 2002 to 2011 were obtained from MODIS project
database with 4 km resolution and processed using the ‘‘raster’’
package (version: 3.4–10) in R 3.6.1 (NASA Goddard Space Flight
Center, Ocean Ecology Laboratory, 2021). The monthly mean val-
ues of these remotely-sensed parameters at fishing points were
averaged over each catch season. The mean depth at fishing
locations were extracted from the world bathymetry raster file
obtained from the GEBCO database (GEBCO). The difference be-
tween the water level of the Caspian Sea and open oceanic waters
is 27 m (Chen et al., 2017). Hence, 27 subtracted from the values
of the bathymetry raster map to achieve the real depths at fishing
points. The slope and aspect of the fishing locations were found
from the slope and aspect maps made from the bathymetry
map. Since aspect is a circular parameter, its obtained values at
fishing locations ([0◦–100◦) and (220◦–360◦]) were transformed
respectively as (aspect value – 220) and (aspect value + 140) to
have a continuous range of this variable in modelling analysis. The
distance between fishing points and the rivers was calculated as
their nearest direct distance to the mouth of the main rivers along
the coast.

To examine the relationships between predictors and assess
the levels of multi-collinearity between them, the variance infla-
tion factor (VIF) was calculated using the ‘‘usdm’’ package (ver-
sion 1.1–18). All VIF values were <3 indicating no problematic
collinearity among the predictors (Dormann et al., 2013).

2.3. HSI modelling

2.3.1. Fitting suitability index (SI) models
The data of each environmental variable was divided into

equal intervals and the mean CPUE of each interval was found
(Hua et al., 2020). A spline regression was then fitted between
mean CPUEs (as the response) and average interval values of the
variable (as the predictor) using the mgcv function of the mgcv
package (Wood, 2017). Next, the fitted CPUEs were normalized to
the interval [0,1] using the following equation:

ŜI i =
ĈPUE i − ĈPUEmin (2)
ĈPUEmax − ĈPUEmin
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Fig. 1. The distribution of fishing points (•) along the southern coast of the Caspian Sea during 2002/3–2011/12 catch seasons.
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here ŜI i is the estimated SI score for the ith value of the predic-
tor variable; ĈPUE i is the fitted mean CPUE for the ith value of the
predictor variable; and, ĈPUEmax and ĈPUEmin are the maximum
nd minimum fitted mean CPUE for the whole range of a given
redictor. The optimum range of each variable was defined as ŜI i
cores ≥ 0.6 (Hsu et al., 2021).

.3.2. Habitat suitability index (HSI) model development
ŜI i of the n significant predictors (with P-value < 0.05) were

sed to calculate the HSI using five empirical methods: arith-
etic mean model (AMM; Chen et al., 2010), geometric mean
odel (GMM; Tian et al., 2009), continued product model (CPM;
rebenkov et al., 2006), minimum model (MINM; Van der Lee
t al., 2006), and maximum model (MAXM; Chen et al., 2012):

ŜIAMM =
1
n

n∑
i=1

ŜI i (3)

ŜIGMM =
n

√ n∏
i=1

ŜI i (4)

ĤSICPM = ŜI i × · · · × ŜIn (5)

ĤSIMINM = min
(
ŜI i . . . ŜIn

)
(6)

ĤSIMAXM = max
(
ŜI i . . . ŜIn

)
(7)

2.4. Generalized additive model (GAM)

As alternative approach, a Gaussian generalized additive
model was fitted between log-transformed CPUE and the environ-
mental variables using mgcv function of the mgcv package with
default settings (Wood, 2017):

log10(CPUE) ∼ s(SST) + s(CHL) + s(ASL) + s(PIC) + s(POC)
+ s(Aspect) + s(Slope) + s(Depth) + s(Distance),

here s() indicates the default penalized thin-plate regression
pline function.

.5. Model validation

To compare the HSI-scores with the predicted values of GAM,
he observed CPUEs were also normalized, which is called the
3

relative biomass index (RBI) hereafter:

RBI =
CPUEij − CPUEmin

CPUEmax − CPUEmin
(8)

where CPUE ij is CPUE at the ith fishing point for the jth year;
CPUEmin and CPUEmax are, respectively, the lowest and the highest
CPUE among all fishing points and years. Therefore, a RBI with a
value of 0 or 1 represent the fishing points with the lowest or
highest probability of fish occurrence/biomass, respectively.

For both HSI and GAM, the data of the first eight years of
the study were used for training and the rest for testing. The
performance of HSI models was assessed by three statistical mea-
sures: Akaike’s information criterion (AIC), root mean squared
error (RMSE), and mean absolute error (MAE). AIC scores were
calculated as below (Burnham and Anderson, 2002, 2004):

AIC = n · ln
(
RSS
n

)
+ 2 · k (9)

where: RSS is the residual sum of squares, n is the number of
observations, and k is the number of predictors. Residuals of HSI
odels were calculated as the difference between RBI and HSI
cores (Vayghan et al., 2013). If n

k < 40, AIC c was calculated as a
bias-adjusted version of AIC:

AICc = n · ln
(
RSS
n

)
+ 2 · k +

(
2 · k · (k + 1)
n − k − 1

)
(10)

RMSE and MAE values were obtained using the below formu-
ae:

MSE =

√∑N
i=1(xi − x̂i)2

N
(11)

AE =

∑N
i=1

⏐⏐xi − x̂i
⏐⏐

N
(12)

The predictive performance of the best HSI model and the
AM were evaluated using normalized RMSE (nRMSE) and nor-
alized MAE (nMAE) scores of the testing data, obtained as
elow:

RMSE = RMSE/ (xmax − xmin) (13)

MAE = MAE/ (xmax − xmin) (14)

where: xmax and xmin are, respectively, the maximum and the
minimum of the observed data. Also, the relationships between
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Fig. 2. Mean-centred effect plots of SI models for the significant habitat variables. Smoother fits: solid line; 95% confidence intervals: shaded area.
Table 1
A summary of fitted univariate suitability index (SI) models for habitat predictors
using spline regression method.
Predictor Deviance explained (%) P

SST (◦C) 78.4 <0.001
Bottom slope (◦) 74.0 0.001
ASL (–) 60.6 0.003
Distance to river (km) 59.6 0.021
Coastline aspect (◦) 24.9 0.134
POC (mg m−3) 20.2 0.183
Depth (m) 64.8 0.266
PIC (mol m−3) 54.7 0.359
CHL (mg m−3) 0.21 0.832

RBI scores and final HSI and normalized fitted values of GAM (cal-
culated using the same equation of RBI) were assessed through
fitting linear models and correlation test.

3. Results

3.1. HSI modelling

3.1.1. SI models
The SI regressions models for SST, bottom slope, ASL and

istance to rivers were significant (Table 1). The highest percent-
ge of deviance were belonged to SST (78.4%) and bottom slope
75.0%).

Habitat suitability increased linearly with increase of sea sur-
ace temperature while for bottom slope and aerosol density
he relationship exhibited a clear peak (Fig. 2). Thus, R. kutum
referred the substrates with a slope of ∼0.25◦ and the aerosol
ensities of ∼0.08. In contrast, habitat suitability decreased in
ocations far from river inlets up to a distance of 20 km where
t levelled off. However, there was an uptick at distances >30 km
(Fig. 2, bottom right).
4

Table 2
HSI methods’ performance indices. AIC (Akaike’s Information Criterion); RMSE
(Root mean squared error); MAE (mean absolute error).
Model AIC RMSE MAE

CPM −2200.3 0.236 0.193
MINM −1714.4 0.312 0.239
GMM −1054.4 0.493 0.443
AMM −917.8 0.559 0.524
MAXM −414.4 0.761 0.740

Table 3
A summary of GAMs (adjusted R2

= 0.307; deviance explained = 33.8%).
Predictor Deviance explained (%) P value

Coastline aspect (◦) 37.2 <0.001
PIC (mol m−3) 13.6 <0.001
Bottom slope (◦) 12.7 <0.001
Distance to river (km) 9.13 <0.001
Depth (m) 8.72 <0.001
SST (◦C) 8.69 <0.05
ASL 5.54 <0.001
CHL (mg m−3) 4.46 <0.01
POC (mg m−3) – 0.950

3.1.2. HSI model
The continued product model (CPM) had the lowest scores of

AIC, RMSE and MAE (Table 2) and thus was the best for predicting
habitat suitability.

3.2. GAM

Coastline aspect and PIC were the most important factor in the
GAM (Table 3).

The smoothers of the GAM components are depicted in Fig. 3.
The fishing points with northern orientation (i.e. aspect: 0◦–40◦

and 330◦–360◦) had the highest abundance/biomass of fish. The
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rea. Rug indicates values of data points.
d
ighest presence of fish was found in areas with the lowest
oncentrations of PIC (0.00–0.01 mol m−3) followed by a sharp
 0

5

ecrease with increase of PIC. The substrates with a slope of
.1–0.3◦ were the preferred slope for the fish.
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Fig. 4. The preferred ranges of significant environmental parameters based on the HSI and GAM models. SST, ASL, distance to rivers and bottom slope were significant
or both models, but CHL, PIC, coastline aspect and depth were only significant in GAM.
.3. Preferred ranges of environmental parameters

The preferred ranges of the environmental parameters were
orresponded to the top 40% of HSI and GAM fitted values (Fig. 4).
part from SST, models always estimated a smaller and non-
andom use of environmental conditions within the available
black in Fig. 4). For the common predictors (i.e. SST, ASL, distance
o rivers, and bottom slope), much narrower optimum ranges
ere obtained for the GAM, were included in the preferred ranges
f the HSI model.

.4. Model performance and validation

The nRMSE and nMAE values of the GAM for testing data were
ower than those of the HSI (nRMSE: 0.165 vs. 0.277; nMAE: 0.125
s. 0.216). There was a greater correlation between RBI and GAM
redicted values rather than RBI and HSI predicted values (0.57
s. 0.37; Fig. 5). A linear regression between RBI and the predicted
alues of GAM or HSI indicated that GAM prediction was less-
nbiased than that of HSI, with lower intercept value (α = 0.06)

and higher slope (β = 0.57), in contrast to those of the HSI
(α = 0.12; β = 0.35).

3.5. Spatiotemporal habitat quality distribution

Spatiotemporal distribution of habitat quality scores for both
models, as well as RBI values, showed that eastern coastal fishing
6

points offered the preferred habitat condition for the fish (RBI ≥

0.6) over the catch seasons of 2005/6 to 2010/11 (Fig. 6). HSI out-
put presented a wider extent as having optimum habitat quality,
which indicates model over-estimation, compared to GAM which
had more temporally accurate prediction and consistency with
RBI.

4. Discussion

The present study used commercial beach seine catch data
to find the environmental parameters influencing the distribu-
tion of Caspian Kutum along the northern Iranian coast of the
Caspian Sea. Compared to prior studies on habitat preference of
Caspian Kutum, which was based on research trawl surveys data
(Vayghan et al., 2013, 2016), our dataset had wider temporal and
geographical ranges being collected from fixed fishing locations,
that can lead to better understanding of fish habitat preference
and modelling performance. Also, most fisheries activities, such
as trawl fishing, tend to concentrate on limited areas with high
quantities of fish stocks (Yu et al., 2018) and the yielding data
may hence bias fish distribution and habitat models.

Among the fitted HSI models, HSICPM had the best perfor-
mance with the lowest predictive error despite its reported weak-
nesses in fish distribution prediction compared to other HSI cal-
culating methods (Gong et al., 2011; Li et al., 2016; Xue et al.,

2017; Yu et al., 2018). However, GAM predicted the testing data
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Fig. 5. Scatter plot of the relative biomass index (RBI) values (observed habitat quality index) and normalized GAM and HSI fitted values (predicted habitat quality
index) for the period of 2002/3–2011/12. Red line: best linear model fit; Black line: perfect model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Spatio-temporal distribution of HSI, normalized GAM fitted values, and RBI over fishing locations during the catch seasons 2002/3–2011/12.

7
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ore accurately than HSI. The GAM indicated a smaller range of
he predictors as the optimum range than the HSICPM and had
ore accurate performance based on explained deviance with
reater predictability. Furthermore, the predicted values from the
SICPM suggested that this model overestimated habitat suitabil-
ty over most fishing points (Fig. 6) which has been reported
n previous studies on HSI models (Gong et al., 2011; Yu et al.,
018). Basically, GAM uses non-parametric smoothing functions
ith non-normal error terms in explaining complex responses
Ahmadi-Nedushan et al., 2006; Swartzman et al., 1995; Leath-
ick et al., 2006; Knudby et al., 2010). This method is reported as
model with high flexibility in describing relationships between
iomass and environmental variables (Ahmadi-Nedushan et al.,
006; Jowett and Davey, 2007; Murase et al., 2009).
In this study, the models highlighted different variables as the

rincipal drivers of habitat suitability for Caspian Kutum, i.e. SST
nd bottom slope in HSICPM, and coastline aspect and PIC in the
AM. Selection of predictors and how to use them in explaining
esponse variations has high importance in determining model
erformance and reliability (Dambach and Rödder, 2011; Su et al.,
020). In HSI modelling, all model predictors are independently
ncorporated into the model structure and have equal importance
o the response variable (Beecher et al., 2002). Also, the SI models
re highly dependent on class numbers and the midpoint of the
esponse parameter in each class (Li et al., 2016). Stratifying
redictors’ ranges and summing up the response values (here
PUEs) over each predictor interval into only one score resulted
n drastic losses of variance in response data. This simplifying
rocess of data could lead to non-significant predictor–response
elationships (as the case for coastline aspect, POC, depth, PIC
nd CHL in our analysis). Therefore, some predictors with real
xplanatory potential could be excluded from the final HSI model.
urthermore, the obtained significant fitted SIs would not be good
epresentatives of the whole variation in the response parameter.
n the GAM modelling, on the other hand, all of the predictors
ere used to describe the total variance of data, and consequently
he additive effect of simultaneous use of their smoothed func-
ions (even of predictors with the lowest explanatory potentials)
ed to a final GAM model with higher descriptive and predictive
ower. Such approaches to fitting HSI and GAM models resulted
n different main predictors and changes in their importance
evels in the GAM model (as also reported by Su et al. (2020)).

The SST has frequently been found as a factor having a sub-
tantial effect on fish occurrence (Chen et al., 2012; Froeschke
nd Froeschke, 2011; Hua et al., 2020; Maravelias et al., 2007;
enezes et al., 2006; Olsen, 2019; Perry et al., 2005); However,
ayghan et al. (2013, 2016) did not report it as an influencing
redictor on the Kutum distribution. Such difference may be
elated to different modelling techniques in these studies because
he GAM model also indicated that the SST had a low influence
n fish abundance.
Among topographical predictors, bottom slope and aspect of

oastline had high power in explaining Kutum distribution in
SICPM and GAM models, respectively. The influence of slope

in shallow areas was in agreement with other studies on ben-
thophagus fishes (Menezes et al., 2006; Parin et al., 2010; Parra
et al., 2017). The slope may determine the hydrodynamics of the
sea substrate and the current condition impacting fish distribu-
tion (Parra et al., 2017). This factor was also found to greatly
affect the fish biomass in our GAM model. The GAM indicated
that aspect had the greatest influence on fish abundance. Hence,
Caspian Kutum preferred substrates with a northern orientation.
Aspect is one of the main morphological features of aquatic
systems that affects the distribution and diversity of aquatic
fauna directly through light penetration and local hydrodynamic

conditions (Bouchet et al., 2015; Parra et al., 2017; Pirtle et al.,

8

2019; Stamoulis et al., 2018), and indirectly by influencing local
productivity and food availability (Cameron et al., 2014; Moore
et al., 2010; Pittman and Brown, 2011). In the GAM model, depth
had low but significant importance on Kutum presence, while in
prior studies by Vayghan et al. (2013, 2016), it was a predictor
with the greatest influence on fish presence. This inconsistency
is probably because of that the environmental extent of their
studies included sampling places mainly with high depths despite
that they finally reported a depth range lower than 22 (m) as
the optimum range of this parameter for the fish, but most of
our fishing points were located in areas with a mean depth of
less than 20 (m). Therefore, depth was not an essential significant
predictor in our analyses.

In the HSICPM model, ASL had an interesting relationship with
Kutum presence. Deposition of atmospheric aerosols is one of
the primary sources of nutrient elements that enter the aquatic
ecosystems (Yang et al., 2019) that strongly impacts their nutri-
ent limitation patterns and auto- and chemotrophic production
(Jickells and Moore, 2015; Mahowald et al., 2018). It has been
reported that atmospheric depositions of nutrients to coastal
waters are large and equal to or exceed those of rivers (Duce et al.,
1991; Rendell et al., 1993). Aerosol inputs occur all year round,
while there are fluctuations in nutrients loads of riverine flows
into the coastal regions (Spokes and Jickells, 2005). This feature
has high importance in providing nutrients for autotrophic and
heterotrophic production (Marañén et al., 2010; Romero et al.,
2011), especially during stratification periods (Marín et al., 2017).
Such an increase in water productivity can result in higher loads
of organic matter in bottom water layers (Boyd et al., 2007) and
enhance the secondary production of benthic fauna. This condi-
tion can affect the distribution of benthivorous fish species like
Kutum. However, the aerosols simultaneously introduce toxicants
to the water body (Gallisai et al., 2014; Kim et al., 2014), and
their high inputs can negatively change water chemistry and
limit aquatic organisms’ distribution, especially in coastal waters,
which was observed for Kutum over highest values of ASL.

The GAM model showed the highest abundance of Kutum
in areas closest to the river mouth locations. Kutum has repro-
ductive migrations towards river headwaters, and therefore, its
aggregations near river inlets are not unexpected. Also, the river
flows into marine regions can affect local water quality conditions
(e.g. salinity), substrate gradients and food availability for fish
(Froeschke et al., 2013; Froeschke and Froeschke, 2011).

The GAM model indicated that the areas with a low PIC con-
centration were the preferred habitat for Kutum. The relationship
between this parameter and large-scale fish distribution has not
been yet investigated. PIC, or CaCO3, is an indirect index of au-
totrophic production in water bodies (Hopkins et al., 2019) used
in the shells of marine organisms (Mitchell et al., 2017; Wilson
et al., 2009). Elevated PIC concentrations in aquatic systems are
related to the high export of organic carbon from dead bodies
of organisms to the sea floor (Hopkins et al., 2019), leading to
a higher biomass of benthic fauna. On the other hand, the PIC
content of the water column has a critical role in light scattering,
and its high levels can result in poor light penetration into deeper
layers (Mitchell et al., 2017). In our study, the highest abundance
of fish was related to the lowest PIC concentrations. Despite the
nutritional effects of PIC, it can be said that its importance in the
GAM model in explaining Kutum distribution in coastal waters
could mainly belong to its impact on the physical environment
of coastal waters by affecting light conditions.

CHL was the predictor with the lowest contribution in pre-
dicting Kutum abundance by the GAM model. The same situation
for this variable has been reported by Vayghan et al. (2016). In
some prior studies, chlorophyll-a concentration was an important

factor in defining the habitat extent of juvenile fish and nursery
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rounds (Giannoulaki et al., 2013). Considering the selectivity of
each seine nets and the high contribution of larger fish in the
atch composition of these nets, we can say that the low CHL
mportance in the GAM could be reasonably expected. However,
rior studies have not considered this point (Johnson et al., 2013).

. Conclusions

The present study was the first attempt to model the habitat
uality of the R. kutum using commercial catch data collected

over a long period. The modelling analyses showed the environ-
mental habitat factors with strong connections with fish catch
(i.e. SST, slope, PIC, and Aspect), the outperformance of GAM
technique in habitat modelling with more accuracy and lower
bias in predictions, and explicit dynamics in spatial and temporal
habitat suitability conditions. These results provide the reliable
information about the essential habitat requirements of the fish
using remotely-sensed environmental data that can be used more
effectively by Iranian fisheries managers to make appropriate
policies and decisions to rehabilitate, conserve and/or exploit fish
stocks.
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