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Abstract
Spatial variation in the composition of communities is the product of many biotic and envi-

ronmental interactions. A neglected factor in the analysis of community distribution patterns

is the multi-scale nature of the data, which has implications for understanding ecological

processes and the development of conservation and environmental management practice.

Drawing on recently established multivariate spatial analyses, we investigate whether

including relationships between spatial structure and abiotic variables enable us to better

discern patterns of species and communities across scales. Data comprised 1200 macro-

zoobenthic samples collected over an array of distances (30 cm to 1 km) in three New

Zealand harbours, as well as commonly used abiotic variables, such as sediment character-

istics and chlorophyll a concentrations, measured at the same scales. Moran’s eigenvector

mapping was used to extract spatial scales at which communities were structured. Benthic

communities, representing primarily bivalves, polychaetes and crustaceans, were spatially

structured at four spatial scales, i.e. >100 m, 50–100 m, 50–15 m, and < 15 m. A broad

selection of abiotic variables contributed to the large-scale variation, whereas a more limited

set explained part of the fine-scale community structure. Across all scales, less than 30% of

the variation in spatial structure was captured by our analysis. The large number of species

(48) making up the 10 highest species scores based on redundancy analyses illustrate the

variability of species-scale associations. Our results emphasise that abiotic variables and

biodiversity are related at all scales investigated and stress the importance of assessing the

relationship between environmental variables and the abundance and distribution of biologi-

cal assemblages across a range of different scales.

Introduction
Community composition is an integrative response variable encompassing demography, func-
tional traits, and species interactions, influenced by heterogeneity in environmental conditions
[1,2]. Broad-scale biodiversity and ecological studies predominantly focus on environmental
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correlatives of species communities, such as land use or land cover, typically limited to a single
spatial scale dictated by available data (but see, e.g. [3]). However, community composition
and many factors underpinning ecology are scale-dependent (e.g. [2]). Therefore, the structur-
ing factors underlying heterogeneity of communities should not be tied to a single scale. More-
over, the importance of specific factors likely changes with scale. Neglecting such variation
affects assessments of biodiversity and may fail to maximise the extraction of information from
available data. Although the role of spatial scale and cross-scale interactions is generally recog-
nised as an important structuring factor in ecosystems [4,5], it is only recently becoming inte-
grated in statistical approaches aimed at downscaling broad-scale data to enable predictive
modelling of fine-grained diversity (e.g. [3,6]).

Defining across which scales species, communities and environmental characteristics are
related is critical to advance ecological insight into the spatial organisation of communities and
ecosystem dynamics [4,7,8]. Such spatial organisation occurs along a continuum from commu-
nities displaying certain regular patterns with clear patch boundaries often at a single scale
(reviewed by [9]) to others showing multi-scale patterning and fuzzy patch boundaries (e.g.
[10,11]). A common simplifying assumption is that biotic processes, such as competition, facil-
itation or predation [12,13], dominate fine-scale variation, whereas at broader spatial scales
abiotic variables, such as hydrodynamics or climatic variables, drive spatial variation [13,14].

Ideally, in addition to embracing scale-dependency, studies addressing spatial variation in
community data should apply spatially explicit multivariate models, which encompass multiple
predictors and multivariate response variables. Moran’s eigenvector mapping [2,15] is one of
the tools available, and employed here. This spatially explicit framework allows us to infer the
scale-dependent association between abiotic variables and community distributions without a
priori assigning scales, rather letting the data speak for themselves within constraints set by the
sampling design. The aim is to understand whether including spatial variation and abiotic vari-
ables enables us to differentiate the scale-dependent patterns of communities across scales
(from 30 cm to 1 km).

We use a large data set on macrozoobenthic communities, primarily bivalves, crustaceans,
and polychaetes, from three estuarine areas of New Zealand explicitly collected for such cross-
scale analysis. 1) We explore generality of relationships between abiotic variables and commu-
nity composition by dissecting variation in species assemblages across a broad set of spatial
scales and across multiple sites. In contrast to many species distribution analyses restricted to a
single scale and a single species (as criticised by [16,17]), this approach embraces potential
changing relevance of abiotic variables with scale. 2) We statistically assess scale-dependent
patterns in community-environment relationships. Thereby we discern co-occurrence of spe-
cies and specific habitat features.

Materials and Methods

Community Data
The abundance and distribution of benthic infauna was sampled in Kaipara (175°56’ S, 37°27’
E), Manukau (174°41’ S, 37°7’ E), and Tauranga (174°17’ S, 36°23’ E) harbours, North Island,
New Zealand in the austral summer of 2012 (see, e.g. [18,19] for area descriptions). 400 cores
(13 cm diam., 20 cm deep) were sampled on a pre-determined grid (Fig 1) in each harbour dur-
ing low tide. Transects had a length of 1 km, and the distance between transects was 100 m.
This grid was designed to allow sampling at multiple spatial scales and encompass patterns on
scales from 30 cm to 1 km (Fig 1), advancing the sampling design previously employed by [20].
Sampling points along transects were spaced at distances of 30 cm, 1 m, 5 m, 10 m, 30 m, 50 m,
100 m, 500 m and 1000 m (Fig 1). This grid covered the intertidal area from the high- to low-
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water mark to capture tidal variation. Cores were sieved (500 μmmesh) and the residue pre-
served with 70% isopropyl alcohol. In the laboratory, Rose Bengal (2%) stained species were
identified to the lowest practical taxonomic resolution and their abundance assessed (see S1
Appendix). (No specific permissions were required for sampling these locations, as our sam-
pling is a permitted activity. Field studies did not involve endangered or protected species)

Environmental Variables
Prior to sampling the seafloor surface, at each sampling point (n = 1200) on the grid a photo-
graph of 0.25-m2 of the sediment surface was taken. Coverage (%) of seagrass (Zostera mulleri),
bare sand, and shell hash (i.e. broken shell fragments) was estimated based on 75 random
points within that photograph using CPCe [21]. To determine sediment median grain size

Fig 1. Sampling designmatching a number of spatial lags ranging from 0.3 m to 1 km. Illustrated are the abundances ofMacomona liliana (scaled dots,
encompassing values between 0 and 40 ind./core) across a sandflat of 300 m by 1000 m at Kaipara Harbour. The background displays an interpolated
seascape of median grain size, ranging between 170 and 250 μm (darker grey indicated a larger median grain size, i.e. coarser sands). The middle panel (not
to scale) illustrates how sampling points were positioned along a single transect, where the label “3 cores” indicates a sampling distance of 30 cm. The two
bottom panels show a sampling area at low tide.

doi:10.1371/journal.pone.0142411.g001
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(μm), % sediment fractions (silt< 63 μm, very fine 63–125 μm, fine 125–250 μm, medium
250–500 μm, and coarse> 500 μm), organic content (%), and chlorophyll a concentration
(mg/g) at each point, we pooled three surface sediment cores (2 cm diam., 2 cm deep) from
each sampling point (n = 1200). These samples were stored in the dark on ice immediately
after collecting and freeze-dried upon arrival in the laboratory. Prior to freeze-drying, seagrass
and bivalves were removed from the sediment samples. Sediment grain sizes were measured
using a Malvern Mastersizer, chlorophyll a concentrations were determined using a fluorome-
ter, and loss on ignition was used to assess organic content (see [22,23] for methodological
details). These abiotic variables are commonly associated with coastal benthic diversity
(amongst others [10–14, 18–20]).

Statistical Approach
Moran’s eigenvector mapping (MEM, [2,15,24]) was used to evaluate spatial variation in ben-
thic community composition and abiotic variables on multiple scales for each harbour sepa-
rately. This method is a modification of the Principal Coordinates of Neighbour Matrices
approach (PCNM, [25]), using a distance-based (Euclidean) connectivity matrix to define how
points are linked across space (see [24,26]).

Employing the MEM-framework involved several steps: 1) Community data were Hellin-
ger-transformed to reduce the importance of the most abundant species [27]. Preliminary anal-
yses indicated that other species transformations, such as relying only on presence-absence
information, resulted in poorer model performances; 2) transformed community data were lin-
early detrended using geographical coordinates to remove a large-scale spatial gradient, and
residuals of this model were retained for further analyses (see [24]).

Next, (3) we constructed a spatial weighting matrix (SWM) to define linkages between sam-
pling points, used for the decomposition in orthogonal spatial variables. We trialled connectiv-
ity based on Delaunay triangulation, minimum spanning tree, relative neighbourhood, nearest
neighbours, Gabriel neighbourhood, and distance thresholds (see [26]), selecting a distance-
based SWM (Table 1). This particular matrix optimised performance, as determined by the
AICc (Table 2), and reflects a data-driven approach [15,24,26]. Subsequently, (4) this SWM
was used in eigen decomposition of community data, providing spatial eigen functions
(“MEM-variables”) that can be used as spatial predictors in ordination approaches (see, e.g.
[2]). Significant positive MEM-variables, representing positive spatial autocorrelation
(p� 0.05, 9999 permutations), were grouped (Fig 2) based on a visual comparison of similari-
ties in their range of spatial autocorrelation. This represents a routine method of clustering as
single MEM-variables harbour little significance [28,29]. This grouping in MEM-subsets was

Table 1. Optimal connectivity network.

Kaipara Tauranga Manukau

Optimal distance (m) 104 199 131

AICc -355 -540 -571

Nvar 40 26 4

α 2 3 5

Radj 28 19 41

Positive MEM-variables (n) 39 23 40

AICc (corrected Akaike Information Criterion), Nvar (number of MEM variables), α (parameter of concave

spatial weighting function dictating how similarity decays with distance; see [26]), and Radj. (% adjusted

explained variance) summarise the optimal connectivity. See Materials and Methods for details.

doi:10.1371/journal.pone.0142411.t001
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Table 2. Mean environmental characteristics (standard deviation) and number of macrozoobenthic species encountered duringmacrobenthic
sampling. Highest mean environmental characteristics, as identified by single variable ANOVA’s, in bold.

Kaipara Tauranga Manukau

Sampling 2012 18 & 19 April 23 & 24 April 4 & 5 May

Species (n) 114 81 109

Individuals (n) 21846 25394 26573

Median grain size (μm) 213 (14.7) 197 (23.4) 166 (35.1)

Silt (%) 1 (2.3) 5 (3.1) 14 (10.5)

Very fine sediments (%) 6 (2.9) 17 (4.8) 17 (5.9)

Fine sediments (%) 61 (4.6) 44 (5.7) 48 (10.8)

Medium sediments (%) 32 (6.5) 28 (5.4) 18 (7.2)

Coarse sediments (%) 0.4 (0.5) 6 (3.4) 3 (4.7)

Organic content (%) 0.8 (0.2) 2 (0.6) 2 (1.1)

Chlorophyll a (mg/g) 5 (3.1) 11 (4.2) 23 (7.4)

Bare sand cover (%) 84 (28.1) 73 (18.9) 79 (23.5)

Shell hash cover (%) 2 (3.3) 3 (4.2) 16 (17.6)

Sea grass cover (%) 13 (27.2) 23 (18.3) 5 (18.4)

doi:10.1371/journal.pone.0142411.t002

Fig 2. Range of spatial autocorrelation of each significant positive MEM variable. Broad: MEM variables with a range > 100 m; Meso: MEM variables
with a range < 100 m and > 50 m; Small: MEM variables with a range < 50 m and > 15 m; Fine: MEM variables with a range < 15 m. Delineation into 4 distinct
spatial scales is based on visual appraisal (see Materials and Methods).

doi:10.1371/journal.pone.0142411.g002
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constrained by our sampling design, such that “spatial scales” were limited between the small-
est (30 cm) and largest (1 km) inter-sample distance.

Then, (5) the spatial variables of each MEM-subset were used in a redundancy analysis
(RDA) with environmental variables in order to identify the abiotic variables linked to that
scale. We included quadratic functions of abiotic variables, in case of continuous variables, to
enhance fitting more complex relationships (e.g. [25,30]). Few missing abiotic variables (n = 2
in Tauranga and Manukau, n = 19 in Kaipara) values were estimated using interpolations
based on inverse distance weighting (e.g. [31,32]). Forward selection with a significance level of
0.05 and 9999 random permutations of explanatory variables was then used to obtain the
model with the most parsimonious set of abiotic variables ([33], see Fig 3). Finally, (6) we iden-
tified characteristic species, defined as the 10 benthic species with the highest positive or nega-
tive scores on the first two environmental ordination axes in the RDA of species abundances
and environmental variables for each MEM-subset (e.g. [34]).

To determine how much of the captured community variation was related to measured abi-
otic variables or spatial structure we performed variance partitioning (see, e.g. [24,26]) in each
harbour for each spatial submodel.

All analyses were done in R [35] using the packages spacemakeR, ncf, packfor, spdep, and
vegan. Detailed explanations of the MEM-framework and variation partitioning, including R-
scripts and formal matrix notations, can be found in [2,24], and [26].

Fig 3. Environmental variables linked to community distributions at each distinct scale. Blocks from
left to right represent b(road) scale (> 100 m), m(eso) scale (< 100 m and > 50 m), s(mall) scale (< 50 m
and > 15 m) and f(ine) scale (< 15 m) spatial subsets. Fine scale spatial subset for Tauranga not shown, since
none of the environmental variables linked to this scale. Light grey = p� 0.05; dark grey = p� 0.01;
black = p� 0.001.

doi:10.1371/journal.pone.0142411.g003
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Results

Benthic Communities
Across the three sites, we identified 146 taxa, comprising 73813 individuals (Table 2). Species
accumulation curves indicated these were representative of the complete benthic communities
present (Greenfield, Kraan, and Thrush, unpublished data). The spionid polychaetes Prionos-
pio aucklandia (n = 9142, 813 sampling points) and Aonides trifida (n = 8097, 674 sampling
points) were the most abundant, followed by the bivalves Austrovenus stutchburyi (n = 6520, 786
sampling points),Macomona liliana (n = 5347, 1135 sampling points) and Nucula hartvigiana
(n = 4638, 524 sampling points). Concentrating on individual sites, in Kaipara
A. trifida (n = 3915, 229 sampling points) was the most abundant species, whereasM. liliana
(n = 1952, 379 sampling points) was the most widespread species. A. stutchburyi (n = 4235, 281
sampling points) was the most abundant species in Manukau.M. liliana (n = 1936, 384 sampling
points) again was the most widespread species. In Tauranga, the most abundant and most widely
distributed species was P. aucklandia (n = 7214, 385 sampling points).

The three locations differed significantly in this set of environmental characteristics (single
variable ANOVA’s, df = 2, residuals = 1195, all p-values� 0.05). Manukau Harbour was the
muddiest site (identified by the highest % silt) and contained the highest concentration of chlo-
rophyll a (Table 2). The coarsest sediment was encountered in Tauranga Harbour, which also
contained the highest coverage of sea grass and shell hash. Kaipara Harbour had the highest
coverage of bare sand (Table 2). All three sites had a median grain size classified as fine sands.

Spatial Scales
The best spatial weighting matrix was based on a different optimal distance for all three harbours,
i.e. Kaipara 104 m, Tauranga 199 m, andManukau 131 m. This optimal distance indicates the spa-
tial distance across which sampling points share similar communities. Across the three estuaries,
broad-scale subsets captured 19% to 30% of the variation in benthic community composition (Fig
3). Meso-scale subsets explained 7% to 10% of the variation, whereas small-scale and fine-scale
subsets captured between 2% and 5% of the variation (Fig 3). For Tauranga none of the available
explanatory variables explained the fine-scale variation in community composition (Fig 3).

At spatial scales larger than 50 m most of the selected abiotic explanatory variables contrib-
uted significantly to explaining community composition, particularly at Kaipara and Manukau
sites (Fig 3). In Tauranga only the smaller grain-size fractions related to community patterns.
Small- and fine-scale subsets in all sites were mostly associated with coverage of seagrass and
chlorophyll a content. There was no consistent pattern of relationships between abiotic vari-
ables and community patterns across spatial scales (Fig 3). A common feature was the decrease
of explanatory power at finer scales.

Partitioning of the variance showed that for the broad-scale sub-models little variation of
the spatial components could be captured by the abiotic variables (Fig 4). This lack of variation
explained by abiotic variables was generally more pronounced for the other spatial sub-models.
Also, part of the variation was captured by spatially structured abiotic factors (overlapping
parts of the circles in Fig 4). All fractions were significant (p< 0.05) with the exception of the
Manukau fine-scale partitioning.

Characteristic Species
48 different species (Table 3), encompassing bivalves (n = 6), polychaetes (n = 28), crustaceans
(n = 10) and gastropods (n = 4), represented the most characteristic species (see Materials and
Methods for their definition). Most of these, such as the bivalveM. liliana or the crustacean
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Paracalliope novizealandiae, were associated with more than one spatial scale. A minority of
these characteristic species, such as the polychaete Travisia olens, were captured best by a single
scale model (Table 3), suggesting they are specialist in their resource requirements. Interest-
ingly, most crustaceans and gastropods were characteristic species only at single sites. In con-
trast, bivalves were characteristic at more than one site. Polychaetes were either characteristic
in all three sites or limited to just a single site (Table 3).

Discussion
Addressing the role of scale-dependency in the spatial structuring of communities in relation-
ship to abiotic variables to infer processes has been recognised as critical in ecology (e.g. [36]).

Fig 4. Partitioning the variation in an environmental component and a spatial component. No results
are shown for the fine-scale MEM-subset for Tauranga, since none of the abiotic variables were linked to that
scale. Numbers indicate values for adjusted R2.

doi:10.1371/journal.pone.0142411.g004
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This helps to focus studies on the scales that are most relevant to community composition, as
well as identifying abiotic variables most associated with these scales. In return this provides
information on the mechanisms that likely underpin community diversity and distributions.
The inferences drawn from such analysis can help support conservation or environmental
management measures due to improved ecological understanding. Realising such research
goals requires sampling communities with purposefully cross-scale sampling designs and using
models capable of capturing such information. Yet, to our knowledge, our work offers a scarce
example of studies to gather response and explanatory data at corresponding scales across such
a large range of spatial scales in coastal ecosystems (but see, amongst others, [32, 37, 38, 39]).

Moran’s eigenvector mapping, as applied here to intertidal communities living in sandy sed-
iments, allowed us to define distinct spatial scale ranges by explicitly including spatial

Table 3. Characteristic macrozoobenthic species associated with broad, meso, small and fine scale MEMmodels.

Kaipara Tauranga Manukau

Broad AusMod AusStu Euchon AntAur AonTri AusStu AntAur AonTri Aricid

HetFil MacLil MacSte Cerato HetFil Lumbri AusStu BocSyr BumCir

NucHar OrbPap OwePet Lysian MacSte NucHar CosCon Dexami HetFil

PapAus ParNou Phoron PerVal Phoxoc ScoCyl MacLil MacSte Nemert

PriAuc PseFat SolSil ScoLel ZeaSub NotSca NucHar OwePet

TraOle TroDen WaiBre PriAuc

Meso AonTri AusMod AusStu AntAur Cerato HetFil AntAur AonTri Aricid

Euchon Hesion HetFil LasPar Lumbri Lysian AusStu CosCon HetFil

MacLil MagDak Nemert MacLil NucHar PerVal MacLil MacSte MagDak

NucHar OwePet Phoron Phoxoc PriAuc ScoBen Nemert NotSca NucHar

PriAuc SolSil ScoCyl Scolel ZeaLut ParNou PriAuc SolSil

ZeaSub TroDen

Small AonTri AusMod BumCir AntAur AonTri Cerato AntAur AonTri AusStu

Cerato Euchon LasPar ColLem DilSub LasPar BocSyr CosCon HetFil

MacLil MacSte NicAes Lumbri Lysian MacLil MacLil MagDak NicAes

OrbPap PapAus ParNou PerVal Phoxoc PriAuc NotSca NucHar ParLyr

PriAuc PseThi ScoBen ScoCyl Scolel ZeaSub PriAuc

SolSil WaiBre

Fine AonTri AusMod BocSyr AntAur AusStu BocSyr

BumCir ColLem Euchon ComGla HalWhi HetFil

MacLil MacSte MagDak MacLil MacSte MagDak

Nemert NucHar OwePet Nemert NicAes NucHar

PapAus ParNou Phoron OwePet ParLyr PlaAus

PseFat TroDen PriAuc PseFat

Fine scale subset for Tauranga not shown, since none of the environmental variables linked to this scale. Bivalves: AusStu = Austrovenus stutchburyi,

LasPar = Lasaea parangaensis, MacLil = Macomona liliana, NucHar = Nucula hartvigiana, PapAus = Paphies australis, SolSil = Soletellina siliqua.

Crustaceans: AusMod = Austrominius modestus, ColLem = Colurostylis lemurum, Dexami = Dexaminidea, HalWhi = Halicarcinus whitei, ParNou =

Paracalliope nouzealandia, Phoxoc = Phoxocephalidea, WaiBre = Waitangi brevirostris. Polychaetes: AonTri = Aonides trifida, Aricid = Aricidea, BocSyr =

Boccardia syrtis, BumCir =“Bumpy cirrisyllid”, Cerato = Ceratonereis sp., Euchon = Euchone sp., CosCon = Cossura consimilis, Hesion = Hesionidea,

HetFil = Heteromastus filiformis, Lumbri = Lumbrineridea, Lysian = Lysianassidae, MacSte = Macroclymenella stewartensis, MagDak = Magelona dakini,
Nemert = Nemertean, NicAes = Nicon aestuariensis, OrbPap = Orbinia papillosa, OwePet = Owenia petersonae, ParLyr = Paradonereis lyra, PerVal =

Perinereis vallata, Phoron = Phoronis sp., PlaAus = Platynereis australis, PriAuc = Prionospio aucklandia, PseFat = Pseudopolydora “fat”,

PseThi = Pseudopolydora “thin”, ScoBen = Scolecolepides benhami, ScoCyl = Scoloplos cylindrifer, Scolel = Scolelepis sp., TraOle = Travisia olens,
TroDen = Trochodata dendyi. Gastropods: ComGla = Cominella glandiformis, DilSub = Diloma subrostrata, NotSca = Notoacmea scapha, ZeaLut =

Zeacumantus lutulentus, ZeaSub = Zeacumantus subcarinatus. Cnidaria: AntAur = Anthopleura aureoradiata.

doi:10.1371/journal.pone.0142411.t003
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autocorrelation in the analysis of multivariate biodiversity data [15,40]. While we found strong
support for the links between abiotic variables and communities on scales from 1 km to just
15 m, at spatial scales finer than 15 m other factors seem to be associated with spatial structur-
ing of communities (see below). The variation captured by the various spatial subsets is similar to
previous studies (e.g. [24,30]), demonstrating less spatial variation in community composition cap-
tured from broader to finer scales. Ecological studies incorporate many sources of variation; there-
fore the explained spatial variation is likely to remain limited, especially in dynamic systems [24].

The fine-scale subsets explained limited variability, particularly in the Tauranga site.
Explanatory abiotic variables linked to fine-scale variation were not measured or the patterns
are due to biotic variables (see [24,30]). Other studies (e.g. [29]) discussed the possibility of
their sampling design being inadequate to detect fine-scale variability due to lack of replication
at fine spatial scales. However, our spatial sampling grid was explicitly designed to capture
such patterns, foregoing arguments of a lack of power at finer scales. Alternatively, commu-
nity-environment relationships might not be apparent at such fine scales simply due to the fact
that macrozoobenthic communities respond to abiotic variables at scales larger than 15 m. Par-
titioning of variation indicated that our set of abiotic variables had a significant, yet relatively
minor (up to 14%), contribution to small-scale community structure. This suggests that biotic
variables are a likely explanation for small-scale community structure. Prior to the develop-
ment of multivariate spatial modelling approaches, such quantitative insight into the organisa-
tion of community structure would have been difficult to obtain.

It is becoming increasingly clear that purely environmental based species distribution mod-
els are too simple to capture complex community responses to habitat change (e.g. [16,41]). In
addition, experimental field studies indicate a profound role for complex interactions across
scales governing community dynamics [19,42,43]. The MEM-framework offers a quantitative
approach towards understanding scale-dependent community interactions associated with abi-
otic variables (also see, e.g. [44]). This is essential if the role of biodiversity in affecting response
to changing environmental conditions (e.g. climate change) is to be fully realised. Indeed, the
merit of our study is providing an ecological case study on the impact of including spatial struc-
ture and abiotic variables to better differentiate biogeographical patterns of species communi-
ties across scales. Yet, an open, non trivial, question remains how such MEM-derived spatial
templates can be incorporated in predictive species distribution models to accommodate cross-
scale variation in biodiversity-environment links.

In conclusion, our study emphasises the lack of one right scale to study spatial variation in
species communities. As highlighted by the MEM-framework, different species and different
habitat features are linked to various spatial scales. This emphasises the importance of assessing
the relationship between environmental variables and the abundance and distribution of bio-
logical assemblages across a range of different scales.

Supporting Information
S1 Appendix.
(PDF)
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