
ISPRS Open Journal of Photogrammetry and Remote Sensing 5 (2022) 100018

Available online 21 June 2022
2667-3932/© 2022 The Authors. Published by Elsevier B.V. on behalf of International Society of Photogrammetry and Remote Sensing (isprs). This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Spatially autocorrelated training and validation samples inflate 
performance assessment of convolutional neural networks 

Teja Kattenborn a,b,*, Felix Schiefer c, Julian Frey d, Hannes Feilhauer a,b,e, 
Miguel D. Mahecha a,b,e, Carsten F. Dormann f 

a Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Germany 
b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany 
c Institute of Geography and Geoecology (IfGG), Karlsruhe Institute for Technology (KIT), Germany 
d Forest Growth and Dendroecology, University of Freiburg, Germany 
e Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany 
f Biometry and Environmental System Analysis, University of Freiburg, Germany   

A R T I C L E  I N F O   

Keywords: 
Spatial autocorrelation 
Convolutional neural networks 
Deep learning 
Machine learning 
Mapping 
Reference data 

A B S T R A C T   

Deep learning and particularly Convolutional Neural Networks (CNN) in concert with remote sensing are 
becoming standard analytical tools in the geosciences. A series of studies has presented the seemingly 
outstanding performance of CNN for predictive modelling. However, the predictive performance of such models 
is commonly estimated using random cross-validation, which does not account for spatial autocorrelation be-
tween training and validation data. Independent of the analytical method, such spatial dependence will inevi-
tably inflate the estimated model performance. This problem is ignored in most CNN-related studies and suggests 
a flaw in their validation procedure. Here, we demonstrate how neglecting spatial autocorrelation during cross- 
validation leads to an optimistic model performance assessment, using the example of a tree species segmen-
tation problem in multiple, spatially distributed drone image acquisitions. We evaluated CNN-based predictions 
with test data sampled from 1) randomly sampled hold-outs and 2) spatially blocked hold-outs. Assuming that a 
block cross-validation provides a realistic model performance, a validation with randomly sampled holdouts 
overestimated the model performance by up to 28%. Smaller training sample size increased this optimism. 
Spatial autocorrelation among observations was significantly higher within than between different remote 
sensing acquisitions. Thus, model performance should be tested with spatial cross-validation strategies and 
multiple independent remote sensing acquisitions. Otherwise, the estimated performance of any geospatial deep 
learning method is likely to be overestimated.   

1. Introduction 

In recent decades, our ability to image the Earth’s land surface 
advanced due to several technological developments in remote sensing, 
including citizen science applications, Unmanned Aerial Vehicles (UAV) 
and space-borne high-resolution sensors (Colomina and Molina, 2014; 
Brandt et al., 2020; Ferreira et al., 2021; Schiller et al., 2021). Machine 
learning, and recently particularly deep-learning approaches are revo-
lutionizing Earth system research using such data (Tuia et al., 2021). For 
empirical prediction tasks based on high resolution remote sensing im-
ages, Convolutional Neural Networks (CNN) have proven to be partic-
ularly suitable (Zhu et al., 2017; Brodrick et al., 2019; Kattenborn et al., 

2021). The uptake of CNN by remote sensing researchers is driven by the 
synergy of fine-scaled spatial patterns revealed through high-resolution 
images and the effectiveness of CNN to distill them. CNNs are composed 
of a series of sequential filter functions (convolutional layers), which are 
iteratively optimized over observations with respect to the target vari-
able (Goodfellow et al., 2016). For remote sensing data, this iterative 
training process is commonly performed on equal-sized spatial sub-
samples referred to as tiles or crops. Thereby, the neural network learns 
the informative spatial patterns in such tiles, e.g. those apt to identify a 
plant species. The fundamental advantage of such CNN-based pattern 
recognition in remote sensing data compared to previous approaches (e. 
g. texture metrics) is that it minimizes feature design and variable 
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selection and automatically learns image patterns with an effectiveness 
that enables mapping continuous gradients and discrete entities at un-
precedented spatial detail and accuracy (Zhu et al., 2017; Kattenborn 
et al., 2021). 

CNNs are typically purely data-driven, so that the generalization of 
such models in the application domain is determined by the represen-
tativeness of the training data. In most cases, the generalization of such 
models is constrained due to limited availability of remote sensing data 
with associated reference observations (Kattenborn et al., 2021). This 
may not be an issue when a model is being used to interpolate within the 
spatial or environmental range of the training data set (Wadoux et al., 
2021; Stehman et al., 2021; Meyer and Pebesma, 2021; Mila et al., 
2022). However, remote sensing applications typically aim to extrapo-
late (predict) to unseen observations within the application domain for 
which reference data for validation is not available. These unseen ob-
servations may depart from the training data in terms of site conditions 
or properties of the remote sensing data. 

The expected predictive performance of a model to unseen obser-
vations can be estimated using independent samples. For this, models 
are most often cross-validated, meaning that available samples are used 
alternatingly to either train or validate the model. However, the fact that 
an observation was not used for training a model does not necessarily 
imply that this observation is truly independent from the training data. 
A dependence between observations can already arise through their 
spatial proximity, since usually nearby things are more related than distant 
things (Tobler, 1970). A remote sensing signal from a tree, for example, is 
likely to be more similar to that of an immediate neighbour than to that 
of a distant tree. This phenomenon is referred to as spatial autocorre-
lation and can be observed across all spatial scales (Legendre, 1993; 
Dormann, 2007). This does not affect the estimation of map accuracy as 
long as the validation sample reflects the population of the map area 
(Wadoux et al., 2021; Brus, 2021; Mila et al., 2022). However, remote 
sensing applications often do not strive to evaluate a method for pro-
ducing a map for a specific area, but to estimate the expected model 
performance for the entire application domain (i.e. model generaliza-
tion). For the latter, spatially autocorrelated training and validation 
samples will inevitably result in an overly optimistic model perfor-
mance, which in turn will not reflect the generalization of a model across 
the application domain (Bahn and McGill, 2013; Le Rest et al., 2014; 
Pohjankukka et al., 2017; Roberts et al., 2017; Ploton et al., 2020). 

Such inflation of model performance can be circumvented with 
spatial cross-validation strategies, which create spatially independent 
training and validation folds through spatial blocking or buffering ob-
servations, and have been applied in various forms and contexts (Veloz, 
2009; Wang et al., 2010; Wenger and Olden, 2012; Le Rest et al., 2014; 
Roberts et al., 2017; Valavi et al., 2018; Mahecha et al., 2021), including 
in the specific context of remote sensing and machine learning (Bren-
ning, 2012; Rocha et al., 2018; Schratz et al., 2019; Ploton et al., 2020; 
Meyer and Pebesma, 2021). However, most studies that used CNNs for 
geoscience-oriented remote sensing applications used random 
cross-validation and, thus, did not ensure spatial independence between 
training and validation data (e.g. more than 90% of the studies reviewed 
in Kattenborn et al., 2021). It can be assumed that a large share of these 
studies (unintentionally) report overly optimistic model performance. 
Possible explanations are limited awareness of the problem and its 
relevance for deep learning or even CNN applications. 

Here, we thus investigate to what degree spatially autocorrelated 
training and validation data can lead to over-optimistic evaluation of 
CNN models. For that, we chose a case study on CNN-based tree species 
segmentation with a data set composed of numerous spatially widely 
distributed UAV image acquisitions and wall-to-wall reference obser-
vations. We compare the predictive performance estimated with ob-
servations (image tiles) sampled in a random and a spatial block cross- 
validation. The effect of these two cross-validation strategies is further 
explained by quantifying the spatial dependence between image tiles. 
Finally, we discuss the relevance of these findings for any type of 

predictive deep learning approach applied using Earth observations. 

2. Methods 

We demonstrated the effect of spatially autocorrelated training and 
validation samples with a case study of a tree species classification 
(semantic segmentation) in RGB orthoimages acquired with UAVs. The 
application domain is the Black Forest region, which was covered with 
47 sites of 100 × 100 m, each covered by an orthoimage acquisition. 
Thus, in this case study it is aimed to estimate the performance of CNN 
models to segment tree species in UAV images across the Black Forest 
region. The underlying experimental approach is based on the 
assumption that samples, i.e. image tiles extracted from the orthoimages 
for CNN training and prediction, are spatially dependent when extracted 
from the same site. Consequently, an optimistic model performance is 
expected when using such data for both training and validation (random 
cross-validation). In contrast, a more realistic model performance can be 
derived from samples that are extracted from sites from which the model 
has not seen any samples during training, assuming that these are 
spatially independent (block cross-validation). The discrepancy between 
these two modes of validation (dependence vs. independence of training 
and validation samples) must be regarded as optimism. 

2.1. Remote sensing predictors and reference data (labels) 

The 47 individual sites are distributed across more than 3600 km2, 
with a minimum, average and maximum distance of 0.9, 31.7, and 82.0 
km, respectively (Fig. 1). The area is mostly covered by mixed and 
coniferous forests and covers a wide range of forest types and age 
classes. The tree species that are most frequent in these sites and that are 
targeted for the CNN-based semantic segmentation are Picea abies L., 
Fagus sylvatica L., Abies alba Mill., Quercus robur L., Acer pseudoplantus L., 
Larix decidua Mill., Pinus sylvestris L., Betula pendula Roth, Fraxinus 
exelsior L., and Pseudotsuga menziesii Mirbel. Further details on the tree 
stands are given in Storch et al. (2020) and in the Appendix (Table 1). 

For each of the 47 sites, the predictors in form of RGB orthoimages 
with a ground resolution of approximately 1 cm were created using 

Fig. 1. Locations of the UAV orthomosaics (n = 47, green dots) acquired be-
tween 2017 and 2019 in the Black Forest region, Southwest Germany. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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aerial images from a multicopter (Mikrokopter, OktoXL 6S12) equipped 
with a Sony Alpha 7R and the software Agisoft Photoscan (for details see 
Frey et al., 2018). The imagery was acquired between 07:40 a.m. to 
03:40 p.m. (CEST) from April to November in the years of 2017, 2018, 
and 2019 (for details see Appendix, Table 1). The orthoimages, hence, 
cover a wide range of possible variations, such as:  

• illumination conditions induced by varying sun zenith and azimuth 
angles or the ratio of direct and diffuse solar radiance;  

• vegetation status, in terms of phenology and health condition;  
• forest structural characteristics, such as tree density, species 

composition, stand age, or management;  
• site characteristics, including soil background, topography, or 

understory. 

All orthoimages were cropped into non-overlapping and directly 
adjacent tiles. Based on the results of Schiefer et al. (2020), we used a tile 
size of 256 × 256 pixels (approx. 2.56 × 2.56 m). This resulted in around 
1500 tiles per orthoimage and site. 

A semantic segmentation aims at an area-wide classification of the 
target classes. For this case study, this implies that the CNN-based seg-
mentation assigns each pixel of a tile to one of the tree species 
mentioned above. Training common CNN-based segmentation algo-
rithms requires spatially explicit and wall-to-wall reference data, 
meaning that each image tile (predictors) used for training is associated 
with a mask containing species information for each pixel in that tile 
(response). The masks were created from polygons available for all 
targeted species, which were created with visual interpretation from 
imagery aided with ground observations. Further information on the 
site, data acquisition, and visual interpretation is given in Frey et al. 
(2018) and Schiefer et al. (2020). The entire data set, including 
orthoimagery, tree-species delineations and its metadata are openly 
accessible (https://dx.doi.org/10.35097/538). 

2.2. Demonstrating optimistic model evaluation induced by spatial 
autocorrelation 

The degree of optimism was assessed with multiple model setups. 
Firstly, we aimed to illustrate that optimism induced by spatially auto-
correlated training and test data occurs across small and large sample 
sizes. Therefore, we varied the number of orthoimages used for model 

training with n = 10, 25, and 40. Secondly, we test if model regulari-
zation via a data augmentation, which is commonly applied to reduce 
model overfitting, can enhance the generalization on the independent 
test data. For this, each model setup was trained with and without 
augmented training data. The data augmentation was applied in three 
different ways that are commonly used in the literature (Kattenborn 
et al., 2021): 1) geometric modifications (horizontal and vertical flip-
ping), 2) radiometric modifications (random change of brightness be-
tween 90 and 110%, contrast between 80 and 120%, and saturation 
between 80 and 120%), and 3) geometric and radiometric modifications 
in combination. 

Each of these different model setups was evaluated with a random 
and a block cross-validation with five repetitions (Fig. 2). For this, the 
available orthoimages (n = 47) were randomly assigned to the random 
(n = 10, 25 or 40) or block cross-validation procedure (n = 7). In the 
random cross-validation procedure, 80% of the image tiles of the 
assigned site were used for model training and the remaining 20% for 
estimating the performance of the trained model objects (considered as 
non-independent samples). For the block cross-validation, we used 
exactly the same model instance, but the model performance was esti-
mated with tiles that were extracted from those sites (n = 7) from which 
the model has not seen any image tiles during training (independent 
samples). The number of sites sampled for the block cross-validation (n 
= 7) was set arbitrarily as a compromise between sufficient data for 
model training and validation. 

The CNN-based tree species segmentation was based on the U-net 
architecture (Ronneberger et al., 2015), which is frequently applied in 
vegetation remote sensing (Wagner et al., 2019; Schiefer et al., 2020; 
Kattenborn et al., 2019, 2021). The implemented U-net featured four 
encoding and four decoding blocks. Root Mean Squared Propagation 
(RMSprop) was selected as optimizer with a learning rate of 0.0001 and 
the F1-score (= Sørensen index or Dice coefficient) was used as loss 
function. For each model setup, differing in the number of sites for 
training and mode of data augmentation, the U-net was trained in 50 
epochs and the best performing model parametrization of these epochs 
was selected for the final prediction (selected with a 20% holdout of the 
training data). Model performance was finally compared using F1-scores 
(eqn. (1)), i.e. the harmonic mean of precision and recall: 

F1 =
TP

TP + 1
2 (FP + FN)

, (1) 

Fig. 2. Workflow used to demonstrate and explain optimistic model evaluation resulting from spatially autocorrelated image tiles used for training and validation. 
The non-independent and independent model evaluations (left) are implemented using a random and block cross-validation, respectively. The variational autoen-
coder (right) is based on a MMD-VAE (Zhao et al., 2017). 
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where TP stands for true positives, FP for false positives, and FN for false 
negatives. The significance of differences between F1-scores was 
assessed with one-tailed t-tests. Further details on the U-net imple-
mentation are given in Schiefer et al. (2020). The code and preprocessed 
data are available at https://github.com/tejakattenborn/cnn_rs_optimis 
m. 

We tested if the optimism was not due to sampling effects using 
metadata available for each site. For this, based on the repeated cross- 
validations, we subtracted the site-specific F1-scores obtained when 
the sites were included in model training (random cross-validation re-
sults) with F1-scores obtained when the sites were excluded from model 
training (block cross-validation results). We calculated the R2 for these 
site-specific differences in F1-scores and the metadata. The latter 
included the image acquisition date, the image acquisition time, stand 
density [trees/ha], and the tree species composition in the form of the 
first three components of a principal component analysis (PCA) of the 
tree species reference data. 

2.3. Spatial autocorrelation between image tiles - towards explaining 
optimistic model evaluation 

The above-described experiment on tree species segmentation in 
image tiles aims to demonstrate predictive optimism induced by 
randomly sampled and potentially spatially autocorrelated image tiles. 
To support the results and assumptions in this experiment, the below 
described procedure was applied to determine the mean spatial auto-
correlation between image tiles as a function of their geographic 
distance. 

A common method for assessing spatial autocorrelation are corre-
lograms, which can be used to quantify the similarity of observations at 
given spatial distances. Commonly, such methods require tabular data, 
where an observation is structured as vector. However, CNN-based 
image analysis is a pattern-oriented problem, where each observation 
(image tile) is a high dimensional and structured array (of rank 2 for 
grey-level, or of rank 3 for multi-channel images, respectively). Assess-
ing the spatial autocorrelation of such higher-dimensional image-type 
observations with correlograms is not directly possible and requires a 
dimension reduction that respects the spatial structure of data. One 
suitable approach is CNN-based variational autoencoders (VAE), which 
use variational inference to generate a latent representation (vector) 
from the input arrays in an unsupervised way requiring few heuristics. 
Compared to classical dimensionality reduction techniques such as 
Principal Component Analysis (PCA), variational autoencoders enable 
the representation of complex and non-linear dependencies (Goodfellow 
et al., 2016; Fournier and Aloise, 2019). Moreover, autoencoders can 
integrate convolutional layers, which, instead of slicing and stacking the 
image data into vectors, retain the spatial relationships for an efficient 
detection of features and patterns therein (Pu et al., 2016). We choose 
variational autoencoders over vanilla autoencoders as these enable to 
define priors that constrain the modelling of the latent variables. This 
does not only result in a regularization of the latent space, but also fa-
cilities that the latter holds for new observations (Kingma and Welling, 
2013). 

Autoencoders are composed of an encoder block transforming the 
input data into a low-dimensional latent representation and a decoding 
block that is meant to reconstruct the input array from the latent rep-
resentation (Fig. 2). A successfully trained variational autoencoder is 
able to represent the underlying patterns by a few latent variables. This 
can be verified by decoding these latent variables: If a VAE can recon-
struct the input image from the encoded latent variables with only few 
deviations (decoding), it can be assumed that most image patterns have 
been preserved (learned) with negligible loss of information (Kingma 

and Welling, 2019). 
We implemented a maximum mean discrepancy variational 

autoencoder (MMD-VAE), which was demonstrated to generate robust 
latent representations while being computational efficient (Zhao et al., 
2017). We used a common encoder-decoder structure, with five con-
volutional and deconvolutional layers each. These layers featured a 
stride of two, kernel-size of three and were connected with GeLu acti-
vation functions (Gaussian Error Linear Units). The loss of MMD-VAE is 
determined by the sum of 1) the reconstruction result (squared differ-
ence of the input image and the decoder output) and 2) the maximum 
mean discrepancy (MMD) of the distribution of the latent space and a 
prior - here a Gaussian distribution. MMD compares the latent and prior 
distribution by means of their moments derived using Gaussian kernels. 
Details on the MMD-VAE are given in Zhao et al. (2017). The R-based 
Tensorflow implementation and image tiles are available online (https 
://github.com/tejakattenborn/cnn_rs_optimism). 

The MMD-VAE was trained on regularly spaced and non-overlapping 
tiles of all orthoimages with 256 × 256 pixels size (same settings as for 
the tree-species segmentation, section 2.2). The tiles were encoded into 
a vector of 200 latent variables. A holdout of 10% of the tiles were used 
to monitor the training progress (loss) and to evaluate the reconstruction 
error (see Appendix). The training of the MMD-VAE was stopped with 
the convergence of the loss after 236 epochs. Subsequently, the trained 
MMD-VAE was used to predict the 200 latent variables for all tiles. The 
latent variables for all available tiles of the orthoimagery (predictors) 
were then used to quantify the spatial autocorrelation by means of 
multivariate correlograms. These estimate the spatial dependence across 
discrete distance classes (lags) using the centred Mantel statistic 
(Bjørnstad et al., 1999, 2001). The correlograms were created with 
correlog function in the R-package ncf (Bjørnstad, 2020), with a distance 
interval (lag) of 1 m and a minimum distance of 2.56 m. To compare the 
spatial autocorrelation of images tiles (predictors) with the tree species 
cover (response), we created additional correlograms for tree species 
cover values (%), which were derived from the masks available for each 
image tile (cf. section 2.1). For visual comparability of the predictor and 
response spatial autocorrelation, both correlograms were scaled be-
tween the maximum and the arithmetic mean. 

3. Results 

Model performance (F1-score) estimated from non-independent test 
data, i.e. tiles sampled with a random cross-validation, significantly 
exceeded the model performance derived from independent test data 
based on the block cross-validation (t = 22.734, P < 0.01, Fig. 3). This 
optimism, i.e. the difference between the independent and the non- 
independent validation, increased when using fewer training data. It 
amounted to 14.6%, 17.7% and 27.9% when using 40, 25, and 10 UAV- 
orthoimages for model training, respectively. 

The site-specific F1-scores obtained from both the random and block 
cross-validation did not show notable correlations with site-specific 
metadata (acquisition date or time, stand density or tree species 
cover), indicating that the models generalized over these properties. The 
repeated cross-validation scheme also enabled the quantification of the 
site-specific optimism and its comparison with the corresponding met-
adata. This revealed that the optimism is largely independent of sam-
pling effects emerging from the cross-validation scheme. The R2 

between optimism and site-specific metadata across the different model 
setups amounted to 0.0 for acquisition date, 0.0 for the acquisition time, 
0.09 for the stand density, and 0.13, 0.04, and 0.0 for the three PCA axis 
synthesizing the tree species composition. 

Augmenting the training data, i.e., radiometrically and geometri-
cally modifying the input tiles, did not significantly reduce optimism for 
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any number of sites used during training, i.e. 10 (t = − 0.301, P = 0.764), 
25 (t = − 0.232, P = 0.818) or 40 (t = 0.573, P = 0.572). For both in-
dependent and non-independent validation, model performance was 
even significantly lower when incorporating a data augmentation by 
means of geometric modifications (t = − 2.37, P = 0.014), radiometric 
modifications (t = − 2.60, P = 0.009) or both (t = − 5.34, P < 0.001). 

The spatial autocorrelation of the predictors, i.e. the similarity of 
tiles of the orthoimages as a function of distance, steeply increased with 
distances below < 20 m and flattened for distances > 20 m (Fig. 4). Still, 
the overall autocorrelation within sites was still larger than between 
sites: The Mantel statistic for observations within sites (Fig. 4a) was 
significantly higher than for the Mantel statistic calculated from obser-
vations of different orthoimages (Fig. 4b; t = 40.036, P < 0.001). 
Moreover, the correlogram revealed that spatial autocorrelation of tiles 
was more heterogeneous across sites (Fig. 4b) than within sites (Fig. 4a). 
The spatial autocorrelation of the response, i.e. the tree species cover in 
each tile, showed overall a very similar pattern. Yet, we found a lower 

variation of the species cover per distance bin than for the image tiles. 

4. Discussion 

Our results are in line with previous studies that have shown with 
other machine learning methods that predictive performance estimates 
can be severely inflated if training and validation are spatially auto-
correlated (Meyer et al., 2018; Rocha et al., 2018; Schratz et al., 2019; 
Meyer and Pebesma, 2021). For instance, Ploton et al. (2020) exempli-
fied with random forest models overly optimistic model evaluation at 
the example of predicting above ground biomass from multispectral 
satellite imagery (MODIS). They interpret their findings that due to the 
fact that reflectance data is not strongly related to biomass, models are, 
thus, likely to learn non-invariant relations between the response 
(biomass) and predictor variables (reflectance), which do not hold 
across new, unseen domains. For the present case study on tree species 
segmentation with CNN-based pattern recognition in centimetre-scale 

Fig. 3. Predictive performance (F1-score) per site evaluated with potentially non-independent, spatially auto-correlated observations derived with a random cross- 
validation (left) and independent validation samples derived from a block cross-validation (right). Results are shown for models trained with different numbers of 
orthoimages (n = 10, 25, 40). The colours of the boxes indicate whether training data were augmented with radiometric, geometric or both modifications. Grey dots 
show F1scores for individual sites sampled during the five repetitions of the cross-validation procedures. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 4. Multivariate correlograms quantifying the 
spatial autocorrelation (SAC) in terms of the Mantel 
statistic within (a) and between (b) sites. Items in blue 
corresponds to the predictors (tiles extracted from the 
orthoimagery) and grey to the response (species 
cover). The correlogram for the predictors was 
calculated from 200 latent variables derived from tiles 
of the RGB orthoimages using a CNN-based varia-
tional autoencoder (MMD-VAE). In contrast to a), the 
correlations between sites (b), was highly variable (cf. 
discussion) and were, hence, visualized by a rolling 
mean (width = 10 km) and polygons depicting the 
area within the rolling standard deviation (width = 1 
km). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web 
version of this article.)   

T. Kattenborn et al.                                                                                                                                                                                                                             



ISPRS Open Journal of Photogrammetry and Remote Sensing 5 (2022) 100018

6

orthoimagery, however, one may expect that models are predominantly 
learning mechanistic and, hence, readily transferable relationships: 
Canopy and branching patterns as relatively unique indicators for 
certain species. Yet, our experiment demonstrated that even in such 
case, violating the independence among training and validation data 
severely inflates model accuracy. 

To be clear, fitting a CNN to spatially autocorrelated data does not 
necessarily invalidate its prediction. Unless the input data themselves 
are unbalanced, the mean prediction of the CNN may be unbiased. 
However, the comparison between prediction and validation data is 
compromised, so that the quality of prediction is overestimated by the 
non-independence. Why is this critical? Firstly, optimistic estimates of 
model performance can lead to false impressions about the value of a 
method or predictors. For instance, in the above-mentioned example on 
satellite-based biomass mapping (Ploton et al., 2020), a high accuracy 
was found with a random cross-validation, while a spatial 
cross-validation resulted in no predictive power (R2 of virtually 0). 
Using null-models, the authors showed that the models indeed did not 
learn satellite-signal-biomass relations, but indirectly learned the 
geographic space from the satellite data and how biomass values are 
distributed therein. Secondly, optimistic model performance may inflate 
the reliability of prediction maps for regions where predictor relation-
ships depart from the relationships learned during training (further 
discussed below and in Rocha et al., 2018; Meyer and Pebesma, 2021). 

The present study exemplified that spatial autocorrelation can 
induce optimistic model evaluations at the example of segmenting tree 
species in UAV imagery. However, this fundamental problem obviously 
exists equally for other application domains (e.g, precision agriculture 
or land cover classification), remote sensing data of any type, scale and 
quality (Dormann, 2007; Rocha et al., 2018), and modelling task, such 
as image classification and regression, object detection, or instance 
segmentation. Also, the modelling method is incidental with respect to 
an optimistic model evaluation (dependent data remain dependent data) 
and the problem also persists regardless of the model complexity and 
depth (cf. Meyer et al., 2018; Rocha et al., 2018; Ploton et al., 2020; 
Meyer and Pebesma, 2021; Schratz et al., 2019). 

Additionally, our results show that a spatial dependence of training 
and validation data cannot be circumvented by increasing the sample 
size or applying model regularization techniques, as the fundamental 
issue is manifested in the raw data. Our results suggest a higher inflation 
of model performance with decreasing sample size. However, this does 
not necessarily imply that increasing the sample size can compensate 
effects induced by spatial autocorrelation. Rather, this means that model 
evaluations based on small sample sizes are even more likely to report 
optimistic performance, if spatial independence is violated (cf. Rocha 
et al., 2018). Regularizing models with different data augmentation 
techniques did not have an ameliorating effect on the observed perfor-
mance inflation (Fig. 3). The different data augmentation schemes even 
decreased the overall model performance in the random and block 
cross-validation, although similar approaches are used in a wide range 
of studies (Kattenborn et al., 2021). We assume that the heterogeneity of 
the dataset already leads to a high model bias, while a synthetic inflation 
of the latter using a data augmentation resulted in a relative model 
underfitting (contrary to the common rationale of reducing overfitting 
via data augmentation strategies, cf. Wong et al., 2016; Shorten and 
Khoshgoftaar, 2019). The geometric augmentation may have even 
introduced unrealistic images. For instance, directions of cast shadows 
are naturally constrained by sun azimuth angles. 

Quantifying the spatial autocorrelation of the predictors using cor-
relograms elucidated the cause of optimistic model evaluation (Fig. 4): 
Highest spatial autocorrelation among tiles was found for distances <

20 m. In such close proximity, tiles may even correspond to the same 
tree crown and, thus, merely represent pseudo-replicates that hence are 
not at all suitable for model evaluation. Although the spatial autocor-
relation decreases steeply after a few meters distance and appears to 
flatten, it should be noted that spatial autocorrelation within sites 
(Fig. 4a) is still significantly higher than between sites (Fig. 4a). Overall, 
we found very comparable patterns in spatial autocorrelation between 
tree species cover and the image tiles. Yet, the variation per distance was 
considerably higher for image tiles (predictors). This may be explained 
by the varying appearance of trees within a species due to varying 
phenological states or environmental conditions at the time of the image 
acquisition. For instance, the appearance of plant canopies might vary 
considerably due to seasonal leaf development, inflorescence and the 
branching structure may even show diurnal changes induced by acute 
water availability (Junttila et al., 2021; Schiefer et al., 2021). Moreover, 
higher variation of the spatial autocorrelation of the image tiles may be a 
result of image acquisition settings. For instance, the texture of tree 
canopies may largely depend on the ratio of diffuse and direct radiance, 
the sun zenith angle and topography (Lopatin et al., 2019). In the pre-
sented experiment the models appeared to generalize well over the 
tested image acquisition settings (time and date). However, it is likely 
that spatial autocorrelation in predictors may not only result from 
continuous gradients of environmental variables per se, but also of 
(spatially varying) data acquisition properties. Thus, for testing the 
generalization of predictive methods with remote sensing data, multiple 
acquisitions appear to be a compelling necessity. 

The spatial autocorrelation derived of the predictors showed a 
stronger variability between orthoimages than within orthoimages 
(Fig. 4b). This can firstly be explained by the many times lower number 
of observation pairs (tiles) at a given distance between orthoimages than 
within orthoimages (mean of 2713 pairs for distance intervals > 100 m; 
42,062 pairs for distance intervals < 100 m). Secondly, the increased 
heterogeneity in spatial autocorrelation between sites can also be 
attributed to distinct scene-specific characteristics (cf. previous para-
graph). This in turn highlights that models should not only be evaluated 
using independent remote sensing data acquisitions, but several inde-
pendent acquisitions covering the expected variation in site and acqui-
sition conditions within the application domain. As demonstrated here, 
multiple acquisitions can be iteratively and alternately used for training 
and validation, e.g. using a block cross-validation (Roberts et al., 2017; 
Ploton et al., 2020), where, for example, each block corresponds to a 
single acquisition. Considering the computational load of most 
deep-learning applications, such a spatial cross-validation can be 
certainly challenging, but in our opinion, it is the only way to reliably 
assess the performance and transferability of such models. 

We want to strongly emphasize that the experiments conducted here 
aim to evaluate model extrapolations, specifically how dependence be-
tween training and validation samples results in an overestimation of a 
model’s ability to predict to new, unseen observations. This should not 
be confused with assessing the accuracy of prediction maps derived from 
model interpolations within the parameter and spatial range of the 
training data (Wadoux et al., 2021; Brus, 2021; Stehman et al., 2021). 
Evaluating the generalization of a model during extrapolation and 
evaluating a map product are two different questions: A map product 
may be evaluated with a probability sample drawn from the respective 
population, for instance with simple random cross-validation scheme 
using randomly distributed samples or more sophisticated stratified or 
balanced sampling approaches (Wadoux et al., 2021; De Gruijter et al., 
2015; Mila et al., 2022). In contrast, if a method is to be evaluated in 
terms of its predictive performance and generalization to new, unseen 
observations - and this is the scope of most remote sensing applications - 
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a sampling scheme must maximize the independence of training and 
validation samples to realistically approximate the predictive perfor-
mance of such an extrapolation (Ploton et al., 2020). 

A considerable part of the studies in the geosciences and machine 
learning context, especially recent ones based on deep learning methods, 
intended and concluded that their methods have large predictive per-
formance (Kattenborn et al., 2021), while extrapolations to truly inde-
pendent data have in fact rarely been tested. Thus, there is often a 
discrepancy between the intention of such a study (commonly to eval-
uate a method to predict something from remote sensing data), the 
corresponding suitability of the conducted experiments and the con-
clusions drawn from them. In other words, one cannot conclude that a 
method has an expected accuracy of 80% for a domain if this has not 
been explicitly tested. Therefore, an appropriate assessment of the 
generalization of methods should be conducted to communicate reliable 
uncertainties of spatial predictions and thereby anticipate mistrust 
emerging from (unintended) exaggerations of model performances. 

When can spatial autocorrelation lead to optimistic model evaluation 
and how can we approximate reliable predictive performance instead? 
As demonstrated by our results, optimism occurs when training and 
validation samples are dependent (very similar). In such case, the 
approximated predictive performance does not represent a model’s 
generalization to unseen observations, for instance a remote sensing 
acquisition with different illumination conditions or a forest with a 
different stand structure. There is not a standard approach to approxi-
mate the generalization of a model as this very much depends on the 
purpose of the application, the structure of the data and requirements of 
the user (e.g., a desired performance, targeted locations; cf. Meyer and 
Pebesma, 2021). Commonly, variants of spatial cross-validation strate-
gies are used to constrain the geographical proximity of training and 
validation samples, including block cross-validation, which clusters 
observations into spatially disjoint training and validation subsets, or 
spatial leave-one-out cross-validation, where observations within the 
geographic vicinity of a validation sample are excluding during training 
(Brenning, 2012; Wenger and Olden, 2012; Roberts et al., 2017; Ploton 
et al., 2020; Mila et al., 2022). It has also been suggested to consider, in 
addition to the spatial distance, distances in environmental space 
(Valavi et al., 2018; Mahecha et al., 2021). Here, we spatially 
cross-validated our models using a block cross-validation strategy, 
where each individual site represents a block, as we did not find a strong 
dependence of observations (tiles) between different orthoimage (cf. 
Fig. 4). Note, however, that dependencies between holdouts of a data set 
can only be minimized and never completely avoided. 

Also note that the approximated model performance can only be 
assumed to hold within the predictor space (or domain) in which the 
model has been evaluated, aptly referred to as ‘area of applicability’ in 
Meyer and Pebesma, (2021). A promising option to approximate the 
uncertainty of predictions derived from new observations is to compare 
the similarity of the predictor space of these new observations with the 
predictor space of the observations that have been used for training the 
model. Meyer and Pebesma (2021) showed that a clear positive corre-
lation can be expected between the actual prediction errors and the 
dissimilarities in the predictor space between training and new obser-
vations. Based on this relationship, they demonstrated a transferable 
method for identifying the ‘area of applicability’ in which the uncer-
tainty approximated by spatial cross-validation can be expected to hold. 
However, applying such a method to data with high-dimensional 

predictor space is non-trivial. A variational autoencoder-based approach 
as used in this study, and the associated possibility of almost lossless 
transformation of high-dimensional information into a reduced latent 
space, could provide an efficient tool for comparing high dimensional 
predictor spaces between new observations and those used in training 
(cf. Janet et al., 2019). 

5. Conclusions 

Convolutional Neural Networks in concert with remote sensing ob-
servations are paving new avenues for predictive modelling in the 
geosciences. Although a series of studies has presented seemingly 
outstanding potentials, problems arising from spatial autocorrelation of 
input data are frequently ignored. Our results suggest that violating 
spatial independence between training and test data can severely inflate 
model apparent performance (up to almost 30%) and, hence, lead to an 
overly optimistic evaluation of the generalization of such models. While 
potential optimism induced by spatial dependence can generally not be 
prevented by larger sample sizes, model performance estimates from 
small sample sizes are more strongly inflated. 

CNN are typically applied to higher dimensional data, such as tiles 
from orthoimagery or point clouds, which are not directly compatible 
with typical methods for assessing spatial autocorrelation, as the latter 
commonly require tabular data. We presented an effective, unsuper-
vised, and transferable approach to quantify spatial autocorrelation 
between image tiles using a dimension reduction from higher ranked 
arrays to vector data using variational autoencoders. Such an approach 
may facilitate to reveal spatial autocorrelation in image data and may 
serve as an effective way to implement spatial cross-validation 
strategies. 

The spatial autocorrelation of the data set used in this study, 
composed of numerous UAV orthomosaics, highlighted that not only 
tiles in close proximity are spatially autocorrelated, but that also far- 
distant tiles within the same acquisition are generally higher auto-
correlated than tiles between different orthoimages. A robust model 
evaluation should therefore include multiple independent remote 
sensing acquisitions with a spatial cross-validation strategy. 
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Appendix

Fig. A1. Input tiles and the corresponding reconstruction (decodings) derived from the vector-based latent representation of length 200 (encodings). The average 
reconstruction error was 0.0046% (root mean squared difference between input image and decoded image).  

Table A1 
Overview on the species composition (n individuals, see Storch et al., 2020 for details) and the acquisition date and time (CEST) of the orthoimagery for each site.  

Site- 
ID 

P. 
abies 

A. 
alba 

F. 
sylvatica 

A. 
pseudoplatanus 

P. 
menziesii 

P. 
sylvestris 

L. 
decidua 

F. 
excelsior 

Q. 
spec 

B. 
pendula 

Other Sum 
trees 

Number of 
species 

Acquisition 
date 

Acquisition 
time 

008 420  43         463 2 05.10.2017 12:50 
014 36 47 83  90  19     275 5 11.07.2017 14:25 
019 26 105 213 7        351 4 14.06.2017 14:15 
030 17 60 116 1 171  56  8 35  464 8 14.06.2017 09:30 
031 95 6 125 1   1     228 5 14.06.2017 08:05 
035 38 17 141     1  1  198 5 03.07.2017 07:40 
037  33 298         331 2 09.07.2018 12:45 
044 347 31 22 1     1   402 5 11.07.2017 11:55 
045 171 12 91 4 1 75  1   6 361 7 04.07.2017 15:25 
050 222 287  54    4    567 4 04.07.2017 11:15 
053 377 98 3   16      494 4 28.09.2017 10:10 
056 134 308 129  3 7 3     584 6 11.07.2017 13:00 
057 181 179 82   65  1    508 5 13.07.2017 11:10 
061  22 142 10   24    11 209 4 10.07.2018 09:40 
071 232 3 15 2  149 1 1    403 7 24.10.2017 08:20 
084 666 90 17   15      788 4 24.10.2017 09:35 
085 490 60 3   86 5     644 5 13.07.2017 14:40 

(continued on next page) 
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Table A1 (continued ) 

Site- 
ID 

P. 
abies 

A. 
alba 

F. 
sylvatica 

A. 
pseudoplatanus 

P. 
menziesii 

P. 
sylvestris 

L. 
decidua 

F. 
excelsior 

Q. 
spec 

B. 
pendula 

Other Sum 
trees 

Number of 
species 

Acquisition 
date 

Acquisition 
time 

089 103 85 40 5   1     234 5 13.07.2017 12:20 
091 64 26 316 27        433 4 03.07.2017 09:35 
096 36 231 399   11   28   705 5 04.07.2017 13:05 
106 28 1 265 4 2  1  1   302 7 03.07.2017 14:50 
110 242 1 9 27   4     283 5 10.07.2018 11:00 
111 79 8 44 79     2 9  221 6 14.06.2017 12:00 
117 543 22 18 1  14      598 5 28.09.2017 13:50 
121 7  148  84 2   49   290 5 03.07.2017 13:45 
122 285 5 185  13 9 33     530 6 14.06.2017 10:40 
124 345 13 9  13 9 33   2  369 4 03.11.2017 10:00 
125 68 4 48 32   3 10 1   166 7 14.06.2017 07:05 
129 5 157 125 2 2   5 12   308 7 11.06.2017 09:15 
133 47 95 121      1   264 4 06.07.2017 08:55 
134 339 52 2 1  105    3  502 6 03.11.2017 12:50 
140 313 27 28  20 29 18     435 6 13.07.2017 15:00 
151 170 91 11  37 2 2     313 6 20.04.2018 15:41 
156 216 5 61 2  1      285 5 06.07.2017 10:35 
162 653     180      833 2 04.10.2017 13:55 
163 182 114 14 1  1 1 2    315 7 04.10.2017 12:00 
167 469 3 73         545 3 05.07.2017 13:20 
171 197 43 444         684 3 04.07.2017 11:25 
173 274 2 52         328 3 04.07.2017 10:05 
184 172 152 10         334 3 11.07.2017 09:40 
003 78 11 30 6        125 4 10.09.2019 14:25 
021 249 8 25 2      3  287 5 02.09.2019 14:50 
073 141 89 281         511 3 28.09.2019 14:35 
114 51 36 7 11 53  3 1    162 7 28.08.2019 11:00 
128 270  109 21 1       401 4 10.09.2019 15:30 
130 133 81 131 2 16     1  364 6 02.09.2019 12:20 
153 237 2 28         267 3 29.08.2019 15:25  
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