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Density is a key trait of populations and an essential parameter in ecological research,
wildlife conservation and management. Several models have been developed to
estimate population density based on camera trapping data, including the random
encounter model (REM) and camera trap distance sampling (CTDS). Both models need
to account for variation in animal behavior that depends, for example, on the species and
sex of the animals along with temporally varying environmental factors. We examined
whether the density estimates of REM and CTDS can be improved for Europe’s most
numerous deer species, by adjusting the behavior-related model parameters per species
and accounting for differences in movement speeds between sexes, seasons, and
years. Our results showed that bias through inadequate consideration of animal behavior
was exceeded by the uncertainty of the density estimates, which was mainly influenced
by variation in the number of independent observations between camera trap locations.
The neglection of seasonal and annual differences in movement speed estimates for
REM overestimated densities of red deer in autumn and spring by ca. 14%. This GPS
telemetry-derived parameter was found to be most problematic for roe deer females
in summer and spring when movement behavior was characterized by small-scale
displacements relative to the intervals of the GPS fixes. In CTDS, density estimates
of red deer improved foremost through the consideration of behavioral reactions to the
camera traps (avoiding bias of max. 19%), while species-specific delays between photos
had a larger effect for roe deer. In general, the applicability of both REM and CTDS
would profit profoundly from improvements in their precision along with the reduction in
bias achieved by exploiting the available information on animal behavior in the camera
trap data.

Keywords: population density estimation, camera traps, animal movement, behavioral responses, sensitivity
analysis
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INTRODUCTION

Population densities and their trends provide essential
information in ecological research, wildlife management
and biodiversity conservation (Gibbs et al., 1998; Barnes et al.,
2016). For example, they are crucial for evaluating the success
of conservation measures aimed at threatened species (Serrouya
et al., 2019), for setting sustainable harvesting quotas (Clausen
et al., 2017), for determining the influence of keystone species on
the ecosystem (Siddig et al., 2016) and for tracking the spread
of invasive species (Bogich et al., 2008). Additionally, they serve
as key parameters for fundamental research on habitat use and
trophic cascades (Berger et al., 2008; Filla et al., 2017).

Since complete animal counts are rarely feasible in practice,
population densities are usually estimated based on indirect
observations, such as tracks, feces or hair samples (Silveira et al.,
2003; Campbell et al., 2004), or from a limited number of
direct local observations. In the latter case, a proven method
relies on live-trapping animals, marking them and quantifying
the proportion of marked individuals in recaptures (Otis et al.,
1978; Efford, 2004). Alternative minimally invasive forms of data
collection have been facilitated by the increased availability of
remote sensors, such as camera traps (Delisle et al., 2021), which
can operate at multiple locations over long periods. Additional
advantages include their relatively low long-term cost, low levels
of expertise required for fieldwork and diverse analysis options
(Silveira et al., 2003; Rovero et al., 2013; Burton et al., 2015).

Estimates of population size or density can be derived
from camera trapping data based on a known number of
animals, whenever at least a proportion of the individuals in
a population can be identified visually (Chandler and Royle,
2013; Gilbert et al., 2021). While techniques such as spatially
explicit capture-recapture (Efford, 2004; Efford and Fewster,
2013) are widely used for naturally marked felids (Karanth,
1995; Palmero et al., 2021), the identification of individuals
is not possible for the majority of wildlife species (Rowcliffe
et al., 2008). In these cases, researchers have often used trapping
rates (observations per unit time) as an index of abundance
(Gilbert et al., 2021). Trapping rates are, however, influenced
by many factors other than animal density (Burton et al., 2015;
Hofmeester et al., 2019). Animal behavior is a particularly
important aspect governing the probability that an individual will
encounter a camera trap (Hofmeester et al., 2019). It includes
the selection for and avoidance of habitat features, leading to a
heterogeneous distribution of individuals across the landscape
and potentially large differences in encounter probabilities.
Furthermore, animal movement speed has a strong impact on
trapping rates: Populations of animals that move on average faster
through the landscape, are more likely to encounter one of the
cameras in a given camera trap cluster (Gurarie and Ovaskainen,
2013; Broadley et al., 2019).

Obtaining estimates of absolute population densities of
unmarked species thus requires models that incorporate these
factors, either inherently by design or explicitly as additional
parameters. In order to generate density estimates that are
representative of an entire area, camera trap placement needs to
be random with respect to habitat features (Rowcliffe et al., 2013;

Cusack et al., 2015). While this is a prerequisite for all methods
developed to date, there are multiple approaches to account
for animal movement speed. The first of these approaches was
introduced by the random encounter model (REM), which
directly incorporates a movement speed parameter (Rowcliffe
et al., 2008) that is often derived from telemetry data (Rovero
and Marshall, 2009; Zero et al., 2013; Anile et al., 2014; Balestrieri
et al., 2016; Caravaggi et al., 2016; Marcon et al., 2020). To avoid
the substantial underestimation of travel distances resulting from
the summation of straight-line displacements between GPS fixes
(Rowcliffe et al., 2012), recent techniques, such as continuous-
time movement modeling, can use the autocorrelation in the data
to simulate more realistic, tortuous movement paths (Noonan
et al., 2019) (Supplementary Figure 7). However, since animal
movement is motivated by complex interactions of internal and
external factors, including food availability, reproduction and risk
avoidance (Nathan et al., 2008), variation in the sex ratio of the
population as well as seasonal or annual changes in biotic and
climatic features might influence average movement speeds. If
GPS telemetry and camera trapping are not conducted exactly in
the same period and area, there might be a mismatch between
the estimated movement speed and the movement speed shaping
trapping rates, causing bias in REM estimates. Another potential
source of bias in the REM is the correct estimation of group sizes,
whenever independent encounters between animals and camera
traps involve cohesive groups instead of individuals. A group
size parameter is added to the REM in this case (Rowcliffe et al.,
2008; Zero et al., 2013). The greater the spatial dispersal of groups
of unmarked animals, the more easily this parameter may be
underestimated based on camera trap observations.

In contrast to the REM, camera trap distance sampling
(CTDS) (Howe et al., 2017) does not require a movement
parameter. Instead, it derives information on animal movement
from the camera trap observations themselves. Animals are
counted during so-called snapshot moments, i.e., at known
intervals at which they can be potentially photographed. Each
snapshot moment may coincide with an observation of one
or more animals. The number of snapshot moments with
observations of the same animal crossing the field of view can
thus be regarded as an indicator of that animal’s movement
speed. Since resting animals are rarely observed by camera traps,
an estimate of the daily proportion of time spent active is also
needed. It can be obtained from a circular probability density
function fitted to the daily distributions of the camera trap
observations (Rowcliffe et al., 2014). Variable staying times of
animals in the field of view contribute to the importance of
random camera trap placement for this method, since resting,
foraging or locomotion may have a strong connection to certain
habitats (Mysterud and Ims, 1998) and the proportions of
these behaviors in the camera trap observations should be
representative of the whole study area. Behavioral responses of
animals to the presence of a camera trap may also affect their
staying times in the field of view, thereby creating a systematic
bias in CTDS estimates. For example, based on observations
of 14 species in the African rainforest, Bessone et al. (2020)
found varying degrees of behavioral reactions to camera traps,
leading to increased staying times for seven of those species.
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In the most extreme case, population density estimates of
forest elephants (Loxodonta cyclotis) were inflated by >100-fold.
Animal behavior may also influence the choice of an appropriate
snapshot interval: When motion-triggered photos are used for
CTDS, the movement of an animal within the field of view needs
to be sufficient to trigger the camera trap repeatedly. If there are
differences in the frequency of such movements between species,
snapshot intervals will need to be adjusted accordingly.

As the previous examples show, animal behavior affects
population density estimation, both by REM and CTDS, although
for different reasons. While some of these factors have been
discussed in previous studies (e.g., Manzo et al., 2012; Bessone
et al., 2020), a systematic analysis of the biases arising from
their improper consideration in density estimation is lacking. In
addition, the influence of the uncertainties in the estimation of
model parameters on the precision of the density estimates is
largely unknown.

These issues are addressed in the present study, which is
based on a year-round camera trapping dataset of two deer
species widely distributed in Europe: red deer (Cervus elaphus)
and roe deer (Capreolus capreolus). The body mass of red deer
is on average four to seven times larger than that of roe deer,
for females and males, respectively (Geist and Bayer, 1988). In
addition, red deer are more gregarious than roe deer and their
home ranges in the same area are often at least four times
larger (Barja and Rosellini, 2008; Richard et al., 2011). The
populations of both species are currently increasing throughout
most of their respective ranges (Linnell et al., 2020), providing
increased opportunities for hunting and ecotourism but also

causing extensive damage to forests and agricultural lands,
increasing the number of collisions with vehicles and facilitating
infectious disease transmission (MacMillan and Phillip, 2008;
Valente et al., 2020). Reliable population density estimates
are therefore essential to allow evidence-based management
decisions (Apollonio et al., 2017).

We hypothesized that movement speed and activity estimates
do not only differ between species, sexes and seasons, but
also in their relationship with the observed trapping rates. In
addition, we tested for species-specific differences in group
cohesion, behavioral reactions to camera traps and delays
between subsequent photos (Figure 1). In the next step, we
explored the biases in REM and CTDS estimates that occur when
these differences are not fully taken into account, as well as their
magnitude relative to the overall precision. Finally, we assessed
which model parameters have the largest impact on the precision
of the density estimates.

MATERIALS AND METHODS

Study Site
The 230-km2 site of our camera trap study was located within
the Bavarian Forest National Park in south-eastern Germany
and also covered parts of the neighboring Šumava National Park
in the Czech Republic (Figure 2). The mountain range within
the area encompasses an altitude between 570 and 1,453 m
above sea level and is oriented from northwest to southeast.
Annual mean temperatures decrease with elevation, from 7 to

FIGURE 1 | Potential problems caused by animal behavior in the estimation of population densities of unmarked animal species using camera traps and our
proposed solutions.
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FIGURE 2 | Locations of the camera trap positions within the study area grid, located at the border of Germany (DE) and Czechia (CZ).

3◦C, and precipitation increases, from 1200 to 1850 mm (Ewald
et al., 2011). The dominant habitat types are coniferous forest
(43%) and mixed forest (31%) with Norway spruce (Picea abies),
European beech (Fagus sylvatica) and white fir (Abies alba)
(Cailleret et al., 2014; Pflugmacher et al., 2019). The study site
within the national parks includes nature zones without forestry
intervention (85% of the area), non-hunting zones (84%) and
core zones within which human visitors are not allowed to leave
the trails (49%). The red deer population is controlled by hunting
between June and January, while roe deer have not been hunted
since 2012. Natural predators of deer in the area are Eurasian lynx
(Lynx lynx) and wolf (Canis lupus).

Four winter enclosures within the study site allow the
overwintering of red deer in an area outside their natural winter
range, from which they are excluded by state law to minimize
damage to agricultural fields and forests. Depending on the
vegetation season and snow cover, the enclosures are maintained
between October and January and opened between late March
and mid-May (Möst et al., 2015).

Camera Trapping Design
Using a systematic-random design, we deployed 108 camera
traps with infrared flash (C2, Cuddeback, Green Bay, WI,
United States) for a period of one year (June 2018–May 2019).
The delay between triggers was set to the minimum (“FAP”: fast
as possible) and a series of five photos with the same timestamp
was recorded each time the camera trap was triggered. The range

of the flash was set to “far” and the field of the pyroelectric
infrared sensor to “wide.” A daily time-lapse photo was taken
from November 2018 onward to keep track of the time periods
when the camera traps were covered by snow.

The study design was based on a grid of 1-km2 cells, which
excluded settlements (three cells) and was subsampled to retain
a subset of grid cells covering 80% of the site (Henrich et al.,
2021). The camera traps were placed at the center coordinates of
108 cells randomly selected from the subsampled grid (Figure 2).
In five cells, camera traps could not be installed within a 15-m
radius around the selected locations, e.g., due to steep slopes or
very dense vegetation, and had to be moved to randomly chosen
replacement grid cells. The camera traps were mounted on tree
trunks 60–70 cm above the ground, facing northeast to northwest
to avoid backlighting. The vertical angle of the camera traps was
adjusted to match the slope of the terrain.

The photo series were tagged in digiKam 5.7.0 with
information on the number of adult animals per species and
sex. If individuals could not be tracked throughout a series,
the maximum number of animals in one photo of the series
was used. Adult animals were also counted in the first photo
of each series. Behavioral reactions of animals that moved their
heads to face the camera trap or looked directly at the camera
trap for several photos were categorized as neutral, attracted,
or alarmed. The reactions were defined based on subsequent
changes in the direction of movement of the animal, which
might either not happen at all or be directed either towards or
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away from the camera trap. A record table was compiled using
"camtrapR" (Niedballa et al., 2016). Independent observations
were objectively defined based on a minimum time interval
of 5 min between consecutive photos, following the same
principle as Rovero and Marshall (2009) and Gray (2018) (see
Supplementary Figure 1 for the effect of different time intervals
on event numbers and Supplementary Table 1 for monthly
sample sizes). Animals that were observed together were ascribed
to the same group.

Camera traps that malfunctioned during the deployment
period were assumed to have stopped working the day after
recording the last photo. Days when the camera trap lenses
were partially covered by snow were not included in trapping
rate computations.

Model Parameters
Estimation of the Effective Detection Zone (Random
Encounter Model)/Detection Probability (Camera Trap
Distance Sampling)
The effective detection radius of REM can be easily transformed
into the detection probability parameter of CTDS and vice versa
(Table 1). Ten events per species were randomly sampled for each
camera trap position and month to estimate these parameters
(see Supplementary Figure 3 for the sensitivity analysis). As
a reference, the camera traps were triggered to photograph
a ranging pole at distances of 1–15 m in 1-m steps along
their visual axis. These reference photos were taken during
camera trap controls in summer and autumn (July 21, 2018–
September 21, 2018). Transparent photos of the ranging poles
were superimposed on the first photo of each event containing a
visible animal to estimate the animal’s distance to the camera trap
along the visual axis. The observation distance to the deer that

moved the furthest into the field of view upon first detection was
determined trigonometrically, by taking the horizontal distance
to the visual axis into account (Pfeffer et al., 2018).

“Distance” 1.02 (Miller et al., 2019) was used to calculate
the detection probability P̂ and effective detection radius
r̂d for each species and season (summer = June–August,
autumn = September–November, winter = December–February,
spring = March–May) (see Supplementary Figure 4 for the fitted
detection functions). The range of observation distances was
truncated at 14.5 m, because all distances >15 m were out of
range of the reference photographs depicting the ranging pole.
Observation distances were sorted in 1-m bins. The exception
was the first bin, which comprised all values up to 2.5 m,
because distances were difficult to estimate when only parts of
an animal were visible. Selection between half-normal detection
functions with and without a cosine expansion term was based
on Akaike’s information criterion. We restricted the set of models
to choose from in order to avoid overfitting spikes in the data
[see Supplementary Figures 10, 11 and Table 7 for the results
of model selection with the nine candidate models of Howe et al.
(2017)].

The effective detection angle of the REM θd was assumed
to be the same as the optical angle of the camera trap (55◦)
since there was no indication that the distribution of observation
angles deviated from uniformity (Supplementary Figure 5). It
was therefore equivalent to the horizontal angle of view θv, which
was used in CTDS.

Random Encounter Model
Movement speed estimates were based on GPS telemetry data
of 159 red deer and 174 roe deer, which was collected in
the Bavarian Forest National Park (89% forest cover), Šumava
National Park (84% forest cover) and the neighboring state

TABLE 1 | Overview of the parameters of the random encounter model (REM) and camera trap distance sampling (CTDS) as adapted for use in this camera trap (CT)
study. Parameters accounting for similar influences are shown side by side in the two columns.

REM CTDS

D̂ =
∑K

k=1 yk∑K
k=1 tk

π
v̂ r̂d (2+ θd)

ĝe D̂ = 2d̂
∑K

k=1 nk p

θv ω2 ∑K
k=1 Tk P̂

1
Â

k = CT location
K = number of CT locations
yk = number of events at location k
tk = CT deployment time at location k (days)
v̂ = average movement speed (km/day)
r̂d = effective detection radius (km)
θd = effective detection angle (radians)
ĝe = mean group size per event

k = CT location
K = number of CT locations
nk = number of individuals on the first photo of the photo series at location k
Tk = CT deployment time at location k (seconds)
Â = activity level (proportion of time)
P̂ = detection probability ( = r̂d

2/ ω2)
θv = horizontal angle of view (radians)
d̂ = interval between CT photo series (seconds)
ω = max. measured distance used for the computation of the detection probability (km)
p = proportion of all estimated distances that are within the truncation distance ω

Bootstrapping steps:
1) Resampling of CT locations with their respective number of events yk and
deployment days tk
2) Resampling of distance measurements to compute the effective
detection radius r̂d

3) Resampling of camera trap events to compute the mean group size ĝe

4) Drawing the speed value v̂ randomly from a normal distribution with the
mean and standard deviation corresponding to the logarithmized speed
model prediction and its standard error multiplied by 1.96, respectively.

Bootstrapping steps:
1) Resampling of camera-trap locations with their respective number of counted
individuals nk and deployment times Tk

2) Resampling of distance measurements to compute the detection probability P̂
3) Resampling of photo series to compute the delay d̂ and activity estimate Â
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forest of Neureichenau (85% forest cover) between 2002 and
2019 (see Supplementary Figure 6 for sampling intervals).
Outliers were identified based on the criteria of the EURODEER
database (fulfillment of all of the following conditions: turning
angle: 170–190◦, step length: >5,000 m, speed: >15,000 m/s)
and subsequently removed (Bjørneraas et al., 2010; Urbano
and Cagnacci, 2014). The first week of collaring was excluded,
to avoid possible behavioral anomalies resulting from capture
(Morellet et al., 2009), as was the last day of available data
for each individual. Data from the months during which a red
deer individual was confined to a winter enclosure between
October and May were filtered out based on a threshold of
>10% of days per month featuring ≥90% of the hourly GPS
fixes within the fenced area. Initial parameters were obtained
for each individual and subsequently used to fit continuous-time
movement models for each individual and month with at most
two missing days (Calabrese et al., 2016; Noonan et al., 2019).
A median GPS telemetry error of 10 m (Stache et al., 2012)
was assumed for this step. Movement speed estimates and their
confidence intervals were derived from simulated trajectories
using the “speed” function, with the “fast” option enabled.
Estimates across individuals were summarized in a meta-
regression (“metafor”: Viechtbauer, 2010) of the logarithmic
estimates and standard errors per species and sex, using month
or season as a moderator. Year and individual were included as
random effects. In accordance with recommendations to avoid
bias, movement models with <10 degrees of freedom were not
considered (Fleming, personal communication).

Average movement speed estimates were computed for
all combinations of species, sex, and month to assess their
relationship with the corresponding camera trapping rates using
Spearman’s rank correlation test. Seasonal speed estimates per
species v̂ for population density estimation were obtained by
multiplying the sex-specific estimates by the proportion of that
sex in the population, as determined for the periods described by
Heurich et al. (2016) using the maximum number of females and
males per event. Additionally, seasonal speed estimates v̂ were
calculated for red deer females using GPS telemetry data obtained
during the camera trapping period only. For roe deer and red deer
males, no GPS data was available for that period.

A paired Wilcoxon signed rank test was employed to evaluate
group cohesion, by comparing the group size per event based on
either complete photo series or only the first photo of each series.
Mean group sizes per event (ĝe) were calculated for each species
and season based on the maximum number of adults recorded in
the photo series of the events. They were also computed for adult
red deer females only.

Reference population densities estimates were generated for
each species and season based on the number of events yk for
adult red deer and roe deer and the deployment time tk (in days)
at each camera trap location. Model parameters were generated
under consideration of season (all of them), sex ratio (movement
speed), and group size information from the whole photo series.
Reference density estimates of red deer females enabled the use
of year-specific movement speed estimates. Bias-corrected 95%
confidence intervals (95% CIs) were obtained by non-parametric
bootstrapping with 10,000 iterations (Table 1). The magnitude

of potential biases in the density estimates was investigated by
repeating the calculation of species-and season-specific density
estimates (a) with males and females contributing equally to the
speed estimate or (b) with movement speed estimates derived
from year-round data or (c) with group size estimates based only
on the first photo of the photo series. The density of female red
deer was also computed using season- and sex-specific movement
speed estimates inferred from GPS data collected outside of the
camera trapping period. The 95% confidence intervals of the
differences to the reference estimates were calculated based on the
bootstrap results. Significant differences had confidence intervals
that did not contain zero.

Camera Trap Distance Sampling
The time spent active was estimated based on the daily
distribution of camera trapping events (“activity”: Rowcliffe,
2019). Activity estimates were calculated for all combinations of
species, sex and month with a minimum sample size of ten events
to analyze their relationship with the corresponding camera
trapping rates using Spearman’s rank correlation test. Activity
estimates Â were calculated per species and season to be used for
population density estimation.

The number of photo series per event was compared with
respect to species, season and behavioral reactions to the camera
trap using a Poisson GLMM with nested random intercepts
on the levels of the camera trap location and the observation
(“glmmTMB”: Brooks et al., 2017). The response variable was
transformed by subtracting 1 from all values to be able to
correct for overdispersion. Model fit was checked with DHARMa
(Hartig, 2020).

For each species, the mean delay d̂ between successive photos
of the same animals in the field of view was estimated based
on the time differences between photo series within events. The
values were truncated at the third quartile q3 to exclude cases in
which it was unclear whether an animal in the field of view could
re-trigger the camera trap, e.g., because it was partly concealed
by vegetation or the terrain. d̂ was defined as the mean for
each species and replaced the pre-defined interval t between
snapshot moments in the CTDS formula. The 95% confidence
interval of the difference in d̂ between species was derived from
bootstrapping with 10,000 iterations.

The sum nk of adult individuals of each species observed
in the first photo of a photo series (= snapshot moment
with animals) was computed for each season and camera trap
location along with the deployment time Tk (in seconds). nk
was corrected for the proportion of distance measurements p
beyond the truncation distance ω (Table 1). For the reference
density estimates, photo series directly following behavioral
reactions to the camera trap within q3 were excluded, except
in the case of alarmed responses, to account for prolonged
staying times in front of the camera trap (Bessone et al., 2020).
Furthermore, species-specific values were used for d̂. Density
estimation was repeated (d) with all photo series regardless of
the occurrence of behavioral reactions or (e) with the parameter
d̂ derived from observations of both red deer and roe deer. The
confidence intervals of the estimates and the comparison to the
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reference estimates were inferred from bootstrapping with 10,000
iterations, analogous to REM.

Precision of Population Density Estimates
The impacts of the uncertainties in REM and CTDS parameters
on the confidence intervals of the reference density estimates
were assessed by running a linear regression with the
bootstrapped density estimate as the dependent variable
(n = 10,000). Model parameters that were resampled for
each bootstrap iteration served as independent variables and
interactions between all of them were included. For CTDS, nk
was defined as the number of events multiplied by the average
number of photo series per event multiplied by the average
number of animals per photo series. The contributions of the
model parameters to the model sum of squares were calculated
by means of an ANOVA.

All analyses were conducted in R version 3.5.1 (R Core Team,
2019).

RESULTS

Behavioral Parameters and Potential
Sources of Bias in Density Estimates
Random Encounter Model
The estimated average movement speeds of red deer and roe deer
showed considerable seasonal variation, dependent on the sex
(Figure 3). There was a strong correlation between the number
of events per day and the movement speed estimates of males
of both species, but the relationship was not significant for
red deer females and was even negative for roe deer females
(Figure 4 and Supplementary Table 4). Neglecting seasonal
variation for movement speed estimation meant overestimating
red deer population densities by ∼14% in autumn and spring
(Figure 5 and Table 2). In contrast, this type of error caused
an underestimation (11%) of roe deer population densities in
autumn. When GPS telemetry data originated from the correct

season, but different years, population densities of red deer
females were overestimated by up to 14% in autumn (Figure 6
and Table 2).

The sex ratio was balanced in red deer but shifted towards
females in roe deer (red deer: 52% females, roe deer: 64%
females). The assumption of a balanced sex ratio for the
estimation of an average movement speed across a population
therefore resulted in a bias of <1% in REM estimates for red deer
but up to 15% for roe deer in summer relative to the reference
estimate (Figure 5 and Table 2).

The mean difference between the group sizes derived from the
whole photo series and their first photos only was 0.35 individuals
for red deer and 0.23 individuals for roe deer (red deer: p< 0.001,
roe deer: p = 0.03). The maximum bias in seasonal density
estimates due to an underestimation of the group size parameter
by only counting the individuals in the first photo of a series was
6% in spring for red deer and 5% in winter for roe deer (Figure 5
and Table 2).

Camera Trap Distance Sampling
Activity level estimates did not differ significantly between red
deer and roe deer (Supplementary Table 2), but a positive
correlation with camera trapping rates was only detected
in red deer females and males combined (Figure 4 and
Supplementary Table 4). The number of photos per event was
significantly larger if an animal reacted to the camera trap,
especially for an individual attracted to the device (Figure 7 and
Supplementary Table 3). Events with behavioral reactions to
camera traps were 15% more frequent for red deer than for roe
deer. Failure to remove snapshot moments influenced by animal
reactions to the camera traps led to a maximum positive bias in
CTDS estimates of 19% for red deer in winter and 12% for roe
deer in autumn (Figure 5 and Table 2).

The mean delay between successive photo series was
significantly larger for red deer than for roe deer (12.82 vs. 10.92 s,
95% CI of the difference: 1.49–2.31 s). If this was not accounted

FIGURE 3 | Seasonal trends in movement speed, as estimated by continuous time-movement modeling (ctmm), compared with the camera trapping (CT) rates.
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FIGURE 4 | Correlation of monthly activity and movement speed estimates with the trapping rates of red deer and roe deer of both sexes. Activity estimates were
computed for all months with at least ten events.

for in density estimation, roe deer densities were overestimated
by 14% (Figure 5 and Table 2).

None of the sources of bias related to animal behavior or
their combination had a significant impact on REM and CTDS
estimates, as evidenced by the confidence intervals (Table 2 and
Supplementary Table 5).

Precision of Density Estimates
The uncertainty in the movement speed estimates contributed
<20% to the overall uncertainty in the REM estimates, except
for red deer in autumn and roe deer in summer and spring
when its contribution reached at maximum 27%. By contrast,
the two variables describing movement behavior in CTDS, i.e.,
activity levels and average numbers of photo series per event,
had together a much larger impact, with the latter alone being
responsible for 38% of the uncertainty in red deer density
estimates in summer.

The largest part of the variance in the REM estimates was
explained by differences in the trapping rates between camera
trap locations. It was≥65% in all cases except for red deer and roe
deer in spring. In contrast, its importance for the CTDS estimates
was not only exceeded by that of the average number of photo
series per event for red deer in summer and roe deer in winter,
but also by that of the detection probability for red deer in spring
(Figure 8 and Supplementary Table 6).

DISCUSSION

Our study shows that the strategy to account for animal
movement behavior can be critical for obtaining unbiased
population density estimates of unmarked species from camera

trap data, evidenced by the mismatch between movement speed
estimates derived from GPS telemetry data and trapping rates
of roe deer females. The neglect of sex-specific differences in
movement speeds in REM and species-specific delays between
photo series in CTDS caused larger biases in the population
density estimates of roe deer than in red deer. In contrast,
seasonal variation of movement speeds and behavioral reactions
to camera traps were more problematic for red deer. However,
the impacts of all of these behavior-related potential sources of
bias (max. 19%) were masked by a lack of precision in the density
estimates. For most species and seasons, precision was mainly
determined by trapping rates independent of the model used
for density estimation, although other parameters were more
influential for CTDS than for REM.

Random Encounter Model Parameters
The lack of unbiased movement speed estimates has long
been recognized as a major problem of REM (Manzo et al.,
2012). Among the potential sources of bias analyzed in this
study, the effect of assuming a balanced sex ratio was in most
cases negligible, except for roe deer in spring and summer.
A correction factor for the sex ratio of a roe deer population
can be directly derived from camera trap observations, since
the sex of adult animals is easily identified from photos. For
many other species with a less pronounced sexual dimorphism,
serious problems may arise for populations with an unbalanced
sex ratio. The impact of seasonal variation in movement
speeds also had a species-specific component: It was especially
strong for red deer in spring and autumn. In spring, red
deer follow the vegetation green-up along the elevational
gradient (Rivrud et al., 2016b). In contrast, the migration
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and movement patterns in autumn do not only depend on
forage availability, but also rutting activities and the onset of
hunting (Rivrud et al., 2016a). In temperate environments, such
distinct seasonal cycles of environmental, but also anthropogenic
influences, may strongly impact the movement of many animal
species (Shaw and Couzin, 2013). In addition, animals also adapt
their movement to variation in climatic conditions, human
disturbance or other influences between years (Jeppesen, 1987;
Fieberg et al., 2008).This had a visible effect on the REM estimates
of red deer females in autumn. For other groups with larger inter-
annual differences in movement patterns, such as roe deer males
(Supplementary Figure 9), the potential bias is likely even larger.
Moreover, even when sex, season and year are taken into account,
movement speed estimates are biased when the GPS fix interval
is too coarse to fully capture the tortuosity of the movement
path (Rowcliffe et al., 2012). This might explain the negative
relationship between movement speed estimates and trapping
rates of roe deer females. Roe deer in Central Europe typically
give birth between the middle and end of May (Peláez et al., 2020),
consistent with the peak of the marked asynchrony between
movement speeds and trapping rates determined in our study.
Roe deer fawns remain hidden for 1–2 months (Linnell et al.,
2020), during which time the size of their mothers’ home ranges
decreases significantly (Bongi et al., 2008). The less directionally
persistent movement paths within these smaller home ranges
were seemingly underestimated despite the use of continuous-
time movement modeling (Supplementary Figure 8). A less-
pronounced effect on red deer may reflect more directional
movement, on average smaller GPS intervals and shorter time
periods of only 2–3 weeks, during which red deer calves
remain hidden (Clutton-Brock and Guinness, 1975). Further
complications arise from significant relationships between
movement speeds and population densities, requiring a good
match between the density of the source population of the
movement speed parameter and the density to be estimated to
avoid bias (Broadley et al., 2019).

A possible solution to the manifold problems associated with
the use of GPS-telemetry derived movement speed estimates for
REM, might be to estimate this parameter directly from the
travel paths captured by the camera traps, a method suggested
by Rowcliffe et al. (2016) and Palencia et al. (2019). This
would ensure that the population structure and environmental
conditions used in the movement speed estimation fit the
camera trapping period exactly. Furthermore, the approach
considers small-scale movements, which would be masked by the
inaccuracy of GPS telemetry fixes. Running animals, on the other
hand, may be missed by camera traps, but very rapid movements
only constitute a negligible proportion of the daily time budget
(Turner, 1979) and can therefore be expected to have a limited
impact on camera trap-based average movement speed estimates.
Prerequisite of this method, which can be applied to multiple
species in the same dataset, is a camera trap with fast trigger
speeds and delays between photos of <1 s, or the ability to
record videos of sufficient length. The daily proportion of time
spent active also has to be considered just as in CTDS. While
the manual measurement of movement paths is laborious and
difficult in the absence of distinct landmarks, this problem can be

resolved by the anticipated development of automatic processing
tools (Rowcliffe et al., 2016; Johanns et al., 2022). Regardless of
the source of the movement speed estimates, random camera trap
placement is important to reflect their dependence on habitat
type. In this way it is ensured that area-wide speed estimates from
GPS telemetry can be used to explain trapping rates at the camera
trap locations and that camera trap-based speed estimates are
representative of the study area.

The underestimation of group sizes based on a single photo
instead of photo series was a minor problem for both red deer
and roe deer in our study. While group sizes of red deer are
low in the area, as confirmed by aerial surveys (Henrich et al.,
2021), they can be much larger in other parts of Europe [e.g.,
in Białowieża; Jędrezejewski et al. (2006)]. In these regions,
only a proportion of a group will often be captured on the
same photo and even the same photo series, increasing the
risk to underestimate the group size parameter of REM. As an
alternative, events can be defined based on individuals entering
and exiting the field of view (Cusack et al., 2015; Marcon et al.,
2020). However, camera trap malfunctions due to technical or
external factors might create gaps between consecutive photos,
during which individuals might leave and then re-enter the field
of view. Furthermore, the same animal staying at the very edge
of the field of view may become visible repeatedly in a short time
span, which would inflate event numbers. While no ideal solution
exists, longer photo series or videos and faster trigger speeds can
in general help to track individuals in the field of view, thereby
improving group size estimates.

The seasonal variation of the effective detection radius can
be even more important to consider than animal behavior,
as demonstrated by the potential bias for red deer in spring
(Supplementary Table 5). It can be accounted for along with the
physical characteristics of animal species when using detection
functions to estimate effective detection radii in REM, analogous
to the detection probability of CTDS.

While the previously mentioned sources of bias should be
taken seriously, it is just as important to address the major sources
of uncertainty in population density estimates. The precision of
the density estimates can in general be expected to increase with
the number of camera trap locations. Since precision is mainly
determined by variation in trapping rates between camera trap
locations, it might also help to better incorporate knowledge on
the habitat selection of the animals in the density estimation
process in future.

Camera Trap Distance Sampling
Parameters
While the movement speed estimates of red deer as derived
from GPS telemetry data were higher than of roe deer,
activity estimates were similar for both species and the average
number of snapshot moments per event was larger for red
deer (Supplementary Table 2).This discrepancy can in part be
explained by more frequent reactions of red deer to the camera
traps. While deer reactions to camera traps did not have a
demonstrable influence on the number of events in our study
area (Henrich et al., 2020), they did affect staying times. Animals
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TABLE 2 | Biases in population density estimates of REM and CTDS caused by insufficient consideration of animal behaviors in relation to the reference estimates that
account for them.

REM

Red deer Roe deer

Reference estimates Season Estimate
[Animals/ km2]

Confidence interval of the estimate Estimate
[Animals/ km2]

Confidence interval of the estimate

Summer 2.36 (1.72,3.08) 1.21 (0.72,1.89)

Autumn 3.23 (2.46,4.27) 0.76 (0.44,1.38)

Winter 1.20 (0.75,1.94) 0.38 (0.08,0.90)

Spring 1.42 (1.00,1.86) 1.21 (0.76,1.88)

Possible source of
bias

Season Difference from
the reference

estimate
[Animals/ km2]

Confidence interval
of the difference to

the reference
estimate

% of the
reference
estimate

Difference from
the reference

estimate
[Animals/km2]

Confidence interval
of the difference to

the reference
estimate

% of the
reference
estimate

Sex ratio in the GPS
data set used in the
speed estimation

Summer −0.01 (−1.01,
1.00)

0.27 0.18 (−0.61,
0.99)

14.92

Autumn 0.03 (−1.24,
1.29)

0.83 0.04 (−0.57,
0.66)

4.92

Winter 0.00 (−0.77,
0.80)

0.04 0.01 (−0.58,
0.64)

2.93

Spring 0.01 (−0.67,
0.69)

0.51 0.13 (−0.61,
0.89)

11.11

Seasonal variation of
movement speed

Summer 0.16 (−0.82,
1.13)

6.77 −0.08 (−0.99,
0.79)

6.21

Autumn −0.45 (−1.82,
0.89)

14.02 0.08 (−0.49,
0.70)

10.71

Winter 0.11 (−0.61,
0.88)

8.87 −0.03 (−0.68,
0.61)

8.12

Spring −0.21 (−0.93,
0.52)

14.46 −0.05 (−0.88,
0.74)

3.97

Annual variation of
movement speed (red
deer females only)

Summer 0.05 (−0.47,
0.54)

5.05

Autumn −0.20 (−1.04,
0.59)

14.15

Winter 0.00 (−0.5,
0.53)

0.38

Spring −0.05 (−0.53,
0.42)

6.64

Use of the maximum
number of animals
recorded only on the
first photo of the photo
series for group size
estimation

Summer 0.08 (−0.90,
1.07)

3.42 0.02 (−0.83,
0.87)

1.87

Autumn 0.16 (−1.06,
1.41)

5.03 0.01 (−0.63,
0.63)

0.97

Winter 0.04 (−0.72,
0.83)

3.12 0.02 (−0.56,
0.65)

5.00

Spring 0.09 (−0.57,
0.74)

6.07 0.05 (−0.72,
0.83)

4.41

CTDS

Red deer Roe deer

Season Estimate
[Animals/ km2]

Confidence interval of the estimate Estimate
[Animals/ km2]

Confidence interval of the estimate

Reference estimates Summer 3.21 (1.90,4.92) 0.47 (0.24,0.79)

Autumn 3.15 (2.26,4.28) 0.22 (0.09,0.43)

Winter 1.13 (0.55,2.28) 0.20 (0.01,0.49)

Spring 1.28 (0.72,1.91) 0.34 (0.15,0.55)

(Continued)
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TABLE 2 | (Continued)

Possible source of
bias

Season Difference from
the reference

estimate
[Animals/ km2]

Confidence interval
of the difference to

the reference
estimate

% of the
reference
estimate

Difference from
the reference

estimate
[Animals/ km2]

Confidence interval
of the difference to

the reference
estimate

% of the
reference
estimate

Behavioral reactions to
camera traps

Summer −0.40 (−2.79,
2.03)

12.53 −0.02 (−0.48,
0.44)

4.96

Autumn −0.53 (−2.14,
1.03)

16.84 −0.03 (−0.37,
0.26)

12.23

Winter −0.22 (−1.61,
1.00)

19.23 −0.01 (−0.78,
0.73)

4.88

Spring −0.18 (−1.33,
0.94)

14.30 −0.02 (−0.42,
0.37)

7.26

Species-specific delays
between consecutive
camera trap photo
series

Summer 0.09 (−2.18,
2.43)

2.73 −0.07 (−0.56,
0.41)

14.17

Autumn 0.09 (−1.34,
1.54)

2.73 −0.03 (−0.35,
0.26)

14.17

Winter 0.03 (−1.10,
1.20)

2.73 −0.03 (−0.83,
0.75)

14.17

Spring 0.04 (−1.01,
1.09)

2.73 −0.05 (−0.46,
0.35)

14.17

FIGURE 5 | The influence of biased model parameters on population density estimates of REM and CTDS. These include (A) for REM, (a) the assumption of a
balanced sex ratio, (b) the use of year-round GPS telemetry data to estimate movement speed and (c) the use of the first photo per series only for group size
estimation, and (B) for CTDS, (d) the inclusion of photos regardless of behavioral reactions to camera traps and (e) the use of a non-species-specific mean delay
between photo series d̂.
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that reacted to the camera trap stayed in its field of view for
a prolonged time period, apparently to observe the unknown
object. The number of photo series per event increased on average
by 121% if deer responded neutrally and by 281% if they were
attracted to the camera trap. Both motionlessness and attraction
to the camera trap can be accounted for straightforwardly
by not considering the animals depicted in those photos. If
observation distances are influenced by these responses to the
camera trap, e.g., an overabundance of short distances in the
case of attraction, they also need to be removed from the dataset
before detection functions can be fitted. Since our distance
measurements were based solely on the first animal photo of
an event, reactions to the camera trap, defined herein as having
been inferred from preceding images, could not have occurred
at that moment. Alarmed reactions are more problematic
than the aforementioned responses to camera traps, because
it is impossible to estimate how long the animals would have
otherwise stayed. However, as alarmed reactions occurred in only
6 and 2% of the red deer and roe deer events, respectively, they
were rare enough such that they presumably had little influence
on the population density estimates.

Conversely, CTDS estimates may be strongly influenced by a
few camera trap locations where the staying times of animals in
the field of view are above average, independent of reactions to
the camera trap, as might occur at sites with abundant forage
or preferred resting places. This phenomenon was observed
for adult red deer in summer, when only three cameras
accounted for 31% of the photo series (Supplementary Figure 2).
When extreme outlier locations, with above-average numbers
of photos per unit time among sites with confirmed red deer
presence, were removed from the dataset, the estimated summer
population density decreased by 38% (Supplementary Table 5).
Furthermore, the reliance on a limited number of camera

FIGURE 6 | Comparison between the REM estimates of red deer females
obtained using speed estimates derived from GPS telemetry data from the
study period and from other years. GPS telemetry data from the camera trap
study period was available only for red deer females; therefore the analysis
was restricted to this subgroup (number of individuals in the study period: 46,
total number of collared red deer females: 104).

trap locations to estimate animal movement parameters leads
to a pronounced contribution of these parameters to the
uncertainty in population density estimates. Similar problems
can be expected for the estimation of movement speeds from
camera trap data and the staying time parameter of the random
encounter and staying time model (REST), a modification of
REM (Nakashima et al., 2018). However, the effect of extreme
staying times on REST is limited, because the model includes a
pre-defined threshold. In both movement speed estimation and
REST, data can be censored to exclude any behavioral reactions
to camera traps, and a maximum sample size for each camera
trap location can be defined to restrict the outsize influence of
a minority of camera trap locations. For CTDS, a solution to this
problem is thus far lacking.

The number of photos of an animal species also depends
on the delay between successive photos, which reflects both
the technical recovery time of the camera trap and the re-
trigger time depending on animal movement in the field of
view. Based on our results, roe deer exhibited such movements
more frequently than red deer. This questions the assumption of
CTDS that present animals will be detected with certainty during
snapshot moments. The original adaptation of distance sampling
for camera traps (Howe et al., 2017) used videos that were
long enough such that delays between subsequent recordings
were negligible, which allowed an arbitrary discretization into
snapshot moments. However, videos need more energy and
storage capacity than photos and their classification is more
time-consuming (Rovero et al., 2013; Findlay et al., 2020).
While photos can be obtained by triggering the camera at
pre-defined time intervals, this produces large numbers of
empty photos and passing animals might be missed in the
intervening moments. The majority of camera trapping studies
therefore uses motion-triggered photos (Hamel et al., 2013;
Hofmeester et al., 2020), although variable delays between
photos are inevitable, due in part to large variability in
the technical recovery times of different camera trap models
(Trolliet et al., 2014). Since re-trigger times have to be
considered additionally, relying on manufacturer specifications
alone may severely underestimate the actual delay between
photos (Corlatti et al., 2020). It is therefore advisable to
determine an appropriate snapshot interval using the mean time
difference between successive photos of the same observation
in the camera trap dataset itself. This strategy allows potential
differences between species and individual camera traps to
be taken into account. Species-specific snapshot intervals are
especially important for less abundant species as exemplified
by roe deer, since characteristics of re-trigger times might
otherwise be overshadowed by other species with larger numbers
of observations.

Two strategies might help to improve precision of the CTDS
estimates: First, it may be useful to analyze the relationship
between the number of photos and the characteristics of the
camera trap locations in order to be able to incorporate this
knowledge in the model. Second, more robust detection functions
can be expected if distances to the camera traps are estimated
for all animals observed during snapshot moments. Automatized
methods have been developed that can help to achieve such a
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FIGURE 7 | Number of photo series per event for red deer and roe deer, classified by reaction to the camera trap: neutral = the event contains at least one photo
series of an animal moving its head to face the camera trap or of an animal looking directly at the camera trap for several photos; attracted = the event contains at
least one photo series with an animal moving towards the camera trap, following a neutral reaction; alarmed = the event contains at least one photo series of an
animal quickly moving away from the camera trap after a neutral reaction, also after an initial attraction. The percentage of each subgroup in the total number of
events n is indicated beneath each box (25 red deer events and 2 roe deer events had >20 photo series and are not shown).

FIGURE 8 | Contributions of the model parameters to the uncertainty in REM- and CTDS-based population density estimates of red deer and roe deer as derived
from data obtained from 108 camera traps, which were deployed for one year. The y axis shows the proportion of the total sum of squares attributable to the
parameters, their interactions and the residuals in a linear regression with population density as the response variable and the input parameters as independent
variables. For the REM, the trap rate TRe corresponds to the total number of events y divided by the total deployment days t. For CTDS, TRe multiplied by the
average number of snapshot moments with animals (the first photos of the photo series) per event and the average number of individuals per snapshot moment
equals n/T.

large amount of distance estimates time- and cost-efficiently in
future studies (Haucke et al., 2022; Johanns et al., 2022).

Further Considerations
Since the “true” seasonal population densities of red deer and
roe deer in our study area are unknown, we cannot assess the

absolute correctness of the REM and CTDS estimates. That
can only be determined for fenced enclosures, where migration
does not play a role and the whole area can be surveyed at
once (e.g., Marcon et al., 2020). We purposefully chose to study
free-ranging populations to observe the effect of natural animal
behavior, including habitat selection, movement speed and group
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formation, on population density estimation with camera traps.
For this reason, we had to assess the relative impact of different
sources of bias on the best estimates, which we could obtain for
each method with the available data.

While several potential solutions can be considered to address
these sources of bias and improve the precision of density
estimates for our study species, density estimation for unmarked
populations by means of camera trapping becomes increasingly
difficult for animals with a low body mass, a strong selection for
certain habitats or pronounced use of established trails and low
density populations (Balestrieri et al., 2016; Schaus et al., 2020;
Cappelle et al., 2021). The lower the number of observations
and the more variable it is between camera trap locations, the
larger becomes the relative uncertainty of the REM and CTDS
estimates and the more challenging it will be to properly fit
detection functions and to derive movement characteristics from
activity estimates and the number of photos per camera trap event
(Bessone et al., 2020). Within events, the likelihood of being able
to track small individuals on the images for movement speed
estimation also decreases. Under these circumstances, alternative
methods, e.g., based on non-invasive genetic samples (Balestrieri
et al., 2016), should be considered.

Whenever the estimation of behavioral parameters is possible
from camera trap data, it might be of general interest beyond
its application for density estimation. While individual-based
methods such as GPS telemetry with activity sensors provide
information with a much higher resolution, it is often unclear
how representative the GPS-collared individuals are of the whole
population (Hebblewhite and Haydon, 2010). Although the
uncertainty in camera trap-based estimates can be expected to
be much larger, they are based on observations of many different
individuals of all ages and sexes, with a range of personality traits.

CONCLUSION

The use of camera traps to estimate the population densities of
unmarked animal species has gained increasing acceptance since
publication of the REM (Rowcliffe et al., 2008; Gilbert et al., 2021),
but the potential for biases arising from inadequate consideration
of complex animal behavior has not been systematically analyzed.
Our study found that biases caused by the failure to adjust
movement speed estimates of red deer and roe deer for the
sex ratio, season and year were masked by the low precision
of the REM estimates. Nonetheless, we advocate caution in
using GPS telemetry data within REM, especially for species
and time periods characterized by low directional persistence
in animal movement paths in relation to the GPS fix interval.
Instead, our results may support the recent trend of estimating
movement speeds directly from camera trapping data (e.g.,
Rademaker et al., 2016; Monteiro-Alves et al., 2019; Schaus
et al., 2020; Palencia et al., 2021). While CTDS derives necessary
information on animal movement behavior from the camera
trap data by default, this can lead to bias in population density
estimates arising from the potentially large influence of outlier
locations. The largest confirmed bias in our study could be
ascribed to reactions of red deer to camera traps. The effort of

behavioral classifications can therefore be worthwhile, and should
be carefully evaluated against the risk of bias for each study
system. Furthermore, the consideration of species-specific delays
between photos proved to be useful for roe deer and should
always be a factor when CTDS is applied to motion-triggered
photos. In order to fully take advantage of estimates with minimal
bias, additional efforts are needed to develop methods that can
effectively improve the precision of REM and CTDS, which
would be a prerequisite to enable the detection of small changes
in population density. By properly considering animal behavior,
addressing the sources of variance (e.g., inter-camera variation
of trapping rates) and automatization of image processing, both
methods can be potentially reliable and feasible tools within
regular monitoring programs and in the adaptive management
of common ungulate populations.
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