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Abstract1

In ecology, the true causal structure for a given problem is o�en not known, and2

several plausible models and thus model predictions exist. It has been claimed that3

using weighted averages of these models can reduce prediction error, as well as be�er4

re�ect model selection uncertainty. �ese claims, however, are o�en demonstrated by5

isolated examples. Analysts must be�er understand under which conditions model6

averaging can improve predictions and their uncertainty estimates. Moreover, a large7

range of di�erent model averaging methods exists, raising the question of how they8

di�er regarding in their behaviour and performance.9

Here, we review the mathematical foundations of model averaging along with the10

diversity of approaches available. We explain that the error in model-averaged11

predictions depends on each model’s predictive bias and variance, as well as the12

covariance in predictions between models and uncertainty about model weights.13

We show that model averaging is particularly useful if the predictive error of14

contributing model predictions is dominated by variance, and if the covariance15

between models is low. For noisy data, which predominate in ecology, these conditions16

will o�en be met.17

Many di�erent methods to derive averaging weights exist, from from Bayesian over18

information-theoretical to cross-validation optimised and resampling approaches. A19

general recommendation is di�cult, because the performance of methods is o�en20

context-dependent. Importantly, estimating weights creates some additional21

∗corresponding author; Tennenbacher Str. 4, 79106 Freiburg, Email: carsten.dormann@biom.uni-

freiburg.de

2

carsten.dormann@biom.uni-freiburg.de
carsten.dormann@biom.uni-freiburg.de


uncertainty. As a result, estimated model weights may not always outperform arbitrary22

�xed weights, such as equal weights for all models. When averaging a set of models23

with many inadequate models, however, estimating model weights will typically be24

superior to equal weights.25

We also investigate the quality of the con�dence intervals calculated for26

model-averaged predictions, showing that they di�er greatly in behaviour and seldom27

manage to achieve nominal coverage. Our overall recommendations stress the28

importance of non-parametric methods such as cross-validation for a reliable29

uncertainty quanti�cation of model-averaged predictions.30

1 Introduction31

Models are an integral part of ecological research, representing alternative, possibly32

overlapping, hypotheses (Chamberlin, 1890). �ey are also the standard approach to33

making predictions about ecological systems (Mouquet et al., 2015). In many cases, it is34

not possible to clearly identify a single most-appropriate model. For instance,35

process-based models may di�er in the speci�c ways they represent ecological36

mechanisms, without a clear empirical or theoretical reason to prefer one option over37

the other. Statistical analyses rarely o�er a single solution, both because the limited38

amount of data allows for several plausible combinations of predictors, and because39

di�erent modelling approaches are available for statistical analysis (e.g. Hastie et al.,40

2009; Kuhn and Johnson, 2013).41

Model averaging seemingly solves this dilemma. Proponents of this approach have42

claimed that calculating a weighted average of the predictions of all candidate models43

will reduce prediction error through reduced variance and bias (the la�er based on44

arguments described in Madigan and Ra�ery, 1994), as well as be�er represent45
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uncertainty about model parametrisation and structure (Wintle et al., 2003, see also46

section 2.3). For some ecological examples of model averaging see �uiller (2004);47

Richards (2005); Brook and Bradshaw (2006); Dormann et al. (2008); Diniz-Filho et al.48

(2009); Le Lay et al. (2010); Garcia et al. (2012); Cariveau et al. (2013); Meller et al.49

(2014), and Lauzeral et al. (2015).50

Evaluating the utility of this approach is complicated by the large number of51

di�erent method for model averaging and the subsequent uncertainty quanti�cation of52

averaged predictions. Several previous reviews on model averaging in ecology and53

evolution, focussed exclusively on ‘information-theoretical model averaging’ (Johnson54

and Omland, 2004; Hobbs and Hilborn, 2006; Burnham et al., 2011; Freckleton, 2011;55

Grueber et al., 2011; Nakagawa and Freckleton, 2011; Richards et al., 2011; Symonds56

and Moussalli, 2011), probably under the in�uence of the AIC-weighted averaging57

popularised by Burnham & Anderson (2002; Posada and Buckley 2004). Bayesian model58

averaging has been used less frequently in ecology (for an example see Corani and59

Migna�i, 2015), but for an excellent recent review of this topic in the context of60

Bayesian model selection see Hooten and Hobbs (2015, see also Hoeting et al. 1999;61

Ellison 2004; Link and Barker 2006). However, none of the above covers all available62

model averaging approaches, together with a general discussion of advantages and63

disadvantages.64

Our aim is to provide such a comprehensive review in the light of developments65

over the last 20 years, summarising the mathematical reasoning behind model66

averaging, and o�ering an intuitive but technically sound entry to the �eld, illustrated67

by case studies. We primarily address prediction averaging of correlative models,68

although most of the points will similarly apply to mechanistic/process-based models69

(see, e.g., Knu�i et al., 2010; Diks and Vrugt, 2010, for a review in the context of climate70

and hydrological models, respectively). We do not consider averaging model71
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parameters, because we agree with the criticism summarised in Banner and Higgs72

(2017): parameters (such as partial regression coe�cients) are estimated conditional on73

the model structure; as the model structure changes, parameters may become74

incommensurable (see Posada and Buckley, 2004; Cade, 2015; Banner and Higgs, 2017,75

and Appendix S1.1 for short review of the parameter-averaging literature). Instead, our76

focus is on prediction, and predictive inference (sensu Geisser, 1993), as exempli�ed by77

model-averaged predictions of species potential occurence for reserve-site selection78

(Meller et al., 2014) or the e�ect of roads on occupancy of ponds by frogs (Dai and79

Wang, 2011). Also, we only focus on averaging sets of models that di�er in structure, as80

opposed to mere di�erences in initial conditions or parameter values (Gibbs, 1902;81

Johnson and Bowler, 2009). �e la�er case is called “ensemble” in the statistical and82

physical sciences, while in ecology that term is used more loosely.83

�is review is divided into �ve parts: �rst, we present the mathematical logic84

behind model averaging, and why this alone puts severe constraints on how we do85

model averaging. �en, in the second part, we review the di�erent ways through which86

model-averaging weights can be derived, comparing Bayesian, information-theoretic,87

and tactical perspectives (by tactical we mean heuristic approaches to model averaging88

that are not explicitly based on statistical theory). �is is followed by a brief89

exploration of how to quantify the uncertainty of model-averaged predictions. Finally,90

we brie�y illustrate model averaging with two case studies, before closing with91

unresolved challenges, and recommendations.92

2 �e mathematics behind model averaging93

In accordance with virtually all discussions of model averaging we encountered, we94

�rst focus on how model averaging reduces prediction error, here quanti�ed as mean95
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squared error (MSE) of a prediction Ŷm of model m. As for any estimator, we can96

decompose this error into contributions of bias and variance:97

MSE(Ŷm) =
{

bias(Ŷm)
}2

+ var(Ŷm). (1)

Bias refers to a systematic model error that would not change if a new dataset for the98

same system became available, while variance refers to the expected spread of model99

predictions when �t with hypothetical new datasets for the same system.100

We can use eqn 1 to examine the error of a weighted average Ỹ of the predictions101

of several (M ) contributing models, Ŷ1, Ŷ2, . . . , ŶM :102

Ỹ =

M∑
m=1

wmŶm , with
M∑

m=1

wm = 1. (2)

�e motivation for the weights wm is to adjust the average such that is has improved103

properties over a simple average (with equal weights) or a single candidate models (all104

weight on one model).105

We can see from eqn 1 that bias, i.e. the di�erence between the expectation of the106

averaged predictions and the truth (Ỹ − y∗), will depend directly on the bias of the107

contributing models, as well as their weights (eqn 2). �e statistical model-averaging108

literature o�en assumes that individual models have no bias, and therefore tends to be109

less interested in its contribution (Bates and Granger, 1969; Buckland et al., 1997;110

Burnham and Anderson, 2002). In contrast, for process models, reducing bias is o�en111

names as one of the main motivations (e.g. Solomon et al., 2007; Gibbons et al., 2008;112

Dietze, 2017). Implicitly, the assumption here is that model biases will tend to fall on113

both sides of the truth, in which case they may cancel out in an average.114

Prediction variance (arising from n hypothetical repeated samplings) is composed

of two terms, the variance of each contributing model’s prediction,

var(Ŷm) =
1

n− 1

n∑
i=1

(Ŷm − Ŷ i
m)2,
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and the covariances between predictions of model m and m′:

cov(Ŷm, Ŷm′) =
1

n− 1

n∑
i=1

(Ŷm − Ŷ i
m)(Ŷm′ − Ŷ i

m′).

For the average of two predictions, Ŷ1 and Ŷ2, this yields:115

var(Ỹ ) = w2
1var(Ŷ1) + w2

2var(Ŷ2) + 2w1w2cov(Ŷ1, Ŷ2). (3)

When averaging several models, we expand eqn (3) to:116

var(Ỹ ) = var

 M∑
m=1

wmŶm

 =

M∑
m=1

w2
mvar(Ŷm) +

M∑
m=1

∑
m′ 6=m

wmwm′cov(Ŷm, Ŷm′)

=

M∑
m=1

M∑
m′=1

wmwm′cov(Ŷm, Ŷm′)

=

M∑
m=1

M∑
m′=1

wmwm′ρmm′var(Ŷm)var(Ŷm′), (4)

where ρmm′ is the correlation between Ŷm and Ŷm′ .117

Combining eqns 1 and 3 we can see that the error of a model-averaged prediction118

decomposes into119

MSE(Ỹ ) =

 M∑
m=1

wm

(
E(Ŷm)− y∗

)2

+
M∑

m=1

M∑
n=1

wmwm′ρmm′var(Ŷm)var(Ŷm′),

(5)

where E(Ŷm)− y∗ = bias(Ŷm) represents prediction bias.120

2.1 Understanding what in�uences the error of121

model-averaged prediction122

Equation 5 allows us to make a number of statements about the potential bene�ts of123

model averaging. We shall �rst illustrate the fundamental e�ects of bias, variance and124

covariance using simply toy examples. In the next sections, we shall then move from125

this idealised examples to more realistic situations.126

Firstly, when each model produces a distinct prediction, with variances127

substantially lower than systematic di�erences between models, bias dominates128
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(Fig. 5.5 top). How useful model averaging is in this situation depends on the biases of129

the individual models (see also Fig. 7 top row). As model variance increases (or bias130

decreases), the error term is increasingly dominated by variance, and assuming131

covariances are low, the variance of the average (and therefore the mean error) will be132

smaller than the variance of the single model (Fig. 5.5 bo�om). If the covariance of133

model predictions is low, increasing the number of models in the average will generally134

decrease the variance and therefore the prediction error, while the bias of the average135

has no general connection to the number of averaged models (Fig. 7, right column).136

[Fig. 1 approximately here.]137

We thus conclude that as bias becomes large relative to prediction variance, model138

averaging is less and less likely to be useful for reducing variance – but it may still be139

useful for reducing bias (under the condition of bidirectional bias: Fig. 7, lower row).140

[Fig. 2 approximately here.]141

Downweighting of variances is the mathematical reason how model averaging142

reduces the variance over single model predictions, as we brie�y explain now.143

To understand these e�ects in more detail, consider the unlikely, but didactically144

important case that model predictions are independent, meaning that their covariance145

is 0 and the correlation matrix ρmn of eqn 5 becomes the identity matrix (or,146

equivalently, the covariance term of eqn 4 vanishes). If we also assume both147

predictions have equal variances, var(Ŷ1) = var(Ŷ2) = var(Ŷ ), since w2 = 1− w1,148

the above equation simpli�es to var(Ỹ ) = (2w2
1 − 2w1 + 1)var(Ŷ ). If one model gets149

all the weight, we have var(Ỹ ) = var(Ŷ ). If the two models receive equal weight, we150

have var(Ỹ ) = (2 · 0.52 − 2 · 0.5 + 1)var(Ŷ ) = 0.5var(Ŷ ), a considerable151

improvement in prediction variance (and the minimum of this equation). Other152

weights fall in-between these values. In other words, model averaging can reduce153

prediction error because weights enter as quadratic terms in eqn 3, rather than linearly.154
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Indeed, Bates and Granger (1969) showed that for unbiased models with uncorrelated155

predictions, the variance in the average is never greater than the smaller of the156

individual predictions (making the important assumption that the weights are known,157

which will be discussed below).158

�e next thing to note is that the correlation between model predictions, i.e. the159

matrix (ρij) ∈ RM×M , substantially a�ects the bene�t of model averaging (see also160

Fig. 8 and interactive tool in Data S1). In the best case, correlations between model161

predictions are negative or at least absent, and the second term of eqn (5) is negative or162

vanishes. Under these conditions, averaging can substantially increase the variance of163

the predictions. As correlations between predictions increase, the covariance term164

contributes more and more to the overall prediction error. In the extreme case of165

perfectly correlated predictions of the single models, model averaging has no bene�t166

for reducing prediction variance.167

[Fig. 3 approximately here.]168

�e e�ect of correlations on the potential reduction of prediction error has an169

analogy in biodiversity studies, where it is called the ‘portfolio e�ect’170

(e.g. �ibaut and Connolly, 2013). It states that the �uctuation in biomass of a171

community is less than the �uctuations of biomass of its members, because the species172

respond to the environment di�erently. �is asynchrony in response is analogous to173

negative covariance in community members’ biomass, bu�ering the sum of their174

biomasses.175

�is point also provides some important insights about why machine learning176

methods, which o�en average a large number of bad models, can work so well. When177

averaging poor models, e.g. trees in a Random Forest, covariance is negligible, but the178

variance of each model prediction is high. Because wm becomes very small with179

hundreds of models (approximately 1/M ), the variance of many averaged poor models180

9



(with similar variance) tends to be low: var(Ỹ ) =181 ∑M
m=1

1
M2 var(Ŷm) + 1

M2

∑M
m=1

∑
m 6=n cov(Ŷm, Ŷn) ≈M 1

M2 var(Ŷ ) = 1
M var(Ŷ ),182

where the second term disappears due to lack of correlations among predictions. We183

may speculate that poor models typically also exhibit substantial but bidirectional bias,184

which again would be reduced by averaging.185

Pu�ing bias, variance and correlation together (Fig. 7), we note that model186

averaging will deliver smaller prediction error when bias is bidirectional (i.e. model187

predictions over- and underestimate the true value: bo�om row of Fig. 7) and188

predictions are negatively correlated (Fig. 7 bo�om right). Uni-directional bias will189

remain problematic (top row of Fig. 7), irrespective of covariances among predictions.190

�us, for a given set of weights, the prediction error of model-averaged predictions191

depends on three things: the bias of the model average, as emerging from the bias of192

the individual models, the prediction variances of the individual models, and the193

covariance of those predictions.194

2.2 Estimating weights can thwart the bene�t of model195

averaging196

So far, we have assumed that weights have �xed values, or that weights are not random197

variates, and thus there is no uncertainty about them. Yet, the aim of optimising198

predictive performance suggests that weights need to be estimated from the data. But199

estimation brings associated uncertainty with it, and this has implications for the200

actual bene�ts of model averaging: estimated “optimal” weights will be suboptimal201

(Nguefack-Tsague, 2014). With such an error, even for only mildly correlated202

predictions, the averaged prediction will more likely be biased than if the (unknown)203

truly optimal weights were used (Claeskens et al., 2016). It may in fact be o�en no204
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be�er than one obtained using arbitrary weights, e.g. equal weights (Clemen, 1989;205

Smith et al., 2009; Graefe et al., 2014, 2015). �e “simple theoretical explanation”206

provided by Claeskens et al. (2016) demonstrates that estimating weights introduces207

additional variance into the prediction. As a consequence, the predictions averaged208

with estimated weights may be worse than that of a single model (in contrast to the209

assertion of Bates and Granger 1969; see Claeskens et al. 2016 for an example).210

Apart from the error of the estimate, a further open problem is to obtain a good211

estimator for the optimal weight in the �rst place. Currently no closed solution is212

available, not even for linear models (Liang et al., 2011). Neither Bayesian nor213

information-theoretical model weights are designed to minimise prediction error, and214

their weights will in general not be optimal for that purpose. Some tactical approaches215

estimate model weights explicitly to minimise prediction error on hold-out data (in216

particular jackknife model averaging and stacking; see section 3.3). Only these217

approaches are at least trying to estimate optimal weights for minimizing predictive218

error. �e interactive tool we provide (Fig. 8) allows readers to explore this issue in a219

simple 2-model case. It shows that, in this simple case, estimating weights substantially220

reduces the parameter space where model averaging is superior to the best single221

model. �us, the bias-variance trade-o� applies also to model averaging, in the sense222

that weight estimation introduces additional parameters and therefore higher model223

complexity to the analysis. It is therefore important to think carefully about when to224

use model averaging, as it can add unnecessary complexity.225

Uncertainty about the optimal weights does not imply that estimated weights are226

of no use, or that the use of arbitrary weights (e.g. equal weights) is generally superior.227

While uncertainty in estimated weights increases prediction error, the ability to228

statistically downweight or wholly remove unsuitable models from the prediction set is229

a substantial bene�t. In Claeskens et al. (2016) and similar simulations, all models230
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considered are “alright” (bias-free and with similar prediction variance), which231

obviously need not be the case in practical applications. �us, the question is not if232

estimated model weights are useful in general, but how useful they are beyond their233

function of �ltering out inferior models from the average. We believe there is a bene�t234

beyond this �lter function, but we recognise that there is a need for further research to235

be�er demonstrate this bene�t, and understand when it occurs.236

2.3 Model averaging (typically) reduces prediction errors237

To complement these theoretical considerations, we examined 180 studies (a random238

draws from the results of a systematic literature search: see Appendix S1.7) regarding239

reported bene�ts from model averaging.240

�e majority of studies we encountred used an empirical approach to assess241

predictive performance, i.e. forecasting, hindcasting or cross-validation to observed242

data (e.g. Namata et al., 2008; Marmion et al., 2009a,b; Grenouillet et al., 2010;243

Montgomery et al., 2012; Smith et al., 2013; Engler et al., 2013; Edeling et al., 2014;244

Trolle et al., 2014). Most Model averaging generally yielded lower prediction errors245

than the individual contributing models. Most of these studies used test datasets to246

estimate predictive success, and rely critically on the assumption of independence247

between test and training datasets (Roberts et al., 2017). Few studies used simulated248

data to examine the performance of model averaging under speci�c conditions (e.g.249

small sample size, model structure uncertainty, missing data: Ghosh and Yuan, 2009;250

Schomaker, 2012), and even fewer employ analytical mathematics (Shen and Huang,251

2006; Potempski and Galmarini, 2009; Chen et al., 2012; Zhang et al., 2013).252
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2.4 �antifying uncertainty of model-averaged253

predictions254

So far, we have shown that model averaging can produce predictions with a smaller255

error than any of the contributing models by averaging away their variance and bias.256

�ose gains, however, generally decrease with i) increasing covariance of the257

individual model predictions, and ii) increasing mean bias of the contributing models.258

Moreover, iii) weighted averaging allows reducing the weight of models poorly259

supported by data, but at the expense of introducing additional variance in the average,260

induced by the weight estimation.261

Besides having an estimate with low error, the second goal of most statistical262

methods is to provide a measure of (un)certainty of that estimate. �e nature of this263

measure di�ers between tactical, Bayesian, and frequentist approaches. Tactical264

aproaches, such as machine learning, are usually satis�ed with providing an estimate265

of predictive error on new data, typically obtained through cross-validation. �is266

procedure can be directly extended to model-averaged predictions.267

For Bayesian and frequentist methods, the issue of extending the conventional268

methods for estimating uncertainty to model-averaging is somewhat more complicated.269

Bayesian methods quantify uncertainty via the posterior distribution, which can be270

summarized by a Bayesian credible interval. One would interpret a 95% credible271

interval as displaying a 95% certainty for the true value to be contained in the interval.272

Frequentist methods traditionally provide a con�dence interval. Under repeated273

sampling of new data sets under identical conditions, a correctly de�ned 95%274

con�dence interval should contain the true value in 95% of the cases.275

To construct a frequentist con�dence interval for a model-averaged prediction, we276

have to ask ourselves how this model-averaged prediction will spread around the true277
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value under repeated sampling. Fortunately, we have already derived this result in278

eqs. 1-5. For simple cases, we can directly convert this into a con�dence interval. For279

example, for an unbiased average, with uncorrelated models of equal weight and280

variance, the standard deviation of the average, and thus its con�dence interval, should281

decrease with one over the square root of the number of contributing models, times the282

con�dence interval of the single models. In general, however, the calculation of the283

con�dence interval of the average will have to take the con�dence intervals of all284

contributing models, as well as their weights, covariance and bias into account.285

Buckland et al. (1997) proposed a simpli�cation of eqn (5), which considers bias and286

variance of the averaged models (for derivation see Burnham and Anderson, 2002,287

p. 159-162):288

var(Ỹ ) =

 M∑
m=1

wm

√
var(Ŷm) + γ2

m

2

. (6)

Misspeci�cation bias of model m is computed as γm = Ŷm − Ỹ , thus assuming289

(explicitly on page 604 of Buckland et al. 1997) that the averaged point estimate Ỹ is290

unbiased and can hence be used to compute the bias of the individual predictions. �is291

assumption can be visualised in Fig. 7 as the situation where the empty triangles292

always sit right on top of ‘truth’. �is assumption is problematic, as it cannot be met by293

unidirectionally biased model predictions, nor when weights wm fail to get the294

weighting exactly right and thus Ỹ remains biased. Less problematically, Buckland295

et al. (1997) also assumed that predictions from di�erent models are perfectly296

correlated, making the covariance term as large as possible, and variance estimation297

conservative. �e distribution theory behind this approach has been criticised as “not298

(even approximately) correct” (Claeskens and Hjort, 2008, p. 207), but shown to work299

well in simulations (Lukacs et al., 2010; Fletcher and Dillingham, 2011).300

Improving on eqn (6) requires knowledge of the covariance of model predictions301

ρmm′ (eqn 5). �e key problem is that there is no analytical way to compute ρmm′ .302
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Bootstrapping, although computationally costly, o�ers a good solution to this problem.303

While the obstacles to calculate con�dence intervals for model-averaged304

predictions may seem somewhat discouraging, it should be noted that alternatives to305

model averaging do not necessarily fare be�er. Predictions from a selected single-best306

model always underestimate the true prediction error (e.g. Namata et al., 2008; Fletcher307

and Turek, 2012; Turek and Fletcher, 2012). �e reason is that the uncertainty about308

which model is correct is not included in this �nal prediction: we predict as if we had309

not carried out model selection but had known from the beginning which model would310

be the best (as if the model had been “prescribed”: Harrell, 2001). �us, even if we were311

able to choose, from our model set M , the model closest to truth, we would still need312

to adjust the con�dence distribution for model selection; and a perfect adjustment was313

analytically shown not to exist (Kabaila et al., 2015).314

Accordingly, simulations studies that have suggested that model averaging may315

improve coverage (Namata et al., 2008; Wintle et al., 2003; Zhao et al., 2013),316

presumably because the process of averaging allows us to take into account model317

uncertainty (Liang et al., 2011). Yet, given the diversity of approaches to computing318

model weights encountered in section 3, these studies cannot be seen as conclusive,319

only as suggestive, for the improvement of nominal coverage using model averaging.320

For example Fletcher and Turek (2012) and Turek and Fletcher (2012) explore how321

model averaging can improve the tail areas of the con�dence distribution. �ese two322

studies, however, as well as those cited before, assumed that the full model, referring to323

the model that includes all sub-models prior to any model selection (see Appendix324

S1.3), is not in the set. �e approach by Fletcher and Turek (2012) and Turek and325

Fletcher (2012) was re-analysed by Kabaila et al. (2015). �e key �nding of this la�er326

study is that the full model coverage was still superior to all other model averaging327

approaches, suggesting that the full model should currently be kept in mind, both for328
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inference, minimal bias and correct prediction intervals (see also Harrell, 2001, p. 59).329

Such �ndings sit uncomfortably with the bias-variance trade-o� (Hastie et al., 2009),330

which states that overly complex models have poor predictive performance; and indeed331

the full model has high prediction variance.332

Regre�ably, such reasoning cannot be extended in an obvious way to non-nested333

models, process models, or machine learning models. Here, model averaging seems334

without alternative for propagating model selection uncertainty into prediction335

uncertainty more fairly.336

Our �nal option to quantify uncertainty, the Bayesian credible interval, can be337

interpreted as a mixture distribution. In a two-step process, the model weights �rst338

determine the probability of any model to be correct, and the uncertainty of each339

model is then mixed additively into a averaged uncertainty. If the predictions of all340

individual models are identical, the �nal distribution will remain the same. From the341

perspective of 5, this is identical to assuming that the average models are maximally342

correlated, although the logical motivation for the mixing is di�erent. If predictions343

di�er widely, e.g. due to bias, the mixed con�dence distribution will be much wider and344

possibly multi-modal.345

To illustrate the various Bayesian and frequentist options, we calculated predictive346

uncertainties and coverage for four di�erent options for a set of simple linear347

regressions in Fig. 10:348

1. Make the assumption that model-averaged predictions are unbiased. Use349

bootstrapping to estimate covariances of predictions for each model. From these350

estimates, compute prediction variance according to eqn (5). �is solution is351

computer-intensive, but it takes into account covariance of model predictions.352

On the other hand, it cannot account for bias, and should thus not be used when353

bias of the estimator is suspected, for example from cross-validation.354

16



2. Make the assumption that model-averaged predictions are unbiased. Use355

Buckland et al. (1997)’s approach (eqn 6). �is will yield wider estimates than356

option 1, because assumptions about bias and correlation are more conservative.357

3. Use a mixture distribution to compute the con�dence distribution of the average,358

assuming e�ectively that predictions from di�erent models are perfectly359

correlated, but possibly biased.360

4. Fit the full model (if available) and use its con�dence distribution, which can361

rarely be improved on (Kabaila et al., 2015).362

[Figure 5 approximately here.]363

When averaging models with largely independent (i.e. uncorrelated) predictions,364

only the bootstrap-estimated covariance matrix (option 1 above) will also compute365

lower variances (according to eqn 4). In our example (Fig. 10, see Data S1 for details),366

“propagation” produced the tightest con�dence interval (and hence lowest coverage),367

followed by “Buckland” and “mixing”. However, neither of these con�dence intervals368

seemed large enough, as all had too low coverage. Only the full model produces369

accurate con�dence intervals and coverage. Further simulations along these lines will370

have to show how these approaches perform for more complex models and situations.371

3 Approaches to estimating model-averaging372

weights373

So far, we have discussed the properties of a weighted model average, but we have not374

discussed how to estimate the model-averaging weights. Estimating weights aims at375

abating poorly ��ing, and elevating well-predicting models, and the actual method for376

estimating weights has obvious fundamental importance for the quality of an averaged377
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prediction. Di�erent perspectives on model-averaging weights have emerged (Table 1),378

which can be broadly classi�ed into four categories of decreasing probabilistic379

interpretability:380

1. In the Bayesian perspective, model weights are probabilities that model Mi is the381

‘true’ model (e.g. Link and Barker, 2006; Congdon, 2007).382

2. In the information-theoretic framework, model weights are measures of how383

closely the proposed models approximate the true model as measured by the384

Kullback-Leibler divergence, relative to other models.385

3. In a ‘tactical’ perspective, model weights are parameters to be chosen in such a386

way as to achieve best predictive performance of the average. No speci�c387

interpretation of the model is a�ached to the weights; they only have to work.388

4. Assigning �xed, equal weights to all predictions can be seen as a reference naı̈ve389

approach, representing the situation without adjusting for di�erences in models’390

predictive abilities.391

We shall address these four perspectives in turn, also hinting at relationships among392

them.393

[Table 1 approximately here.]394

3.1 Bayesian model weights395

�eory Bayes’ formula can be applied to choosing among models in much the same396

way as to parameter values (Wasserman, 2000). To perform inference with multiple397

models and their parameters at the same time, one can write down the joint posterior398

probability P (Mi,Θi|D) of model Mi with parameter vector Θi, given the observed399

data D, as400
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P (Mi,Θi|D) ∝ L(D|Mi,Θi) · p(Θi) · p(Mi), (7)

where L(D|Mi,Θi) is the likelihood of model Mi, p(Θi) is the prior distribution of the401

parameters of the respective model Mi, and p(Mi) is the prior weight on model Mi.402

In practice, one is o�en interested in some simpli�ed statistics from this403

distribution, such as the model with the highest posterior model probability, or the404

distribution of a parameter or prediction including model selection uncertainty. To405

obtain this information, we can marginalise (i.e. integrate) over parameter space, or406

marginalise over model space.407

If we marginalise over parameter space, we obtain posterior model weights that408

represent the relative probability of each model (whilst marginalising over model space409

yields averaged parameters, which we shall not address here). We can alternatively410

calculate these weights by calculating the marginal likelihood of each model, de�ned as411

the average of eqn (7) across all k parameters for any given model:412

P (D|Mi) ∝
∫

Θ1

· · ·
∫

Θk

L(D|Mi,Θi)p(Θi)dΘ1 · · · dΘk. (8)

From the marginal likelihood, we can compare models via the Bayes factor, de�ned as413

the ratio of their marginal likelihoods (e.g. Kass and Ra�ery, 1995):414

BFi,j =
P (D|Mi)

P (D|Mj)
=

∫
L(D|Mi,Θi)p(Θi)dΘi∫
L(D|Mj ,Θj)p(Θj)dΘj

, (9)

with the multiple integral now pulled together for notational convenience. For more415

than two models, however, it is more useful to standardise this quantity across all416

models in question, calculating a Bayesian posterior model weight p(Mi|D) (including417

model priors p(Mi): Kass and Ra�ery, 1995, ) as418

posterior model weighti = p(Mi|D) =
P (D|Mi) p(Mi)∑
j P (D|Mj)p(Mj)

. (10)
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Estimation in practice While the de�nition of Bayesian model weights and419

averaged parameters is straightforward, the estimation of these quantities can be420

challenging. In practice, there are two options to numerically estimate the quantities421

de�ned above, both with caveats.422

�e �rst option is to sample directly from the joint posterior (eqn 7) of the models423

and the parameters. Basic algorithms such as rejection sampling can do that without424

any modi�cation (e.g. Toni et al., 2009), but they are ine�cient for higher-dimensional425

parameter spaces. More sophisticated algorithms such as MCMC and SMC (see Hartig426

et al., 2011, for a basic review) require modi�cations to deal with the issue of di�erent427

number of parameters when changing between models. Such modi�cations (mostly the428

reversible-jump MCMCs, rjMCMC: Green, 1995, see Appendix S1.5.1) are o�en429

di�cult to program, tune and generalise, which is the reason why they are typically430

only applied in specialised, well-de�ned se�ings. �e posterior model probabilities of431

the rjMCMC are estimated as the proportion of time the algorithm spent with each432

model, measured as the number of iterations the algorithm drew a particular model433

divided by the total number of iterations.434

�e second option is to approximate the marginal likelihood in eqn (8) of each435

model independently, renormalise that into weights, and then average predictions436

based on these weights. �e challenge here is to get a stable approximation of the437

marginal likelihood, which can be problematic (Weinberg, 2012, see Appendix S1.5.1).438

Still, because of the relatively simple implementation, this approach is a more common439

choice than rjMCMC (e.g. Brandon and Wade, 2006).440

In�uence of priors A problem for the computation of model weights when441

performing Bayesian inference across multiple models is the in�uence of the choice of442

parameter priors, especially “uninformative” ones (see section 5 in Hoeting et al., 1999;443
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Chickering and Heckerman, 1997).444

�e challenge arises because in eqns (8) and (9) the prior density p(θi) enters the445

marginal likelihood and hence the Bayes factor multiplicatively. �is has the somewhat446

unintuitive consequence that increasing the width of an uninformative parameter prior447

will linearly decrease the model’s marginal likelihood (e.g. Link and Barker, 2006).448

That Bayesian model weights are strongly dependent on the width of the prior choice449

has sparked discussion of the appropriateness of this approach in situations with450

uninformative priors. For example, in situations where multiple nested models are451

compared, the width of the uninformative prior may completely determine the452

complexity of models that are being selected. One suggestion that has been made is to453

not perform multi-model inference at all with uninformative priors, or that at least454

additional corrections are necessary to apply Bayes factors weights (O’Hagan, 1995;455

Berger and Pericchi, 1996). One such correction is to calibrate the model on a part of456

the data �rst, use the result as new priors and then perform the analysis described457

above (intrinsic Bayes factor: Berger and Pericchi 1996, fractional Bayes factor:458

O’Hagan 1995). If enough data are available so that the likelihood is su�ciently peaked459

by the calibration step, this approach should eliminate any complication resulting from460

the prior choice (for an ecological example see van Oijen et al., 2013).461

Bayesian-�avoured approaches Apart from the natural Bayesian average (see462

also Yao et al., 2017), there are a number of other approaches that are connected to or463

inspired by Bayesian thinking.464

In a set of in�uential publications, Ra�ery et al. (1997), Hoeting et al. (1999) and465

Ra�ery et al. (2005) introduced post-hoc Bayesian model averaging, i.e. for vectors of466

predictions from already ��ed models. �e key idea is to iteratively estimate the467

proportion of times a model would yield the highest likelihood within the set of models468
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(through expectation maximisation, see Appendix S1.5.2 for details), and use this469

proportion as model weight. In the spirit of the inventors, we refer to this approach as470

Bayesian model averaging using Expectation-Maximisation (BMA-EM), but471

place it closer to a frequentist than a Bayesian approach, as the models were not472

necessarily (and in none of their examples) ��ed within the Bayesian framework. It473

has been used regularly, o�en for process models (e.g. Gneiting et al., 2005; Zhang474

et al., 2009), where a rjMCMC-procedure would require substantial programming work475

at li�le perceived bene�t, but also in data-poor situations in the political sciences476

(Montgomery et al., 2012).477

Chickering and Heckerman (1997) investigate approximations of the marginal478

likelihood in eqn (9), such as the Bayesian Information Criterion (BIC, as de�ned479

in the next section; see also Appendix S1.5.3) and �nd them to work well for model480

selection, but not for model averaging. In contrast, Kass and Ra�ery (1995) state (on481

p. 778) that eBIC is an acceptable approximation of the Bayes factor, and hence suitable482

for model averaging, despite being biased even for large sample sizes. �ese483

approximations may be improved when using more complex versions of BIC (SPBIC484

and IBIC: Bollen et al., 2012).485

�e “widely applicable information criterion” WAIC (Watanabe 2010 and an486

equivalent WBIC: Watanabe 2013) are motivated and actually analytically derived in a487

Bayesian framework (Gelman et al., 2014). With an uninformative prior, it can be seen488

as a variation of AIC (see next section). �e WAIC is computed, for each model, from489

two terms (Gelman et al., 2014): (1) the log pointwise predicted density (lppd) across490

the posterior simulations for each of the n predicted values, de�ned as491

lppd = log
∏n

i=1 pposterior(yi); and (2) a bias-correction term492

pWAIC =
∑n

i=1 var(log(p(yi|θs))), where var is the sample variance over all S samples493

of the posterior distributions of parameters θ. �e WAIC is then de�ned as494
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WAIC = −2 lppd + 2 pWAIC. In other words, the WAIC is the likelihood of observing495

the data under the posterior parameter distributions, corrected by a penalty of model496

complexity proportional to the variance of these likelihoods across the MCMC samples.497

Model weights are computed from WAIC analogously to equation 11 below.498

3.2 Information-theoretic model weights499

In the information-theoretic perspective, models closer to the data, as measured by the500

Kullback-Leibler divergence, should receive more weight than those further away.501

�ere are several approximations of the KL-divergence, most famously Akaike’s502

Information Criterion (AIC: Akaike, 1973; Burnham and Anderson, 2002). AIC and503

related indices can be computed only for likelihood-based models with known number504

of parameters (pm), restricting the information-theoretic approach to GLM-like models505

(incl. GAM):506

AICm = −2`m + 2pm and wm =
e−0.5(AICm−AICmin)∑
i∈M e−0.5(AICi−AICmin)

, (11)

where `m is the log-likelihood of model m.507

In the ecological literature, AIC (and its sample-size corrected version AICc, and its508

adaptations to quasi-likelihood models such as QIC: Pan 2001; Claeskens and Hjort509

2008) is by far the most common approach to determine model weights (for recent510

examples see, e.g., Dwyer et al., 2014; Rovai et al., 2015), despite the fact that the511

reasoning behin this choice is not entirely clear. AIC-weights (eqn 11) have been512

interpreted as Bayesian model probabilities (Burnham and Anderson 2002, p. 75; Link513

and Barker 2006), assuming a speci�c, model complexity and sample size-dependent,514

“savvy prior” (Burnham and Anderson 2002, p. 302; see also Hooten and Hobbs 2015, p.515

16, for reformulation as regularisation prior). An alternative interpretation is the516

proportion of times a model would be chosen as the best model under repeated517
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sampling (Hobbs and Hilborn, 2006), but such an interpretation is contentious518

(Richards, 2005; Bolker, 2008; Claeskens and Hjort, 2008). In an anecdotal comparison,519

Burnham and Anderson (2002, p. 178) showed that AIC-weights are substantially520

di�erent from bootstrapped model weights. �e la�er were proposed by Buckland521

et al. (1997) and represent the proportion of bootstraps a model is performing best in522

terms of AIC: see case study 1 below. In simulations, AIC-weights did not reliably523

identify the model with the known lowest KL-divergence or prediction error (Richards,524

2005; Richards et al., 2011). Instead, Mallows’ model averaging (MMA) has been525

shown to yield the lowest mean squared error for linear models (Hansen, 2007;526

Schomaker et al., 2010). Mallows’ Cp penalises model complexity equivalent to527

−2`m−n+ 2pm (for n data points; rather than AIC’s −2`m + 2pm, eqn 11).528

Schwartz’ Bayesian Information Criterion was derived to �nd the most probable529

model given the data (Schwartz, 1978; Shmueli, 2010), equivalent to having the largest530

Bayes factor (see previous section). BIC uses log(n) rather than AIC’s “2” as531

penalisation factor for model complexity (Appendix S1.5.3). A particularly noteworthy532

modi�cation of the AIC exist, where the model �t is assessed with respect to a focal533

predictor value, e.g. a speci�c age or temperature range, yielding the Focussed534

Information Criterion (FIC: Claeskens and Hjort 2008). We are not aware of a535

systematic simulation study comparing the performance of these model averaging536

weights, but AIC’s dominance should not indicate its superiority (see also case study 1537

below).538

�e weighting procedure can additionally be wrapped into a cross-validation and539

model pre-selection, which leads to the ARMS-procedure (Adaptive Regression by540

Mixing with model Screening: Yang, 2001; Yuan and Yang, 2005; Yuan and Ghosh,541

2008). We shall not present details on ARMS here (for cross-validation see next section),542

because we regard model pre-selection as an unresolved issue (see section 5.3).543
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3.3 Tactical approaches to computing model weights544

Methods covered in this section share the “tactical” goal of choosing weights to545

optimise prediction (e.g. reduce prediction error), without a speci�c reference to a546

statistical theory such as Bayesian inference or information theory.547

�e most straightforward approach in this area is to make the averaging weight548

dependent on an estimate of the predictive error of each model, usually obtained by549

cross-validation. Cross-validation approximates a model’s predictive performance on550

new data by predicting to a hold-out part of the data (typically between 5 and 20 folds,551

down to leave-one-out cross-validation, which omits each single data point in turn).552

�e �t to the hold-out can be quanti�ed in di�erent ways. If the data can be reasonably553

well described by a speci�c distribution with log-likelihood function ` (even if the554

model algorithm itself is non-parametric), the log-likelihood of the data in the k folds555

can be computed and summed (van der Laan et al., 2004; Wood, 2015, p. 36):556

`mCV =

k∑
i=1

`(y[i]|θ̂my[−i]
), (12)

where the index [−i] indicates that the data y[i] in fold i were not used for ��ing model557

m and estimating model parameters θ̂my[−i]
. It can be shown that leave-one-out558

cross-validation log-likelihood is asymptotically equivalent to AIC and thus KL-distance559

(Stone, 1977), albeit at a higher computational cost. Hence, computing model weights560

wm
CV (Hauenstein et al., 2017):561

wm
CV =

e`
m
CV∑

i∈M e`
i
CV

(13)

creates a weighting scheme very similar to AIC-weights, which implicitly penalises562

over��ing.563

Other measures of model �t to the hold-out folds have been used, largely as ad hoc564

proxies for a likelihood function (e.g. in likelihood-free models): pseudo-R2 (e.g565

Nagelkerke, 1991; Nakagawa and Schielzeth, 2013), area under the ROC-curve (AUC:566
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Marmion et al., 2009a; Ordonez and Williams, 2013; Hannemann et al., 2015), or True567

Skill Statistic (Diniz-Filho et al., 2009; Garcia et al., 2012; Engler et al., 2013; Meller568

et al., 2014). In these cases, weights were computed by substituting `CV in eqn (13) by569

the respective measure, or given a value of 1/S for a somewhat arbitrarily de�ned570

subset of S (out of M ) models, e.g. those above an arbitrary threshold considered571

minimal satisfactory performance (Crossman and Bass, 2008; Crimmins et al., 2013;572

Ordonez and Williams, 2013).573

Largely ignored by the ecological literature are two other non-parametric574

approaches to compute model weights: stacking and jackknife model averaging (see575

Appendix S1.4 for discussion of averaging within machine-learning algorithms). Both576

are cross-validation based, but unlike simple cross-validation weights, which are based577

on the performace of each contributing model on hold-out data, stacking and jacknife578

model averaging explicitly optimise weights to reduce the error of the average on579

hold-out data.580

Stacking (Wolpert, 1992; Smyth and Wolpert, 1998; Ting and Wi�en, 1999) �nds

the optimised model weights to reduce prediction error (or maximise likelihood) on a

test hold-out of size H . �is is, for RMSE and likelihood, respectively:

arg min
wm


√√√√√ 1

H

H∑
i=1

y[i] −
M∑

m=1

wmf̂
(
Xi

∣∣∣θ̂m[−i])
2


(Hastie et al., 2009) and

arg max
wm

`
y[i]

∣∣∣∣∣∣
M∑

m=1

wmf̂
(
Xi

∣∣∣θ̂m[−i])

 ,

where f̂(Xi|θ̂m[−i]) is the prediction of model m, ��ed without using data i, to data i.581

�is procedure is repeated many times, each time yielding a vector of optimised model582

weights, wm, which are then averaged across repetitions and rescaled to sum to 1. Yao583

et al. (2017) extend this approach also to Bayesian models to provide a clear584
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prediction-error minimising goal. Smyth and Wolpert (1998) and Clarke (2003) report585

stacking to generally outperform the cross-validation approach from two paragraphs586

earlier, and Bayesian model averaging, respectively (see also the case studies in587

section 4 and Appendix S5).588

In Jackknife Model Averaging (JMA: Hansen and Racine, 2012), each data point589

is omi�ed in turn from ��ing and then predicted to (thus actually a leave-one-out590

cross-validation rather than a “jackknife”). �en, weights are optimised so as to591

minimise RMSE (or maximise likelihood) between the observed and the ��ed value592

across all N “jackknife” samples. �e optimisation function is the same as for stacking,593

except that H = N . �us, in stacking, weights are optimised once for each run, while594

for the jackknife only one optimisation over all N leave-one-out-cross-validations is595

required (further details and examples with R-code are given in Appendix S1.5.6).596

�e forecasting (i.e. time-predictions) literature (reviewed in Armstrong, 2001;597

Stock and Watson, 2001; Timmermann, 2006) o�ers two further approaches. Bates and598

Granger (1969)’s minimal variance approach a�ributes more weight to models with599

low-variance predictions. More precisely, it uses the inverse of the variance-covariance600

matrix of predictions, Σ−1, to compute model weights. In the multi-model601

generalisation (Newbold and Granger, 1974) the weights-vector w is calculated as:602

wminimal variance = (1′Σ−11)−11Σ−1, (14)

where 1 is an M -length vector of ones. �is is the analytical solution of eqn 5,603

assuming no bias and ignoring the problem that weights are random variates, under604

the weights-sum-to-one constraint. Equation 14 does not ensure all-positive weights,605

nor is it obvious how to estimate Σ. One option (used in our case studies) is to base Σ606

on the deviation from a prediction to test data in lieu of measure of past performance607

(following recommendation of Bates and Granger, 1969).608

Finally, Garthwaite and Mubwandarikwa (2010) devised a rarely used method,609
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called the “cos-squared weighting scheme”, designed to adjust for correlation in610

predictions by di�erent models. It was motivated by (i) giving lower weight to models611

highly correlated with others (thereby reducing the prediction variance contributed612

through covariances in eqn 5), (ii) division of weights when a new, near-identical613

model prediction is added to the set, and (iii) reducing all weights when more models614

are added to the set. Weights are computed as proportional to the amount of rotation615

the predictions would require to make them orthogonal in prediction space, hence the616

trigonometric name of their approach.617

Modelling model weights618

So far, weights were always constant. However, one might also consider making619

weights dependent on other variables. �is approach, which we term “model-based620

model combinations” (MBMC, also called “superensemble modelling”) was �rst621

proposed by Granger and Ramanathan (1984). Here a statistical model f is used to622

combine the predictions from di�erent models, as if they were predictors in a623

regression: Ỹ ∼ f(Ŷ1, Ŷ2, . . . , Ŷm) (see Fig. 9 le�). �e regression-type model f can be624

of any type, such as a linear model or a neural network. We call this regression the625

“supra-model” in order to distinguish between di�erent modelling levels.626

A very simple supra-model would compute the median of predictions for each627

point Xi(e.g. Marmion et al., 2009a). Di�erent models are used in the “average”628

without requiring any additional parameter estimation. Median predictions imply629

varying weights, as the one or two models considered for computing the median may630

change between di�erent Xi.631

An ideal model combination could switch, or gently transition, between models632

(such as manually constructed by Crisci et al., 2017). Since the predictions are combined633

more or less freely in model-based model combinations to yield the best possible �t to634
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the observed data, MBMC should be superior to any constant-weight-per-model635

approach (see Fig. 9 right), as was indeed found by Diks and Vrugt (2010). �is636

advantage comes with a severe drawback: a high proclivity to over��ing, as we �t the637

same data twice (once to each model, then again to their prediction regression).638

[Fig. 4 approximately here.]639

�is does not seem to be recognised as a problem (despite being a key message of640

Hastie et al., 2009), as all studies we found incorrectly cross-validate the supra-model641

only, not the entire work�ow (if at all; e.g. Krishnamurti et al., 1999; �omson et al.,642

2006; Diks and Vrugt, 2010; Breiner et al., 2015; Romero et al., 2016). To correctly643

cross-validate MBMCs, one has to produce hold-outs before ��ing the contributing644

models, and evaluate the MBMC prediction on this hold-out (Fig. 9, Appendix S5.9 and645

case studies).646

Note that supra-models may di�er substantially in their ability to harness the647

contributing models. As it is a yet fairly unexplored �eld in model averaging, analysts648

are advised to try di�erent supra-model types (Fig. 9).649

3.4 Equal weights650

Last, we discuss the most trivial weighting scheme: in many �elds of science (climate651

modelling, economics, political sciences), model averaging proceeds with giving the652

structurally di�erent models equal weight, i.e. 1/M (e.g. Johnson and Bowler, 2009;653

Knu�i et al., 2010; Graefe et al., 2014; Rougier, 2016). In ecology, studies analysing654

species distributions reported equal weights to be a very good choice when assessed655

using cross-validation (Crossman and Bass, 2008; Marmion et al., 2009a; Rapacciuolo656

et al., 2012), but no be�er than the single models on validation with independent data657

(Crimmins et al., 2013). Equal weights may serve as a reference approach to see658

whether estimating weights reduces prediction error for this speci�c set of models. In659
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that sense, we may argue, all the above weight estimation approaches only serve to660

separate the wheat from the cha�; once a set of reasonable models has been identi�ed,661

equal weights are apparently a good approach.662

4 Case studies663

All methods discussed above can be applied to simple regression models, while some664

explicitly rely on a model’s likelihood and can thus not be used for non-parametric665

approaches. We therefore devised two case studies, the �rst being a rather simple666

example to illustrate the use of all methods in Table 1, and the second a more667

complicated species distribution case study based on a reduced set of methods. Note668

that we do not include adaptive regression by mixing with model screening (ARMS:669

Yang, 2001) because its more sophisticated variations (Yuan and Yang, 2005) are not670

readily implemented in R, and the basic ARMS is barely di�erent from AIC-model671

averaging for a preselected set of models.672

4.1 Case study 1: Simulation with Gaussian response,673

many models and few data points674

In this �rst, simulation-based case study, we explore the variability of model-averaging675

approaches in the common case where several partially nested models are �t (see Data676

S1 for details and code). �e simulation was set up so that several of the ��ed models677

have similar support as explanations for the data. �is was achieved by generating the678

response di�erently in each of two groups (using similar, but not identical predictors).679

We simulated 70 data points with 4 predictors yielding 24 = 16 candidate models, and680

another 70 data points for validation. We computed model weights in 19 di�erent ways681

(Table 1) and compared the prediction error of weighted averages as well as the682

30



individual models to the validation data points. Simulation and analyses were repeated683

100 times.684

Two results emerged from this simulation that are worth reporting. First,685

prediction error (quanti�ed as RMSE) was similar across the 19 weight-computing686

approaches, with a few noticeably poor exceptions (the two MBMC approaches,687

minimal variance and the cos-squared scheme: Fig. 11), and most were no be�er than688

those of the best nine single model predictions. Second, most averaging approaches689

gave some weight (w > 0.01) to ten or more models (Table 2), despite models being690

overlapping and partially nested, so that we have actually only �ve (more or less)691

independent models (those containing only one predictor: m2, m3, m5, m9 and692

intercept-only m1). In real data sets, such spreading of weight is the result of data693

sparseness or extreme noise, making important e�ects stand out less; indeed, half of694

our candidate models are not hugely di�erent, i.e. within ∆AIC < 4.695

[Figure 6 approximately here.]696

[Table 2 approximately here.]697

4.2 Case study 2: Real species presence-absence data,698

many data points and a moderate number of predictors699

In the second case study, we use data on the real distribution of short-�nned eel700

(Anguilla australis) in New Zealand (from Elith et al., 2008). �e data are provided in701

the R-package dismo, already split into a 1000-rows training and a 500-rows test data702

set, and featuring 10 predictors. We ran four di�erent model types (GAM, Random703

Forest - rF, arti�cial neural network - ANN, support vector machine - SVM) using all 10704

predictors, along with two variations of the GLM (best models selected by AIC and BIC705

from the full model containing the 10 predictors, relevant quadratic terms and all706
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�rst-order interactions). For details see Data S1.707

�e number of averaging approaches that can be used to compute model weights is708

smaller than in the previous case study, as three of the six models do not report a709

likelihood or the number of parameters, precluding the use of rjMCMC, Bayes factor,710

(W)AIC, BIC, and Mallows’ Cp. Because we do not know the underlying711

data-generating model, we evaluate the models on the randomly pre-selected test data712

provided.713

[Table 3 approximately here.]714

One interesting result is that model averaging was e�ectively a model selection tool715

in several cases (Table 3). Stacking, bootstrapping, JMA, and to a lesser degree minimal716

variance, BMA-EM and the model-based model combinations yielded non-zero weights717

for only 1 (or 2) models. Apparently, these approaches yielded sub-optimal model718

weights, as these “model selection”-outcomes of model averaging fared worse than719

those that kept all models in the set (equal weight, leave-one-out and cos-squared).720

Secondly, the best two model averaging algorithms in this case study, apart from721

the median where varying weights are used, identi�ed an approximately equal722

weighting as optimal strategy. �at is somewhat surprising, given that SVM performed723

relatively poorly (and was excluded by BMA-EM, but favoured by cos-squared as a724

more independent contribution). �e likely reason of high weights for the poor SVM is725

that averaging-in less correlated predictions reduces covariances in eqn (5).726

�e good performance of the median in both case studies suggests that using the727

central value of each prediction, rather than give constant weights to the model itself,728

may be even more e�ective in reducing variance and thus prediction error. Further729

research is needed to clarify if this principle is indeed valid across many applications.730
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5 Recommendations731

In this review, we have �rstly explained the mechanisms by which model averaging732

can improve model predictions, and secondly, we have discussed the large diversity of733

methods that are available to compute averaging weights. While our general results734

and outlook on this �eld are positive, in the sense that model averaging is o�en useful,735

the complexity of the topic prevents us from providing �nal answers about the best736

approach for ecologists. Surprisingly many issues seem to be statistically unresolved,737

or addressed by quick-�xes and even fundamental questions remain open, which we738

will discuss next. It is unsatisfactory to see the large variance in weights and739

performance of the di�erent averaging approaches in our case studies, but also the740

literature provides too few comparisons of model weights to provide robust advice. In741

general, our recommendations are thus guided by reducing harm, rather than742

suggesting an optimal solution.743

5.1 Averaged prediction should be accompanied by744

uncertainty estimates745

Just like any other statistical approach, model averaging can be used wrongly.746

Focussing entirely on the predictions, rather than their uncertainty, can be misleading,747

as Knu�i et al. (2010) showed for combining precipitation predictions: spatial748

heterogeneity cancelled out across models, giving the erroneous impression of li�le749

change when in fact all models predict large changes (albeit in di�erent regions).750

Similarly, King et al. (2008) found that averaging parameters from two competing751

models led to no e�ect of two hypothesised impacts, although in both models a752

(di�erent) driver was very in�uential. We thus strongly encourage including at least753

model-averaged con�dence intervals alongside any prediction, possibly in addition to754
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the individual model predictions, to prevent erroneous interpretation of averaged755

predictions. Also, more a�ention should be paid to the full model. It has many desirable756

properties (unbiased parameter estimates, very good coverage), but su�ers from757

violation of the parsimony principle (“Occam’s razor”) and requires more consideration758

in which form covariates should be �t. Its larger prediction error, compared to the759

over-optimistic single-best partial model, is the reason for correct con�dence intervals.760

5.2 Dependencies among model predictions should be761

addressed762

Statistical models, which aim to describe the data to which they are ��ed, will o�en763

have correlated parameters and �ts; process models may overlap in modelled processes.764

Having highly similar models in the model set will in�ate the cumulative weight given765

to them (as illustrated in Appendix S1.6) . One way to handle in�ation of weights by766

highly-related models is to assign prior model probabilities in a Bayesian framework.767

Another approach would be to pre-select models of di�erent types (see next point).768

Alternatively, the cos-square scheme of Garthwaite and Mubwandarikwa (2010) uses769

the correlation matrix of model projections to appropriately change weights of770

correlated models. Of the weighting schemes considered here, it is the only approach771

doing so, but it should be noted that the performance of this approach in our case study772

was rather poor (Fig. 11, Tables 2 and 3).773

5.3 Validation-based weighting or validation-based774

pre-selection of models775

Madigan and Ra�ery (1994), Draper (1995), Burnham and Anderson (2002) and more776

recently Yuan and Yang (2005) and Ghosh and Yuan (2009), have argued that only777

34



“good” models should be averaged. Di�erent ways of combining model averaging with778

a model screening step have been proposed (Augustin et al., 2005; Yuan and Yang, 2005;779

Ghosh and Yuan, 2009), in which model selection precedes averaging (pre-selection).780

�is will happen implicitly, and in a single step, if any of the model weight algorithms781

discussed above a�ributes a weight of e�ectively zero to a model, as happened in case782

study 2. How prevalent this e�ect is in real world studies is unclear, as weights are783

rarely reported.784

In contrast, some studies select models a�er the predictions are made (e.g. �uiller,785

2004; Forester et al., 2013). These studies have averaged models which predict in the786

same direction (along the “consensus axis”: Grenouillet et al. 2010), which are the best787

50% in the set (Marmion et al., 2009a), or however many one should combine to788

minimise prediction error. Such approaches necessitate addressing the challenge of789

using data twice (Lauzeral et al., 2015). Post-selection reduces the ability of “dissenting790

voices” (i.e. less correlated predictions) to reduce prediction error and instead reinforce791

the trend of the model type most represented in the set. As a consequence, their792

uncertainty estimation will be overly optimistic. We do not advocate their use.793

We suggest to employ validation-based methods of model averaging rather794

than relying on model-based estimates of error. �at is, we recommend (leave-one out)795

cross-validation and stacking rather than AIC (in line with recommendations of796

Hooten and Hobbs, 2015). Using (semi-)independent test data gives us some capacity to797

estimate predictive bias. In such a se�ing, it may be less relevant whether models are798

pre-selected by validation-based estimates of error and then averaged with equal799

weights or weighted by validation-based estimates of error without pre-selection. For800

this to work, however, it is crucial that (cross)-validation strategies are designed to801

ensure independence of the validation data, which is a non-trivial problem in many802

practical ecological applications (Roberts et al., 2017).803
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5.4 Process models are no di�erent804

In �shery science, averaging process models is relatively common (Brodziak and Piner,805

2010), as it is in weather and climate science (Krishnamurti et al., 1999; Knu�i et al.,806

2010; Bauer et al., 2015). �ere are at least two connected challenges such enterprises807

face: validation and weighting. O�en process models are tuned/calibrated on all sets of808

data available, in the sensible a�empt to describe all relevant processes in the best809

possible way. �at means, however, that no independent validation data are available,810

so that we cannot use the prediction accuracy of di�erent models to compute model811

weights. Consequently, all models receive the same weight (e.g. in IPCC reports, or for812

economic models), or some reasonable but statistically ad-hoc construction of weights813

is employed (e.g. Giorgi and Mearns, 2002). In recent years, hind-casting has gained in814

popularity, i.e. evaluating models by predicting to past data. �is will only be a useful815

approach if historic data were not already used to derive or tune model parameters,816

and if hindcasting success is related to prediction success (which it need not be, if817

processes or drivers change).818

Cross-validation is o�en infeasible for large models, as run-times are prohibitively819

long. However, the greatest obstacle to averaging process models is the absence of truly820

equivalent alternative models, which predict the same state variable. Fishery science is821

one of the few areas of ecology in which commensurable models exist and are being822

averaged in a variety of ways (e.g. Stanley and Burnham, 1998; Brodziak and Legault,823

2005; Brandon and Wade, 2006; Katsanevakis, 2006; Hill et al., 2007; Katsanevakis and824

Maravelias, 2008; Jiao et al., 2009; Hollowed et al., 2009; Brodziak and Piner, 2010).825

Carbon and biomass assessments are also moving in that direction (Hanson et al., 2004;826

Butler et al., 2009; Wang et al., 2009; Picard et al., 2012). �ese �elds could pro�t from827

exploring averaging methods such as minimal variance and cos-squared, which do not828

require cross-validation and may perform be�er than either equal weights or BMA-EM,829
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and probably be�er than MBMC’s potentially over��ed supra-models.830

Finally, irrespective of the approach chosen, model averaging studies should report831

model weights, and predictions should be accompanied by estimates of prediction832

uncertainty.833

5.5 Overall conclusion and recommendations834

In conclusion, we �nd that:835

1. Model averaging may, but need not necessarily reduce prediction errors. Model836

averaging bene�ts generally increase with i) decreasing covariance of the837

individual model predictions, and ii) decreasing mean bias of the contributing838

models. Moreover, iii) while estimating model weights allows reducing the839

weight of poor models, this comes at the expense of introducing additional840

variance in the average, reducing the bene�ts of model averaging.841

2. �ere are currently no generally reliable analytical methods to calculate842

frequentist con�dence intervals (or p-values) on model-averaged predictions.843

Non-parametric methods, however, such as cross-validation remain reliable for844

estimating predictive errors, and should therefore be preferred for quantifying845

predictive uncertainties of model averages. Bayesian credible intervals are in846

principle valid as well, if the typical assumption for Bayesian model selection,847

that the true model is among the candidates, is met.848

3. From general considerations, we believe that non-parametric methods that849

directly target predictive error (e.g. cross-validation or stacking) are a robust and850

straightforward choice for choosing weights. Parametric methods such as AIC,851

BIC are faster, but may not always perform equally well. Cross-validation can be852

used to test if �xed or estimated weights perform be�er than the full or the best853
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Table 3: Model weights given to the six model types of case study 2 (GLM, GAM, Random For-

est, arti�cial neural networks and support vector machine) by di�erent weighting methods

(see Table 1 for abbreviations), arranged by decreasing �t of the averaged predictions to test

data, assessed as log-likelihood (`) (last column). LOO-CV: leave-one-out cross-validation

using R2 or RMSE as measure of model performance. For code see case study 2 in Data S1.
Method GLMAIC GLMBIC GAM rF ANN SVM `

median 1 (0.176) (0.216) (0.212) (0.162) (0.146) (0.088) −182.84

LOO-CV 0.168 0.168 0.166 0.169 0.165 0.164 −184.82

equal weight 0.167 0.167 0.167 0.167 0.167 0.167 −184.86

cos-squared 0.122 0.104 0.178 0.188 0.186 0.221 −185.02

BMA-EM 0.388 0.192 0.000 0.420 0.000 0.000 −185.24

stacking 0.000 0.000 0.000 1.000 0.000 0.000 −186.82

bootstrap 0.000 0.000 0.000 1.000 0.000 0.000 −186.83

minimal variance 0.155 0.469 −0.036 0.58 −0.026 −0.141 −188.45

MBMC (GAM) 3 – – * * – – −198.23

MBMC (rF) 3 – – – – – – −200.20

JMA 0.000 0.000 0.000 0.000 0.000 1.000 −214.68

MBMC (GLM) 3 – – * * – – −268.52

rF 2 0 0 0 1 0 0 −186.83

GAM 2 0 0 1 0 0 0 −193.40

ANN 2 0 0 0 0 1 0 −194.28

GLMAIC
2 1 0 0 0 0 0 −197.48

GLMBIC
2 0 1 0 0 0 0 −197.73

SVM 2 0 0 0 0 0 1 −214.68

1 Weights are proportion of times this model was actually used to compute the median value divided by two.
2 Prediction from individual model.
3 Weights are variable. Asterisk indicates that a model’s prediction was a signi�cant term in the supra-model.

GAM, rF and GLM refer to three di�erent types of supra-model: a generalised additive model, a Random

Forest, and a generalised linear model.
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Figure 1: Conceptual depiction of the contributions of error to model averaging. A) Con-

tributing models have larger bias than variance. �en, the error of the average depends on

how the bias is averaged out. It can increase or decrease compared to the best model. Adding

a lot more models will not change the error, unless this reduces bias. B) Contributing models

have similar bias and variance. In this case, averaging an increasing number of models

can reduce the variance of the error, while the bias remains. C) Contributing models are

unbiased, but have large variance. In this case (assuming covariances between models are

low), an increasing number of models can, in principle, make the error arbitrarily small.

Figure 2: Conceptualised outcomes of model averaging. Sampling distributions of model

predictions are depicted as stylised empty triangle on the see-saw (wider means less certain).

Filled triangles represent the model predictions with unidirectionally bias (top row) or

straddling truth (bo�om row), and positive, no, or negative covariances among model

predictions in columns. In the top row, grey shaded quadrants indicate model combinations

with bias in the same direction, leading to a biased average (tilted see-saw). In the bo�om

row, grey shaded quadrants indicate opposite biases, which may lead to less biased averaged

prediction, assuming optimal model weights were found. Changes in prediction covariance

(columns) a�ect the uncertainty of the average, with negatively correlated predictions (right)

yielding lowest uncertainty.

58



Figure 3: When averaging is optimal, in the simplest case of two models that make correlated

Gaussian predictions. �e models are here described by their biases (b1, b2, not shown), their

standard deviations (σ1, σ2), and by the correlation (ρ) between them. Each panel shows the

regions in the (σ1, ρ) plane where model 1 is best (blue shading and contour line), model

2 is best (orange shading and contour line), and where the optimal average is best (colour

gradient between blue and orange). Top row represents the case where weights are known

(i.e. without error: σw = 0), while the second row represents exactly the same se�ings, but

with estimated weights (with uncertainty σw = 0.2). Notice that when w is estimated with

uncertainty, the contours marking the transition between each single model and the average

move into the washed-out colours, i.e. deviate from the �xed w situation in the upper panels.

�ese curves now represent a level set at the values w̄∗1 = 1− σw (blue curve) and w̄∗2 = σw

(orange curve). As a consequence, the area where model averaging with estimated weights

is superior to the be�er single model decreases substantially relative to the �xed w case,

and disappears completely for σw ≥ 0.5. Formal derivations for the contours and the critical

weights is given in Appendix S1.2, the interactive tool itself in Data S1. Biases are set to

b1 = 3 and b2 = 2.

Figure 4: A simple model-based model combination example. Le�: �ree models (solid grey

lines: constant, linear and quadratic) ��ed separately to a data set (points, following the thin

black line). Using a linear model (with quadratic terms: red) to combine the three models’

�ts may improve �t, even more so than the full model (green), and with narrower con�dence

intervals. Do�ed lines indicate the weight that each model receives at each point in the

linear model. Such MBMC did not necessarily improve �t, as Random Forest-based model

combinations showed (blue). Right: Using 5-fold cross-validation around the entire work�ow

shows that the linear supra-model (Supra-LM) indeed improved prediction (decreased root

mean squared prediction error), while the Random Forest-supra-model (Supra-rF) did not.

�e full model (as reference) comprised all terms present in Supra-LM, but was ��ed directly.
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Figure 5: A comparison of di�erent approaches to quantifying uncertainty when combining

predictions from four linear models (dashed curves) with equal weights. Top: Estimates

of predictive uncertainty in a single example run. Truth is indicated by the vertical line.

Error propagation based on bootstrapped estimates for eqn (5), Buckland et al.’s correction

and model mixing yield (substantially) smaller uncertainties than the full model. Bo�om:

Histograms of the cumulative density of the estimated uncertainties at the true values. �e

numbers display the coverage for the 95% con�dence interval.

Figure 6: Prediction error of di�erent model averaging approaches (100 repetitions) for case

study 1. Box represents quartiles, white line the median. Approaches to the le� of the vertical

line are very similar, and no be�er than nine of the candidate models. See Table 1 for list of

approaches, and case study 1 in Data S1 for list and �ts of the individual models.
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