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Appendix S1

S1.1 Model averaging for parameter estimation

�e value of a parameter common to several models could also be the target of model averaging. Since model
structure a�ects the estimation of each parameter, one could think of averaging estimates across models to
accommodate model structural uncertainty. Fundamentally, this is a problematic enterprise, as the actual meaning
of a parameter changes when the model structure changes, as they are conditional on the form of the model and the
other covariates included in it (see Cade, 2015; Banner and Higgs, 2017, for a thorough coverage of this argument).

We a�ribute the origin of this idea to one of two possible misunderstandings.

1. In meteorological process models and alike, uncertainty about initial and boundary conditions is o�en
accommodated by running the same model with di�erent se�ing, and deriving the average parameter by
averaging the �ts from each set of conditions. Since it is always the same model, no structural uncertainty is
included. �is approach is perfectly �ne, but does not translate readily to models of di�erent structure.

2. For linear models, predicting from a parameter-averaged model is mathematically identical to averaging
predictions, but this is not the case for non-linear models. For linear models we can use the mathematical
shortcut of averaging model parameters and predicting with these (Burnham and Anderson, 2002; Lukacs
et al., 2010; Freckleton, 2011). Indeed, many mathematical papers and proofs are concerned entirely with
linear models, despite their lack of transferability to most real-world situations (e.g. Hansen, 2007; Liang
et al., 2011; Nguefack-Tsague, 2014).

ỹ =
1

m

m∑
i=1

Xbi = X

∑m
i=1 bi
m

(S1)

For non-linear models, such as GLMs with log or logit link functions g(x), such coe�cient averaging is not
equivalent to prediction averaging, as

1

m

m∑
i=1

g(Xbi) 6= g

(
X

∑m
i=1 bi
m

)
(S2)

for any non-linear function g (a consequence of Jensen’s inequality, which also holds for concave functions).
�us in general, parameter averaging is not equivalent to prediction averaging. In practice, however, both
log and logit are o�en su�ciently linear, making coe�cient averaging an acceptable approximation.

Another problematic issue with parameter averaging is which value to assign parameters that are not in a given
model. Depending on the amount of collinearity among predictors, the conditional or unconditional approach
of Burnham and Anderson (2002, p. 152) may work be�er, but clearly not both can be right. �e more common
solution is to set omi�ed parameter estimates to 0 (the “unconditional” approach).
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Cade (2015) suggests an interpretation of MA regression coe�cients a�er employing a two-level standardisation.
Banner and Higgs (2017) recommend against any interpretations and provide a graphical tool for assessment.
�ese publications suggest that at least interpretation is challenging, in contrast to common practice especially in
conservation and behavioural ecology, where averaged parameters are o�en seen as best scienti�c knowledge.
Interpretation of model-averaged parameters a�er best-subset regressions is also �awed statistically, since the
averaged parameters of the resulting model (which is o�en the full model) di�er from the maximum likelihood
estimates of the structurally identical model, which is part of the best-subset regression. So we know that the
averaged parameters are statistically non-optimal: why should they then be “be�er” suited for interpretation than
the MLE estimates for the same model structure?

Model selection inevitably in�ates e�ect sizes of estimated parameters (i.e. distorts the ratio of estimate and its
standard error), which was the motivation to develop shrinkage estimators. Parameter averaging also de facto acts
as a shrinkage, as some models will not have a given predictor and the parameter is hence set to 0 (Lukacs et al.,
2010). When averaging, this pulls estimates back towards 0, acting similar to the regularisation term in ridge or
lasso regression. So, while the parameter averaging as such is conceptually problematic, it may actually work to
reduce parameter estimation bias, although for a di�erent reason than originally anticipated. Using lasso or ridge
regression seems a much more direct and statistically sound way to reach this goal.

Model averaging may reduce parameter estimation bias: evidence from literature re-
view

According to the (non-ecological) literature, parameter estimation is consistently improved by model averaging
(e.g. Turkheimer et al., 2003). �is is largely due to the fact that parameter averaging is dominated by process models
averaging over di�erent initial conditions. In this case, there is no di�erence in model structure, and parameters
retain their meaning.

For linear models, several studies show that model averaging acts similar to shrinkage, i.e. downwards bias of
model coe�cients. In fact, Ghosh and Yuan (2009) make this link mathematically explicitly and show that model
weights are e�ectively shrinkage parameters. Still, model-averaged parameters were found to regularly be closer to
the ‘truth’ than single-model estimates, thus con�rming the expectation that model averaging improves parameter
estimation.

�us, parameter averaging may work, but for the wrong reason. Also, it would be false to assume that model
averaging is a useful procedure to reduce bias in parameter estimation. Overall, we agree with Cade (2015) that
parameter averaging for regression-type models leads to inconsistent interpretations of these parameters and
should be discouraged. �e interpretation of variable importance is distorted when simply summing model weights,
for the same reason: when a variable is omi�ed, its e�ect will be partially transferred onto other model parameters
and hence wrongly a�ributed to them (Galipaud et al., 2014).

S1.2 Analytical treatment of averaging predictions from two correlated,
normally distributed models (J.M.C., B.R.)

In this appendix, we consider the simple case of averaging two models whose predictions, under repeated sampling,
are jointly normally distributed, and (possibly) correlated. We focus on obtaining analytical results on the conditions
under which the averaged prediction is be�er than either of the individual models. Our set-up is a generalization
of that studied by Bates and Granger (1969).

Let Ŷ1 ∼ N (b1, σ
2
1) be the prediction of model 1, Ŷ2 ∼ N (b2, σ

2
2) the prediction of model 2, and assuming the

two models are jointly normally distributed, let cor(Ŷ1, Ŷ2) = ρ. We assume that the true value of the quantity
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being predicted is 0, and thus the means b1 and b2 of each prediction measure the bias in the prediction. �e mean
squared prediction error of each model is thus

MSE1 = b21 + σ2
1 (S3)

MSE2 = b22 + σ2
2 . (S4)

We de�ne the prediction with the lowest MSE to be the best. Next, we consider a weighted average of the
predictions of models 1 and 2

ŶA = wŶ1 + (1− w)Ŷ2, (S5)

where 0 ≤ w ≤ 1 is the weight assigned to model 1 and 1− w is the weight assigned to model 2. As multiplying
a random variable by a constant changes its parameters but not its distribution, the weighted random variables
wŶ1 and (1− w)Ŷ2 are distributed as N (wb1, w

2σ2
1) and N ((1− w)b2, (1− w)2σ2

2), respectively. Furthermore,
the correlation between two random variables is invariant to separate scale changes of those variables, thus
Corr(wŶ1, (1− w)Ŷ2) = ρ. Finally, we denote the covariance in predictions between the two models as σ12 =

ρσ1σ2. �e sum of two jointly distributed correlated normal random variables is also normally distributed, thus
the averaged prediction is normally distributed with mean and variance

bA = w(b1 − b2) + b2 (S6)

σ2
A = w2σ2

1 + 2(1− w)wσ12 + (1− w)2σ2
2 , (S7)

respectively, which follow from standard formulae for the moments of sums of correlated variables. �e mean
squared prediction error of the average is then

MSEA = w2MSE1 + (1− w)2MSE2 + 2(1− w)w(b1b2 + σ12). (S8)

We are interested in identifying the conditions under which the average is best. We therefore focus on
identifying the boundaries between the region where the average has minimum MSE and the regions where either
model 1 or model 2 have minimum MSE. In general, the value of w that de�nes the transition between regions
must satisfy two conditions. Speci�cally, for the ith single model, we seek w∗i such that

w∗i = arg min
w∈[0,1]

MSEA(w) (S9)

MSEi =MSEA(w∗i ). (S10)

Clearly, the transition between regions must occur where the MSE of the average equals that of the focal single
model. However, while this condition is necessary, it is not su�cient. To see this, consider that at any point in the
region where the average is favoured that is not exactly on the boundary, it will always be possible to �nd a value
of MSEA that equals that of the focal single model. However, in this region it will also always be possible to �nd
values of MSEA that are lower than that of the single model (e.g. min(MSEA)), and so this cannot be a transition
point between regions. Only on the boundary between regions will min(MSEA) be the only value of the MSE of
the average that equals that of the focal single model.

To �nd w∗i , we therefore must �rst solve for the weight, w∗, that minimizes the MSE of the average. Di�erenti-
ating eqn S8 with respect to w, we obtain
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dMSEA
dw

= 2(wMSE1 − (1− w)MSE2 + (1− 2w)(b1b2 + σ12)). (S11)

We then set

dMSEA
dw

= 0 (S12)

and solve for w, which gives

w∗ =
1

C
(MSE2 − b1b2 − σ12), (S13)

where we have de�ned C ≡ MSE1 + MSE2 − 2b1b2 − 2σ12. Se�ing w = w∗ in eqn (S8), the minimum possible
value of the MSE of the average for a given set of model parameters is then

min(MSEA) =
1

C
(MSE1σ

2
2 + b22σ

2
1 − (2b1b2 + σ12)σ12). (S14)

�e second condition that de�nesw∗i is then satis�ed when MSEi = min(MSEA). To understand the conditions
under which averaging is favoured, it is useful to visualize these relationships. We thus consider the two-dimensional
parameter space, (z, ρ), where z is one of the model parameters (b1, b2, σ1, or σ2), and the remaining parameters
are held constant. Based on the MSE values of the individual models and of the average, the (z, ρ) plane can be
partitioned into regions where model 1 is best, where model 2 is best, and where the average is best. Speci�cally,
the contour separating the region where model 1 is best from that where the average is best, c1(z), occurs where
MSE1 = min(MSEA) in the (z, ρ) plane. �us solving the implicit equation MSE1 = min(MSEA) for ρ yields

c1(z) =
MSE1 − b1b2

σ1σ2
(S15)

Similarly, the contour separating the region where model 2 is best from the region where the average is best occurs
when MSE2 = min(MSEA), and solving this equation for ρ gives

c2(z) =
MSE2 − b1b2

σ1σ2
. (S16)

To use these expressions, one chooses a particular parameter of interest for z. For example, se�ing z = b1, one
would plot c1(b1) and c2(b1) in the (b1, ρ) plane, and hold the values of the remaining parameters b2, σ1, and σ2
constant. Finally, upon substituting eqn (S15) and eqn (S16) separately into eqn (S13), we obtain the critical weights

w∗1 = 1 (S17)

and

w∗2 = 0, (S18)

respectively. �erefore the average is favoured for 0 < w < 1 when w is �xed and known. While the critical
weights are intuitively obvious in the �xed w case, the approach we have used to derive them is general and
transfers to the less intuitive variable weights case that we consider next.

So far we have assumed the optimal weights are known, but in practice the weights must be estimated from the
data. We now consider the case when w is estimated with error, speci�cally when w ∼ N (w̄, σ2

w), where the true
value being estimated is w̄. In other words, we assume that the estimate of w is unbiased under repeated sampling.
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We obtain the MSE of the average in this case by integrating eqn (S8) term-by-term over the distribution of w

t1 = MSE1

∫ ∞
−∞

w2f(w; w̄, σw) dw (S19)

= MSE1(w̄2 + σ2
w) (S20)

t2 = MSE2

∫ ∞
−∞

(1− w)2f(w; w̄, σw) dw (S21)

= MSE2((1− w̄)2 + σ2
w) (S22)

t3 = 2(b1b2 + σ12)

∫ ∞
−∞

(1− w)wf(w; w̄, σw) dw (S23)

= 2(b1b2 + σ12)((1− w̄)w̄ − σ2
w), (S24)

where

f(w; w̄, σw) =
e
− (w−w̄)2

2σ2
w

√
2πσw

(S25)

is the PDF of the normal distribution. Summing terms and simplifying, the MSE for the average when w is normally
distributed is then

MSE
′

A = w̄2MSE1 + (1− w̄)2MSE2 + 2(1− w̄)w̄(b1b2 + σ12) + Cσ2
w, (S26)

where the ′ notation is used to distinguish the variable-w MSE from the �xed-w MSE. It is apparent that eqn (S26)
has the same form as eqn (S8), but with an extra term that is scaled by the sampling variance of w, σ2

w . We note
that C takes its minimum value when the covariance between models is maximal, which occurs when ρ = 1 given
that σxy = ρσxσy . Se�ing ρ = 1 and simplifying, we obtain

min(C) = (b1 − b2)2 + (σ1 − σ2)2, (S27)

which is always positive. �erefore MSE
′

A > MSEA whenever σw > 0, implying that estimating w with
uncertainty will always increase the MSE of the average, all else being equal.

Intuitively, we expect that the increase in the MSE of the average resulting from uncertain weight estimation
will narrow the range of conditions that favour averaging. To see this, consider that while the MSE of the average
increases when weights must be estimated, MSE1 and MSE2 remain the same as before because they do not
involve weight estimation. To quantify the magnitude of this e�ect, we proceed as before to derive the contour
lines in the (z, ρ) plane that separate regions where the single models are favoured from the region where the
average has the lowest MSE when w is uncertain. Di�erentiating eqn (S26) with respect to w̄, se�ing the result
equal to 0, and solving for w̄ yields w̄∗ = w∗. �is is reassuring as we have assumed unbiased estimation of w,
and so the value of w that minimizes the MSE of the average in the �xed weights case will also be the value of the
mean, w̄, that minimizes the MSE in the uncertain weights case.

Next, we set w̄ = w̄∗ in eqn (S26), yielding

min(MSE
′

A) =
1

C
(b22σ

2
1 − 2b1b2σ12 + MSE1σ

2
2 − σ2

12 + C2σ2
w). (S28)

We then set MSE1 = min(MSE
′

A) and MSE2 = min(MSE
′

A) and solve for ρ in each case, which gives the
contour lines

c
′

1(z) =
MSE1 − b1b2

σ1σ2
− σw(MSE1 −MSE2)

σ1σ2(2σw − 1)
(S29)
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and
c
′

2(z) =
MSE2 − b1b2

σ1σ2
− σw(MSE2 −MSE1)

σ1σ2(2σw − 1)
, (S30)

respectively. Equations (S29) and (S30) have the same form as eqns (S15) and (S16), but with an extra term that is a
function of σw and acts to pull the contours into the region where the average is favoured in the �xed weights case.
�is has the e�ect of expanding the size of the regions where the single models are favoured, while contracting
the region where the average has minimum MSE.

As before, we then substitute eqns (S29) and (S30) separately into eqn (S13), yielding

w̄∗1 =w∗1 − σw (S31)

=1− σw (S32)

w̄∗2 =w∗2 + σw (S33)

=σw. (S34)

�erefore, when the weights must be estimated, the region where the average is favoured shrinks from 0 < w < 1

to σw < w < 1− σw . �is implies that, in this particular setup, the region where the average has minimum MSE
disappears completely when σw = 0.5.

�e interactive tool provided in appendix II shows these contours in the (b1, ρ) plane (le� panel) and the (σ1, ρ)

plane (right panel) on top of a density plot that is colour-coded according to the value of w∗ at each point. �e
tool provides interactive parameter sliders so that users can explore the parameter space of the two-model set-up
to understand the conditions under which averaging is advantageous. �e sliders that control model parameters
are placed above each panel. In addition to sliders for the parameters of each of the two models, there is also a
slider that controls the standard deviation, σw , of the sampling distribution of w. �e default value is 0, which
yields the �xed w case described above, while σw > 0 allows one to explore the e�ects of uncertain estimation
of w on the relative advantages of averaging. Finally, a slider controlling the resolution, R, of the underlying
density plot is located below each panel. �is resolution slider allows the user to control the trade-o� between
the quality (i.e., smoothness) of the density plot and the amount of time it takes to render the plot a�er changing
the values of model parameters. Selecting a lower resolution will facilitate quickly exploring the parameter space.
However, if the colour gradient appears “wavy”, rough, or displays other artifacts, increasing the resolution will
typically produce a be�er result. �e interactive tool requires the freely available Wolfram CDF Player, which can
be downloaded at: https://www.wolfram.com/cdf-player/.

Several key insights emerge from this analysis. First, there is no guarantee that averaging will produce the best
solution. Indeed, it is easy to �nd large regions of parameter space where either model 1 or model 2 alone yield the
minimum MSE. It is also possible to �nd areas where the optimal solution transitions rapidly from one model to
the other with only a narrow region where averaging is favoured in between. All of the parameters involved in the
problem, including the biases and variances of each model, as well as the correlation between models, a�ect the
conditions under which averaging is favoured. In particular, positive correlations between predictions o�en lead to
one of the individual models being preferred over the average. In contrast, negative correlations between models
broaden the conditions under which averaging is advantageous. �e conditions that favour averaging models that
are biased in the same direction are much more restrictive than those that favour averaging models that are either
unbiased or that have opposite biases. In real-world averaging problems, the predictions from di�erent models
will unfortunately tend to be highly correlated, which will limit the utility of averaging. Overall, the surprising
richness of the results produced by this “toy problem” analysis suggests that more caution may be warranted when
approaching complex, real-world averaging problems.
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A further note of caution emerges when we allow the weights to be estimated with uncertainty. Speci�cally,
the regions that favour averaging contract, o�en dramatically, as a function of σw . �us even in scenarios where
averaging would beat either of the single models if the optimal weights were known exactly, estimating w with
uncertainty can reverse the situation such that the average no longer yields the minimum MSE. �is happens for
two reasons. First, uncertainty in w is guaranteed to increase the MSE of the average, all else being equal, while
the MSE values of the single models are una�ected because they do not involve weight estimation. Second, over
much of the parameter space where averaging is favoured in the �xed-w case, the reduction in MSE achieved by
the average is o�en very small, and is thus easily washed away by the increase in MSE that results from estimating
w with uncertainty. Finally, we have assumed that w is estimated without bias, which will typically not be the case
in reality. Allowing both bias and uncertainty in the estimation of w would very likely further erode the conditions
under which averaging is advantageous.

�e value of this simpli�ed set-up is that it is possible to clearly establish the conditions that favour averaging.
�e two main messages that emerge from this exercise are that the conditions that favour averaging become much
narrower when model predictions are positively correlated, and when the weights are estimated with uncertainty.
Unfortunately, both of these conditions will frequently occur together in real-world averaging problems. However,
it is important to appreciate the limitations of this exercise as well. Some types of models may make predictions
that are not normally, or even uni-modally, distributed. Insights gleaned from a case where models are jointly
normally distributed might be of limited utility is such situations. Furthermore, real model averaging problems
will tend to feature many more than two models to (potentially) be averaged. On the one hand, this may lead
to models having a range of biases such that there are at least some models that fall on each side of the truth.
On the other hand, averaging a large number of highly correlated models may o�en not be be�er than the best
single model, and the need to estimate many weights (instead of just one) with uncertainty will further restrict the
potential advantages of averaging. As researchers frequently ignore both the correlations among models (but see
Marmion et al., 2009), and the e�ects of estimating weights when averaging, these issues may be considerably
more problematic than is currently realized.
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S1.3 Fitting the full model

�e “full model” refers to a model which contains all predictors of interest, possibly in di�erent forms (e.g. as linear
terms, interactions, polynomials, or non-linear functions). �e full model does not need to have all true covariates
in it, but it has all covariates that are used in any of the other models. �us, it must contain all polynomials and
interactions that are present in all other models combined. �e full model potentially contains more parameters
than there are data points (i.e. it is over-parameterised), and the predictors may be highly correlated. �e la�er
is a problem for the stability of estimates (leading to in�ated parameter estimates), the �rst prevents the use of
algebra-based approaches.

Markov chain Monte Carlo-based approaches can be used to �t an over-parameterised Bayesian model (see
Reichert and Omlin, 1997, for a discussion of why this may be a good idea). In addition to being able to accommodate
so many covariates, it seems indicated to regularize such a model to reduce in�ation of parameter estimates. For
the Bayesian full model, a Bayesian Lasso would be the simplest way to achieve this. Priors strongly centered on
zero are used to down-biase estimates (Laplace or double-exponential priors). Alternatively, one could �t a range
of univariate models and (unconditionally) average them a�erwards (see Breiner et al., 2015, for an example). Note
that unconditional model averaging of the univariate regressions in fact acts like a regularization (Ghosh and Yuan,
2009). �e machine-learning version is bagging, speci�cally Random Forest, where only a subset of predictors is
trialled at each node.

In appendix VI we present a small and highly arti�cial data set (20 data points, 50 predictors with parameter
value 1 each) as an illustration of how to �t the full model with the three approaches mentioned. We achieved the
best �t with Random Forest (RMSE=2.20), followed by the Bayesian approach (Lasso or not give the same point
estimates; RMSE=3.99). �e averaged bivariate regressions are substantially worse (RMSE=8.23).
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S1.4 Model averaging in machine-learning algorithms

In machine learning, several algorithms use the combination of many models to stabilise model predictions. Most
famous are bagging (Breiman, 1996) and boosting (Schapire, 1990), nicely put into context by Hastie et al. (2009).
Here we brie�y describe the idea and approach behind these two approaches, before discussing similarities and
di�erences with model averaging as described in the main text.

Bagging, or bootstrap aggregation, samples from the original data with replacement and runs the model of
interest on each of these bootstrap samples, creating b bootstrapped models. For prediction, each of these models
makes a prediction and all predictions are then averaged (in the case of a continuous response). In the original
idea no weighting of the bootstrapped models is involved, but one could also use the performance of a bootstrap
on the unused data for that bootstrap (the so-called out-of-bag estimate) as a way to generate weights. Bagging
can be used for any kind of statistical model. Its most common implementation is in Random Forest (Breiman,
2001), where classi�cation and regression trees are “bagged” (requiring also that a random subset of the predictors
is used for each node of each tree; this double-randomisation stabilises the Random Forest substantially more than
the mere bagging would do).

Boosting (Schapire, 1990), with later adaptive boosting (AdaBoost: Freund and Schapire, 1996), has seen some
development since its original conception, with stochastic gradient boosting now being the algorithm typically
referred to (Friedman, 2002; Hastie et al., 2009). �e key idea is that (1) a �rst model F1 (such as a multiple
regression or a tree) is ��ed; (2) its residuals are computed; (3) a new model F2 is ��ed to these residuals; (4) a
new overall model a�er m iterations Foverall =

∑m
i=1 Fi is used to compute new residuals; (5) the overall model so

far is evaluated on a test data set. �e steps 3-5 are repeated until improvement converges. �us, we can view
boosting as a series of (diminishing) corrections of the previous set of models.

Both approaches assume that many poorly ��ing models (‘weak learners’) can be combined to a well-��ing
model (‘strong learner’) (Kearns and Valiant, 1989). No single model is expected to be particularly good. However,
as pointed out in Hastie et al. (2009, p. 285), the issue is slightly more complicated for 0/1 data (and hence 0-1-loss),
where good models improve through bagging, while poor models may well deteriorate further. Both bagging and
boosting work on typically hundreds to thousands of models, although the eventual averaging actually leads to
these algorithms having few actual degrees of freedom (Elder, 2003).

Clearly, bagging and boosting employ model averaging as part of their algorithm. �ey are thus on a par
with model averaging of, say, linear models using AIC-weights. In fact, there is nothing special about the model
averaging within bagging or boosting approaches, despite the awe in which they are held.

Another important point is that the great performance of bagging/boosting is no evidence that model averaging
is a good idea per se. �ey di�er substantially in their set-up to the model averaging approaches discussed in the
main text:

1. Each model is a poor model on purpose, since weak base learners can be boosted to lower predictive errors
than strong leaners (Hastie et al., 2009, p. 362).

2. �ey combine many (> 500) di�erent models.

3. �e focus is purely on prediction, not on parameter estimation or identi�cation of model structure.

In summary, machine-learning methods may also internally use model averaging, in exactly the same way discussed
in the text. �erefore, model aggregation as part of a machine-learning algorithm works in the same way as
discussed in the main text. In fact, we hope that the main text sheds light on why such model aggregation works
in machine learning algorithms.
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S1.5 Method details

S1.5.1 Model averaging via Bayesian posterior model weights (F.H., E.M.)

As explained in the main text, Bayesian inference provides a natural framework for mixing models and parameters,
where the joint posterior distribution across all possible models with all possible parameter is expressed as

P (Mi,Θi|D) ∝ L(D|Mi,Θi) · p(Θi) · p(Mi), (S35)

�e result joint distribution P (Mi,Θi|D) can then be used to make predictions for any desired quantity.
�ere are two ways to calculate P (Mi,Θi|D) in practice:

1. Calculating the joint probability P (Mi,Θi|D) directly, which is technically nearly always done via reversible
jump MCMC sampling

2. Calculating marginal posterior model weights, which can then be used to weight predictions of the indepen-
dent models. In practice, this requires approximating the marginal likelihood for each model, a quantity that
will be further explained below.

Reversible jump MCMC as a method is arguably more elegant, and o�en numerically more e�cient, but typically
incurs a considerable time investment for implementing and tuning the reversible jump algorithm. Marginal
likelihoods calculations are easier to generalize, but computational e�ort for stable estimates may be considerably
higher than for reversible jump MCMCs.

In the rest of this section, we provide an example for either option.

Setting up a reversible jump MCMC analysis

Reversible jump MCMC (Green, 1995) is a trans-dimensional iterative algorithm developed in the Bayesian
framework which allows us to obtain the posterior model probabilities and samples from the posterior distributions
of model parameters. �e la�er posterior distributions can be summarised either conditionally on a model, for
example the model with the highest posterior probability, or they can be averaged across models.

�e algorithm involves two types of updates: a between-models update for moving between models with
di�erent numbers of parameters and a within-model update for updating the parameters in the current model,
that is the model where the algorithm has moved to in the current iteration.

�e posterior model probabilities are estimated as the proportion of time the algorithm spent in each model,
which is the number of iterations the algorithm moved to a particular model divided by the total number of
iterations. We note that a move to the same model is possible if the proposal to move to a di�erent model is
rejected.

Suppose that we are proposing to move from model Mi with parameter vector Θi to model Mj with parameter
vector Θj . We need to de�ne a one-to-one function, h, which satis�es (Θj ,u

′) = h(Θi,u), where u and u′ are
sets of random variables (King et al., 2009).

�e move is accepted with probability

A = min

(
1,

P(Mj,Θj|D)P(Mi|Mj)q
′(u′)

P(Mi,Θi|D)P(Mj|Mi)q(u)
|J|
)
, (S36)

where P (Mj ,Θj |D) is the posterior distribution of modelMj , as de�ned in eq. (S35), P(Mi|Mj) is the probability
of proposing to move to model Mi from model Mj , given that the algorithm is currently in model Mj , q(u) and
q′(u′) are the proposal density functions of u and u′, and |J | is the Jacobian matrix, de�ned as
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|J | =
∣∣∣∣∂(Θj ,u

′)

∂(Θi,u)

∣∣∣∣ (S37)

For the example presented in case study 1, the four models are not nested and they are of di�erent dimension:
20, 15, 10 and 5 predictors. We de�ne,

Θ1 = (β0, β1, . . . , β20, σ
2
1)

Θ2 = (β′0, β21, . . . , β35, σ
2
2)

Θ3 = (β∗0 , β36, . . . , β45, σ
2
3)

Θ4 = (β′′0 , β46, . . . , β50, σ
2
4)

We choose independent N(0, 1) priors for all coe�cients in the model and equal prior model probabilities, i.e.
p(Mi) = 1/4, i = 1, . . . , 4. Similarly, we choose independent N(0, 1) proposal distributions for all coe�cients.

Suppose we propose to move to model M3 from model M4. We need to de�ne function h such that

β′′0 = β∗0
β36, . . . , β45 = u

u′ = β46, . . . , β50

Hence, h is just the identify function which results in |J | = 1. In this case, the acceptance probability simpli�es
to

A = min

(
1,

L(D|M3,Θ3)

L(D|M4,Θ4)

)
, (S38)

since all other terms cancel out because we have used the same prior probabilities for all models, all moves
between models are proposed with the same probabilities and we have set the prior and proposal distributions of
model parameters to be the same. Note that the la�er is not generally recommended as it can lead to low acceptance
rates and poor mixing but in this case we are able to run the algorithm for long enough to compensate because of
the simplicity of the model.

Now suppose we propose to move to model M4 from model M3. We need to de�ne function h such that

β∗0 = β′′0
β46, . . . , β50 = u

u′ = β36, . . . , β45

which again gives

A = min

(
1,

L(D|M4,Θ4)

L(D|M3,Θ3)

)
, (S39)

So generally, we have set up the RJMCMC algorithm so that the acceptance probabilities for between models
moves are simply the ratios of the likelihood values evaluated for each model, proposed and current.

Computing marginal posterior model weights via marginal likelihood estimation

Looking at the joint posterior eq. S35, note that we can marginalize out the parametric uncertainty for each
individual model by integrating over the prior space. �is quantity

P (D|Mi) ∝
∫
L(D|Mi,Θi)p(Θi)dΘi (S40)
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is called the marginal likelihood of model i. Using this in eq. S35, we can write the marginal posterior probability
for each model (e.g. the posterior support for each individual model that can be used as weight for the averaging)
as

BMWi =
P (D|Mi) · p(Mi)∑
j P (D|Mj) · p(Mi)

. (S41)

�e technical problem that remains is estimating the marginal likelihood eq. S40. A brute-force approach would
be to sample parameters from the prior, calculate the likelihood for these parameters, and take the mean of all
calculated values. However, the approach is not particularly e�cient when the parameter space is large.

Various alternatives and approximations have been suggested to provide be�er approximations. One route
to improve ML estimates is concentrating sampling e�ort in the space of high posterior values, because only
those parts of the parameter space contribute to the integral for which likelihood times prior is large. A natural
idea is therefore to use MCMC samplers to make such a selection. Simple approximations using MCMC samples
such as the harmonic mean harmonic mean estimator of Newton and Ra�ery (1994) o�en perform poorly in
high-dimensional parameter space with wide priors. Currently, a number of alternative algorithms have been
proposed, but it is not clear to us whether one is clearly preferable over the other.

Model averaging using mixtures of g-priors

We learned of this approach only a�er the �rst revision of the manuscript (many thanks to the reviewer pointing it
out to us!) and hence did not implement or discuss it within the main body of this paper. �e approach is another
variation on Bayesian model averaging and apparently is computationally less costly. It is available, in R, in the
BMS package (Zeugner and Feldkircher, 2015, altough models are here subsets of the speci�ed maximal model
and cannot be freely speci�ed; hence BMS could not be used as part of our case study 1).

�e g-prior was invented by Zellner (1986) as a multivariate prior for regression parameters β (with the
co-variances being proportional to the inverse of Fisher’s Information matrix ψ(θ), and g being the constant1):

β|ψ ∼ MVN
(
β0, gψ

−1(θ)
)
. (S42)

One advantage of the g-prior over any other is that we only �t one parameter, g, as the covariance structure is
�xed by the (data- and model-derived) Fisher matrix.

�e g-prior approach was then extended to multiple models by Ley and Steel (2012), who assign a hyper-prior
on g across regression models. Knowing g, Ley and Steel (2012) derive a formula for the marginal likelihood of
each model, and thus their Bayes-factor. Hence, the g-prior-approach is an alternative way to yield the Bayesian
model weights of eqn S41.

Technical details

In the case study 1 (appendix IV) we provide an example of the implementation of both rjMCMC and Bayes factor
model weights. �e rjMCMC code is build-for-purpose and contained in that appendix (RJMCMCfunctions.R).

For the Bayes factor example, we use the method by Chib and Jeliazkov (2001). �is method uses existing
draws from an MCMC sampler, but calculates additional points around the existing values to approximate the
Marginal Likelihood. For the MCMC sampling of each single model, we used a Metropolis-Hastings MCMC with
prior optimization and 30000 steps from the BayesianTools package, followed by an estimation of the marginal
likelihood with 1000 draws from the posterior a�er burn-in, using an implementation of the method by Chib and
Jeliazkov (2001) in the BayesianTools package.2

1See also https://en.wikipedia.org/wiki/G-prior
2�is can be installed in R by running the following commands:

library(devtools)

install url(”https://dl.dropboxusercontent.com/s/hy9l6mokresqyel/BayesianTools 0.0.0.9000.tar.gz”)
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S1.5.2 BMA using Expectation Maximisation (‘BMA-EM’) (C.F.D.)

Bayesian Model Averaging (BMA) in general refers to any kind of model averaging within the framework of Bayesian
statistics. In the literature, BMA is o�en associated with a particular approach, championed by Adrian Ra�ery
and co-authors in several publications (particularly Ra�ery et al., 2005), using a speci�c approach (expectation
maximisation). �is BMA-EM-approach is described here.

Fundamentally, BMA-EM is post-hoc model averaging: it takes the �ts (to training data) of several models
and then essentially iteratively computes model weights to optimally �t the ensemble to the training data. �ese
weights are then used to combine predictions from the training-data models.

More speci�cally, the steps comprise (Ra�ery et al., 2005; Zhang et al., 2009):

1. Get predictions from each of the M models (fm = ŷm in our notation; we use that of Ra�ery et al. to avoid
too many hats in the following equations).

2. Start with equal weights (w1 = . . . = wM = 1/M ) and compute the BMA-prediction probability density
as P (y|f1, . . . , fK) =

∑M
m=1 wmgm(y|fm), where g(.) is a normal PDF for each model’s prediction, with

mean am + bmfm and standard deviation σ (which is implicitly assumed to be identical across models by
Ra�ery et al. 2005).
�e BMA prediction is simply the expectation of this expression: E(y|f1, . . . , fM ) =

∑M
m=1 wmgm(y|fm).

wm carries the interpretation of model probability, or more precisely the probability of prediction fm being
correct, given the observed data D.
�e role of am and bm is to remove bias in the predictions. �ey can easily be derived from ��ing a linear
regression of the predictions of model fm against the (training) data y and remain constant therea�er.

3. Compute the log-likelihood of the model average,

`BMA =

N∑
i=1

log

(
M∑
m=1

wmgm(y|fm)

)
,

where i refers to data points. (Note that this assumes that model predictions are independent, which is
unlikely to be true. Ra�ery et al. (2005, p. 1159) argue that estimates of wm are unlikely to be a�ected by
this non-independence.)

4. Let zim be a latent indicator variable, with value 1 when model m is the best prediction to data point i. We
do not know the values of zim, but we can estimate them as ẑim = wmg(yi|fim,σ)∑

m wmg(yi|fim,σ) . (We here omit an
index for the iterations, but note that the values of ẑim, wm and σ are being updated with every following
iteration.) Ra�ery et al. (2005) call this the ‘expectation’ or E-step.

5. From ẑim we can now compute new values forwm and σ (the ‘maximisation’ or M-step):wm = 1
n

∑N
i=1 ẑim,

and σ2 = 1
n

∑N
i=1

∑M
m=1 ẑim(yi − fim)2.

6. Steps 3-5 are repeated until `BMA converged, yielding estimates for model probabilities wm.

Note that the models themselves are not updated or cross-validated. Vrugt et al. (2008) introduce an MCMC-based
computing scheme with be�er convergence properties, particularly for small data sets.

Several studies apply a power-transformation to the prediction fm = ŷim for data i from model m, so that
f ′m = (ŷim)1/b, with b taking the value of 3 (Sloughter et al., 2007) or 4 (Hamill et al., 2004), in order to shrink
predictions towards zero and thereby hope to reduce prediction bias due to extreme observations. Montgomery
et al. (2012) extend this approach to binary responses, turning the power-transformation into a more complicated
transformation:

f ′m =
(

(1 + logit(fm))
1/b − 1

)(
I(fm > 0.5)− I(fm < 0.5)

)
, (S43)
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with ‘I’ being an indicator function. (Note that in Montgomery et al. (2012)’s equation A1 absolute values appear,
which is unnecessary for values of f ∈ [0, 1].)

For this version of Bayesian model averaging there is no mechanism that controls for over��ed models. If
a model near-perfectly �ts the training data, it will inevitably yield a high weight, since there is no way that
the calibration of the model average can tell that these �ts are due to an over-parameterised model. �is is �ne
for ensembles, where members represent the same model with di�erent initial conditions or are known to be
structurally of similar complexity. For correlational models in general, however, another split of the training
data into a calibration and a validation set is required (Montgomery et al., 2012): the models are ��ed to the
calibration data, then predict to the validation hold-out, which is then used for computing the model averaging
weights, which are then used on the test data for evaluation. �e purpose of the validation data is to get an estimate
of the true predictive performance of the models, rather than their �t. To date, no study has analysed how to split
the training data, but a 50/50% or a 66/34% split seem typical (Hastie et al., 2009, p. 222). If we were to repeatedly
compute BMA-weights this way, it would conceptually approach the stacking method described in section S1.5.5,
although with a di�erent optimisation function. Note that this procedure requires the number of data points to be
at least twice the number of models!

Technical details

For computation (case study 2) we used the EBMAforecast package of R (version 0.5: Montgomery et al., 2013),
se�ing b to a value of 3, and spli�ing the training data randomly into two equal-sized calibration and validation sets.
(Note that we added a value of 0.0001 to all predictions with value 0 as the calibrateEnsemble function requires
pim to be in (0, 1).) Although not strictly a requirement, weights are estimated more stably when Ntrain > M . As
we split the data into half to estimate predictive performance before computing weights, this means there should
be at least 2M data points.

Acknowledgements

Many thanks to Florian M. Hollenbach and Michael Ward for their help and access to a pre-release version of
EBMAforecast, which is by now succeeded by the CRAN version.

S1.5.3 Information-theory-based model averaging weights

Here we brie�y discuss approaches that use the �t of the model and some measure of model complexity. Most
prominent is the AIC, and its small-sample version AICc. Furthermore we use the BIC, which penalises heavier and
leads to smaller models being favoured. eBIC can be seen as an approximation of the Bayes factor (as described in
the main text). We also include here the widely applicable information criterion (WAIC, computed using R-package
blmeco), as generalisation of the AIC, as well as Mallows’Cp (which is equivalent to AIC for normally distributed
data, computed using R-package MuMIn).

Note that all these indices can be derived as approximations of the Kullback-Leibler distance, and as such as
approximations of the predictive performance of a model (Gelman et al., 2014). �e WAIC requires, as detailed
in the main text, two ingredients, each themselves estimated from the model. �e blmeco implementation does
not do justice to this estimation and is largely proportional to the AIC, due to the way this package computes the
WAIC. WAIC in package BayesianTools, in contrast, uses Gelman et al. (2014)’s de�nition, but works only for
models ��ed with that speci�c package.

�e key challenge for computing the Bayes factor, and hence the posterior model probability, is the integral over
the parameters, i.e. the marginal likelihood of a model. As mentioned in the main text, the BIC is an approximation
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of the Bayes factor (more speci�cally, eBIC is), but other approximations exist. BayesianTools’ uses MCMC-
integration (i.e. summing over MCMC samples and standardising), which Chickering and Heckerman (1997)
consider as ‘gold standard’. �at publication also mentions Laplace approximation (which is used in INLA Rue et al.,
2009), the candidate method and the Cheeseman-Stutz-approximation. Having not seen them implemented for
model averaging in any of the publications we encountered during this review, we refer the reader to Chickering
and Heckerman (1997) for details and references for these approaches.

All these information criteria were derived under large-sample asymptotic assumptions. To allow for small-
sample e�ects, we also include leave-one-out-cross-validation (LOO) to directly assess model �t on the data at
hand. �e most common criterion under LOO seems to be RMSE. We additionally investigate the log-likelihood of
the omi�ed data point, and, for binary data, AUC and eAUC (see case study 2).

S1.5.4 Naı̈ve bootstrap model weights

Starting with a machine-learning approach to model averaging, more speci�cally bagging, we see that bagged
models are averages across bootstraps (see appendix S1.4). In bagging, the same model type is bootstrapped and
aggregated, while in model averaging (in a wider sense) we may also want to average predictions from several
di�erent types of models. However, we can still borrow the bagging idea and use bootstrapping to compute model
weights, rather than performing the actual averaging of predictions.

A di�erent way of looking at this proposal is to realise that the �t of a model to data is a function of the data
(as well as the model): ` = f(data|model). �us, changing the data may lead to a model m being be�er or worse
than its competitors. �rough bootstrapping, we can quantify how o�en a model is the best model in the model set
M, and use this as weight when averaging model predictions. �is selection frequency approach to model weights
was proposed by Buckland et al. (1997), but later shown to be biased (Wagenmakers et al., 2004).

�e procedure is computer-intensive, but simple: Bootstrap the data, �t all models, compute a measure of model
�t (e.g. RMSE, log-likelihood) on the unused data, score models and tally which is the best across all bootstraps.3

It is generally recommended to bootstrap at least 10000 times,4 particularly when interested in the tails of the
bootstrap distribution. In model averaging low weights have a very low e�ect on the averaged value and we thus
deemed 1000 bootstraps to be adequate for our analyses. If computing resources allow, an order of magnitude
more bootstraps (> 10000) would be advisable.

Technical details

In the case studies (appendix IV), we provide an example implementing this algorithm. �is is also now available
in MuMIn as function bootWeights, but is there (currently) restricted to GLMs.

S1.5.5 Stacking models (C.F.D.)

Stacking describes the averaging of models based on weights computed during a cross-validation-like procedure.
�e process works like this:

1. Fit each model to a subset of the data (the training data), typically 1/2 of the full data set.

2. Predict to the unused subset (the test or hold-out data).
3�ere may actually be smarter ways than tallying, e.g. using the rank, or weighting ranks by absolute di�erences in RMSE. �at is not a

trivial task and we found no literature on this. Note, for example, that it would be worth to consider scaling the measure between the extremes
possible, e.g. for RMSE between the RMSE for the saturated model (not 0) and an intercept-only model.

4http://stats.stackexchange.com/questions/86040/rule-of-thumb-for-number-of-bootstrap-samples
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Figure S1: Densities of weights as computed across 1000 random training/test splits (80/20% each). Triangles represent median
weights for each of the three model types.

3. Fit these hold-out predictions to the hold-out observations, by optimising the weights by which the models
are combined. (Weights are constrained to sum to 1, and to be in [0, 1].)

4. Store optimised weights.

5. Repeat steps 1-4 many (1000) times , yielding a distribution of weights for each model (which Smyth and
Wolpert (1998) referred to as an empirical Bayesian estimate of posterior model probability).

6. Compute mean or median of model weights for each model, and re-scale to sum to 1.

7. Multiply re-scaled mean (or median) weight for each model with the models’ predictions or �ts to compute
the stacked predictions or �ts.

Note that this approach requires a sample size of at least twice the number of models. By increasing the training
size relative to the test this can be slightly improved. Small data sets (i.e. where N is not much larger than M ) will
o�en have optimisation issues. While for case study 2, 500 data points with M = 6 models lead to only a handful
of failed optimisations, the 100 data points of case study 4 on M = 49 models saw a failure rate of 60-70%.

We illustrate the use of this procedure using the species richness data from Washington (see appendix S1.6 for
details). In this case, we did not a�empt to evaluate whether stacking was be�er or worse for prediction or alike,
which would require another cross-validation around the stacking. Repeating the steps 1–4 1000 times yields a
wide range of weights for each method (Fig. S1). �e median weights we computed for GLM, GAM and CART
were 0.091, 0.630 and 0.019, respectively. To evaluate the approach, we kept a 20% hold-out before the �rst step. In
this case, mean and median stacked �ts were similar (RMSE of 2.494 and 2.308, respectively), slightly worse than
the �ts of the two best models (GLM: 2.379, GAM: 2.381), but be�er than the worst (CART: 4.540). While such
a simple illustration does not allow an evaluation of this approach, it at least shows that model stacking is not
necessarily be�er than each of the stacked models.

Note that changing the size of the training/test fraction for small data sets may have a substantial e�ect on
weights, but luckily not so much on RMSE. Using 2/3 for the training, for example, leads to the following RMSE
values: mean: 2.643; median: 2.562; GLM: 2.379; GAM: 2.381; CART: 4.544. �e median weights for GLM, GAM and
CART are 0.029, 0.689 and 0.165, respectively (note in particular the changes for GLM and CART).
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Technical details

In the case studies (appendices IV and V), we provide an example implementing this algorithm (see function
stacking in appendices IV and V). �is function was invoked 1000 times to estimate model weights. We used the
mean of stacked model weights in our analyses. �ere is no systematic investigation into best spli�ing of data,
minimum number of stacking runs, or the use of mean vs median stacked weights. �is is also now available in
MuMIn as function stackingWeights, but is there (currently) restricted to GLMs.

S1.5.6 Jackknife model averaging (C.F.D.)

Jackknife model averaging (JMA: Hansen and Racine, 2012) was proposed as an optimal weights strategy even
under heteroscedastic errors. JMA has since been shown to also be optimal for mixed models and other dependence
structures (Zhang et al., 2013). It optimises the model weights for jackknifed model �ts. However, Nguefack-Tsague
(2014) showed that such optimal models will not necessarily outperform AIC-, BIC- or unpenalised likelihood
weights. Note that “jackknife” is actually not the correct term, both in its original de�nition (Tukey, 1958) and
today’s use (https://en.wikipedia.org/wiki/Jackknife resampling), but it should rather be called
“leave-one-out model averaging”. One refers to “jackknife” if a statistics is computed on the n − 1 data (i.e. on
y[−i]), while LOO refers to statistics on the data that were omi�ed (i.e. on yi).

Let f̂
(
Xi

∣∣∣θ̂m[−i]) be the prediction of model m, which was ��ed omi�ing data point i, to this omi�ed data
point. �en JMA chooses model weights wm so as to minimise

arg min
wm


√√√√ 1

N

N∑
i=1

(
y[i] −

M∑
m=1

wmf̂
(
Xi

∣∣∣θ̂m[−i])
)2


under the constraint that
∑M
m=1 wm = 1. Note that this is the same equation as in the main text under stacking,

but replacing the H there by N , the number of data points. Instead of this RMSE-minimisation, one could also
choose to maximise the likelihood:

arg max
wm

{
`

(
y[i]

∣∣∣∣∣
M∑
m=1

wmf̂
(
Xi

∣∣∣θ̂m[−i])
)}

,

Either requires a jackknife run for all models, from which the predictions to the le�-out-data point are stored in a
N×M matrix J. �us, the optimisation simpli�es, in the case of RMSE-minimisation, to minimising

∑
(Jw−Y)2.

Note that computational costs are relatively high and proportional to N , as it requires computing matrix J

from omi�ing each data point once and recomputing all models.

Technical details

In the case studies (appendices IV and V), we provide examples implementing this algorithm. It is also now available
in MuMIn as function jackknifeWeights, but is there (currently) restricted to GLMs.

S1.5.7 Bates-Granger model weights

�is approach uses prediction covariance to compute model weights. To get an estimate of prediction covariance,
we split the data into two, �t models to one half and predict to the other half. �ese predictions are then used to
compute the M ×M variance-covariance between models, Σ.

From Σ, model weights w are algebraicly computed as:

wBates-Granger = (1′Σ−11)−11Σ−1
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which in R is:
ginv(t(ones)%*%ginv(Sigma)%*%ones)%*%ones%*%ginv(Sigma), whereones is a vector of 1s of length
M . Note that we mostly use MASS::ginv rather than solve for matrix inversion as ginv seems to be more
stable near singularities.

A peculiar feature of Bates-Granger weights is that although they sum to 1, they need not be from [0, 1]. Indeed,
for small data sets we repeatedly get very high and very negative weights. As the estimated model averages display
very poor �ts in these cases, we assume that the Bates-Granger method works best with a large number of data
points. �e crucial problem seems to be the stable estimation of Σ.

Technical details

In the case studies (appendices IV and V), we provide examples implementing this algorithm (see also function
BatesGranger in appendices IV and V). It is also now available in MuMIn as function BGWeights, but is there
(currently) restricted to GLMs.

S1.5.8 Cos-squared model weights

We implemented this approach following the algorithm outlined in the appendix of Garthwaite and Mubwandarikwa
(2010), which we reproduce here, using our notation. �e R-function is included in the case studies.

�e following algorithm determines the weights w1, . . . , wM , corresponding to a M ×M correlation matrix
R. It is being computed as the correlation of the predictions of each model with each other, i.e. the (i, j)th element
of R is cor(ŷi, ŷj).

1. Set D1 equal to the M ×M identity matrix and put i = 1.

2. At the ith iteration, perform a spectral decomposition of DiRDi,giving

DiRDi = QiΛaiQ
>
i ,

where Λi is a diagonal matrix whose non-zero elements are the eigenvalues ofDiRDi and the columns
of Qi are the corresponding orthonormalized eigenvectors. [For j = 1, . . . , k,the jth column of Qi is the
eigenvector corresponding to the eigenvalue in the (j, j)th element of Λi.]

3. Put Ei = D−1i QiΛ
1/2
i Q>i , where Λ

1/2
i is a diagonal matrix and Λ

1/2
i Λ

1/2
i = Λi.

4. Set Di+1 equal to a diagonal matrix, with diagonal equal to the diagonal of Ei.

5. Return to step (2) until convergence, when Di+1 ≈ Di.

6. Let d1, . . . , dM denote the diagonal elements of D∗, where D∗ is the value of Di at convergence. For
i = 1, . . . ,M put wi = d2i /

∑M
j=1 d

2
j .

Note that convergence is not guaranteed, especially when R is based on a small number of predicted points.

Technical details

In the case studies (appendices IV and V), we provide examples implementing this algorithm. �e function
csweights (in appendices IV and V) is also now available in MuMIn as function cos2Weights, but is there
(currently) restricted to GLMs.
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S1.5.9 Model-based model combinations (“ensemble supra-model”) (C.F.D.)

We can use any regression model approach to combine predictions from the di�erent models (i.e., GLMs, GAMs,
Random Forest, neural networks). However, there are two points worth keeping in mind:

1. Model �ts are used to train the supra-model. Hence any model that over�ts will look good to the MBMC
algorithm, while it actually is too optimistic. �is requires a train/test-spli�ing of the data, training on half
of them and using the predictions to the other half as a fairer assessment of a models �t. �e MBMC is then
trained on these predictions to the test data.

2. �e idea of MBMC is to have weights that depend on the predicted value. For low values of ŷ one (set of)
model predictions is used, for high values another one. To allow model weights to vary smoothly along the
prediction value gradient, GLM and GAM seem more appropriate than CARTs or Random Forest. �is is a
conceptual decision, however, not a statistical one.

We used a GLM, a GAM and a Random Forest to combine model predictions.
�e steps of the MBMC-approach are as follows:

1. Split the data randomly into two sets: train and test.

2. Fit all modelling approaches to the train data (or, if they were all ��ed before the full data set, update these
models with the train data only).

3. Predict with each model to the test data set.

4. Use a regression-like approach of your choice to �t the predictions (as predictors) to the response data in the
test data. �is is the MBMC-model.

5. Fit the models to the full data set. Predict with the full models to new data.

6. Use the predictions to new data as new data for predicting from ��ed the MBMC-model.

Clearly we are using the data twice: once for training the MBMC, and once for ��ing each model before predicting
to new data. �is is not ideal. When we have many data points (relative to the number of models), we should, in
step 5, predict with the models of step 2 to new data, rather than re-��ing the full model.

More important is however the training of the MBMC on the test data, rather than on the training data, which
would lead to a weights in favour of the most over��ed model in the set.

Non-averaging approaches for combining models

Several publications in the remote sensing literature use Bayesian updating to explore the value of adding new
layers of information (going back to Strahler, 1980). Starting with one model (e.g. a digital elevation model),
new layers are added, using the �t of the �rst layer as prior (e.g. Pereira and Itami, 1991; Osborne et al., 2001;
Romero et al., 2016). While this may not be a bad idea, models are not averaged but sequentially combined. As a
consequence, predictions from this approach depend on the arbitrary order in which models were combined.

�e problem of simultaneously optimising a supra-model along with its components

Instead of the approach just outlined, we could think of ��ing the models and the supra-model simultaneously.
�is may lead to very di�ering optimal values for the single models’ parameters, as it is part of a larger model
construction that �ts the data. �e MBMC-approach above uses the supra-model only to squeeze out the most
from the models’ predictions, while the simultaneous ��ing can be seen as a single model in itself, which just

20



happens to have the single models as sub-components. Here we address the problems arising when trying to
follow the simultaneous optimisation of the models and their combination in a supra-model.

Simultaneous ��ing of models and supra-model faces the problem of parameter identi�ability. If several models
share an additive term then either model can contribute through it to the �nal prediction, and no single optimal
solution exists. We illustrate this point by two obvious and one less obvious examples, each combining three
models.

Example 1 In a �rst, near-trivial example we show that three models can be combined to yield the same result
as a single, “full model”. Mathematically that is li�le surprising, but it is supposed to drive home the point that
one can conceptually view this three-model mixture as the same thing as a “full model”. We may not always be
able to formulate this “full model”, but we can use mixture models to represent it. In this simple-most case, we
consider a constant model, a linear model without intercept, and a quadratic model without intercept or linear
term. A moments re�ection shows that this is equivalent to ��ing a 2nd-order polynomial function:

w1b1 + w2b2x+ w3b3x
2 = r + sx+ tx2,

where r = w1b1, s = w2b2 and t = w3b3. �e additional constraint that
∑
wi = 1 is not su�cient to lead to a

unique solution. Imagine the true value of r, s and t is 1. We can now �nd di�erent combinations of wi and bi to
yield these values: w = (0.5, 0.3, 0.2) and b = (2, 3.33, 5), or w = (0.1, 0.1, 0.8) and b = (10, 10, 1.25), and so
forth.

�is means, while we can �nd solutions, by mixture models, that are identical to the ‘full model’ solution, the
mixture parameters wi and model parameters bi are by themselves meaningless and can only be interpreted in
combination.

Example 2 Instead of three terms, we now �t three simple, nested models to a data set with a threshold. �e
models are i) a horizontal line, ii) a linear function, and iii) a quadratic function. As before, these three models are
combined as weighted sum, with weights summing to 1 and being positive. Since the horizontal line is equivalent
to the intercept in models ii and iii, and the slope of model ii also appears in model iii, we can imagine an in�nite
number of possibilities of how to choose weights and intercepts/slopes to yield the exact-same line. For this set of
nested models no unique solution exists, even if we would set mixture weights to a �xed value.

As in the previous example, depending on which starting values we provide we get a di�erent set of optimal
parameters, all perfectly equivalent in terms of the resulting function.

w1a+ w2(b+ cx) + w3(d+ ex+ fx2) = (w1a+ w2b+ w3d) + (w2c+ w3e)x+ fx2 = r + sx+ tx2

Obviously, the model parameters are not uniquely identi�able, requiring use to express it di�erently (as quadratic
polynomial).

Example 3 We shall now turn to a less obvious example, three non-linear growth functions, neither of which is
the special case of another (the function being the logistic, Gompertz and Richards growth equations).

We �t three growth curve models to a simulated data set, which is actually the 0.3/0.5/0.2-mixture of the three
models (see below for R code). Although the models are mathematically not nested, we still cannot correctly
identify model and mixing parameters. Depending on the starting conditions, we get di�erent ‘optimal’ parameters
and mixture weights (or the algorithm doesn’t converge at all due to this ill-posed problem).

�e reason is the same as in example 2: we can choose arbitrary mixture weights and adjust model parameters
(within limits de�ned by the non-linearity of the function) accordingly. Hence, no unique solution exists, but the
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in�nitely many ‘optimal’ solutions identi�ed are identical in terms of the resulting mixture function. Again, model
parameters and mixture weights have no interpretable meaning by themselves.

To our knowledge, model averaging through mixtures of models has been discussed by statisticians, but has
not been implemented yet.5 Our examples may illustrate why.
l i b r a r y ( g r o f i t )
d a t a ( g r o f i t . t ime )
X← t ( g r o f i t . t ime [ 1 , ] )
# i n v e n t a d a t a s e t as a compos i t e o f t h r e e growth e q u a t i o n s :
Y ← 0 . 3 ∗ gompertz ( X , 0 . 2 3 , 0 . 0 2 , 3 ) + 0 . 5 ∗ l o g i s t i c ( X , 0 . 2 4 , 0 . 0 3 , 3 . 5 )

+ 0 . 2 ∗ r i c h a r d s ( X , 0 . 2 4 , 0 . 0 4 , 6 . 5 , 2 5 ) + rnorm ( 6 5 , 0 , 0 . 0 0 5 )

# now f i t each o f the t h r e e models t o i t :
( g1 ← optim ( par =c ( . 2 , . 0 2 , 4 ) , fn = f u n c t i o n ( par ) sum ( ( Y − gompertz ( X ,

par [ 1 ] , par [ 2 ] , par [ 3 ] ) ) ˆ 2 ) , method= ” BFGS ” ) )
( g2 ← optim ( par =c ( . 2 , 1 , 1 ) , fn = f u n c t i o n ( par ) sum ( ( Y − l o g i s t i c ( X ,

par [ 1 ] , par [ 2 ] , par [ 3 ] ) ) ˆ 2 ) , method= ” BFGS ” ) )
( g3 ← optim ( par =c ( . 2 , . 0 5 , 6 , 2 3 ) , fn = f u n c t i o n ( par ) sum ( ( Y −

r i c h a r d s ( X , par [ 1 ] , par [ 2 ] , par [ 3 ] , par [ 4 ] ) ) ˆ 2 ) , method= ” BFGS ” ) )

# ### p l o t the r e s u l t :
p l o t ( Y ˜ X , l a s =1 )
curve ( gompertz ( x , g1 $ par [ 1 ] , g1 $ par [ 2 ] , g1 $ par [ 3 ] ) , add=T , c o l =30 )
curve ( l o g i s t i c ( x , g2 $ par [ 1 ] , g2 $ par [ 2 ] , g2 $ par [ 3 ] ) , add=T , c o l =60 )
curve ( r i c h a r d s ( x , g3 $ par [ 1 ] , g3 $ par [ 2 ] , g3 $ par [ 3 ] , g3 $ par [ 4 ] ) ,

add=T , c o l =80 )

mixgrofun ← f u n c t i o n ( par ){
ww← par [ 1 : 2 ]
ww← c ( 1 , exp (ww) )
w← ww/ sum (ww)
RMSE← w[ 1 ] ∗ sum ( ( Y−gompertz ( X , par [ 3 ] , par [ 4 ] , par [ 5 ] ) ) ˆ 2 ) +

w[ 2 ] ∗ sum ( ( Y−l o g i s t i c ( X , par [ 6 ] , par [ 7 ] , par [ 8 ] ) ) ˆ 2 ) +
w[ 3 ] ∗ sum ( ( Y−r i c h a r d s ( X , par [ 9 ] , par [ 1 0 ] , par [ 1 1 ] ,
par [ 1 2 ] ) ) ˆ 2 )

r e t u r n (−RMSE )
}
mixgrofun ( par =c ( 0 , 1 , 0 . 2 , . 0 5 , 5 , 0 . 2 , . 0 5 , 5 , 0 . 2 , . 0 5 , 5 , 2 0 ) )
( ops ← optim ( par =c ( 0 , 0 , 0 . 2 , . 0 5 , 5 , 0 . 2 , . 0 5 , 4 , 0 . 2 , . 0 5 , 5 , 2 0 ) , fn =mixgrofun , method= ” Nelder−Mead ” , h e s s i a n =F ,

c o n t r o l = l i s t ( maxi t = 1 0 0 0 0 0 ) ) )
# t h i s y i e l d s a convergence−warning ‘ 1 0 ’ , which means
# ‘ ‘ degeneracy o f the Nelder−Mead a l g o r i t h m ’ ’ !

5Rings et al. (2012) use mixture models, but they still use standard BMA to combine these into an ensemble forecast.
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S1.6 Non-independence of models a�ects model weights

Here we give a simple example illustrating the e�ect of having variations of the same model multiple times in
the ensemble. We replaced the best-performing model by three variations of the same model, varying only in a
complexity parameter and re-computed model weights.

original variants

m
od

el
 w

ei
gh

t

0.0

0.2

0.4
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GAM
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GAM 2

GAM 3

GLM

Figure S2: E�ect of including variations
of Generalised Additive Models thrice
in the model set on model weights. GLM
and CART refer to Generalised Linear
Model and Classi�cation and Regres-
sion Tree, respectively. In the three-
GAM-variant, CART’s weight is e�ec-
tively reduced to 0.

Speci�cally, we calculated model weights based on 10-fold cross-
validation performance, measured as log-likelihood on the hold out (see
R-code for details). �e data set of Aho and Weaver (2010) (provided as
wash.rich in package asbio) comprises 40 data points (vascular species
richness) and 5 predictors (soil N, slope, aspect, rock cover, soil pH). We used
a GLM with quadratic polynomial predictors, a GAM with cubic shrinkage
and a maximum of 3 knots per predictor and a Classi�cation and Regres-
sion Tree (CART) with two variables trialled per split. To produce the three
variants, we changed the type of spline used in the GAM (the original cubic
shrinkage plus thin-plate with shrinkage for GAM 1 and Duchon spline for
GAM 3).

Fig. S2 shows that having similar versions of a model approach in the
model set leads to a down-weighting of all models. As the replaced version
is now present thrice, it absorbs most of the model weights. For all practical
purposes, we now have predictions dominated by one model approach, and
we lost some of the model structural uncertainty by dilution with replicates
of one model variant.

In a real-world se�ing, such non-independence of model approaches is
far less obvious, but potentially has a similar e�ect.
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Schmidt-Lebuhn, A.N., Knerr, N.J. & González-Orozco, C.E. (2012) Distorted perception of the spatial distribution of plant diversity
through uneven collecting e�orts: the example of Asteraceae in Australia. Journal of Biogeography, 39, 2072–2080.

Schomaker, M., Wan, A.T.K. and Heumann, C. (2010) Frequentist model averaging with missing observations. Computational
Statistics and Data Analysis, 54, 3336–3347.

Semenov, M.A. & Stratonovitch, P. (2010) Use of multi–model ensembles from global climate models for assessment of climate
change impacts. Climate Research, 41, 1–14.

Shang, H.L. (2012) Point and interval forecasts of age–speci�c life expectancies: A model averaging approach. Demographic
Research, 27, 593–643.

Sillanpaa, M. L and Corander, J. K (2002) Model choice in gene mapping: what and why. TRENDS in Genetics, 18, 301–307.
Singh, A., Mishra, S. & Ruskau�, G. (2010) Model Averaging Techniques for �antifying Conceptual Model Uncertainty. Ground

Water, 48, 701–715.
Si�ers, H., Christie, F.J., Di Stefano, J., Swan, M., Penman, T., Collins, P.C. & York, A. (2014) Avian responses to the diversity and

con�guration of �re age classes and vegetation types across a rainfall gradient. Forest Ecology and Management, 318, 13–20.
Sloughter, J.M., Gneiting, T. & Ra�ery, A.E. (2013) Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model

Averaging. Monthly Weather Review, 141, 2107–2119.
Smith, A. B., M. J. Santos, et al. (2013) Evaluation of species distribution models by resampling of sites surveyed a century ago by

Joseph Grinnell. Ecography 36(9): 1017–1031.
Smith, A.C., Koper, N., Francis, C.M. & Fahrig, L. (2009) Confronting collinearity: comparing methods for disentangling the e�ects

of habitat loss and fragmentation. Landscape Ecology, 24, 1271–1285.
Smith, S.K. and Shahidullah, M. (1995) An evaluation of population projection errors for census tracts. Journal of the American

Statistical Association 90(429): 64–71.
Song, S.O.K., Hogg, J., Peng, Z.–Y., Parker, R., Kellum, J.A. & Clermont, G. (2012) Ensemble Models of Neutrophil Tra�cking in

Severe Sepsis. Plos Computational Biology, 8, e1002422.
Stephenson, D.B., Collins, M., Rougier, J.C. & Chandler, R.E. (2012) Statistical problems in the probabilistic prediction of climate

change. Environmetrics, 23, 364–372.
Stohlgren, T. J., P. Ma, et al. (2010) Ensemble Habitat Mapping of Invasive Plant Species. Risk Analysis 30(2): 224–235.
Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C. & Makeschin, F. (2012) Using precipitation data ensemble for uncertainty

analysis in SWAT stream�ow simulation. Journal of Hydrology, 414, 413–424.
Sun, B. & Wang, H. (2013) Larger variability, be�er predictability? International Journal of Climatology, 33, 2341–2351.
Symonds, M.R.E. & Moussalli, A. (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural

ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65, 13–21.
Tang, G., Mayes, M.A., Parker, J.C., Yin, X.L., Watson, D.B. & Jardine, P.M. (2009) Improving parameter estimation for column

experiments by multi–model evaluation and comparison. Journal of Hydrology, 376, 567–578.
�omson, J. R., E. Fleishman, R. Mac Nally, and D. S. Dobkin. 2007. Comparison of predictor sets for species richness and the

number of rare species of bu�er�ies and birds. Journal of Biogeography 34:90–101.

32



�omson, J.R., Mac Nally, R., Fleishman, E. & Horrocks, G. (2007) Predicting bird species distributions in reconstructed landscapes.
Conservation Biology, 21, 752–766.

�omson, M.C., Doblas–Reyes, F.J., Mason, S.J., Hagedorn, R., Connor, S.J., Phindela, T., Morse, a P. & Palmer, T.N. (2006) Malaria
early warnings based on seasonal climate forecasts from multi–model ensembles. Nature, 439, 576–579.

Trolle, D., Ellio�, J.A., Mooij, W.M., Janse, J.H., Bolding, K., Hamilton, D.P. & Jeppesen, E. (2014) Advancing projections of
phytoplankton responses to climate change through ensemble modelling. Environmental Modelling & So�ware, 61, 371–379.

Tsai, F.T.–C. & Li, X. (2008a) Multiple Parameterization for Hydraulic Conductivity Identi�cation. Ground Water, 46, 851–864.
Tsaparis, D., Katsanevakis, S., Ntolka, E. & Legakis, A. (2009) Estimating dung decay rates of roe deer (Capreolus capreolus) in

di�erent habitat types of a Mediterranean ecosystem: an information theory approach. European Journal of Wildlife Research,
55, 167–172.

Van Oijen, M., Reyer, C., Bohn, F.J., Cameron, D.R., Deckmyn, G., Flechsig, M., Harkonen, S., Hartig, F., Huth, A., Kiviste, A., Lasch,
P., Makela, A., Me�e, T., Minunno, F. & Rammer, W. (2013) Bayesian calibration, comparison and averaging of six forest models,
using data from Scots pine stands across Europe. Forest Ecology and Management, 289, 255–268.

Warren, D.L., Wright, A.N., Seifert, S.N. & Sha�er, H.B. (2014) Incorporating model complexity and spatial sampling bias into
ecological niche models of climate change risks faced by 90 California vertebrate species of concern (ed J Franklin) Diversity
and Distributions, 20, 334–343.

Wasserman, L. (2000) Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44, 92–107.
Weidemann, F., Dehnert, M., Koch, J., Wichmann, O. & Hoehle, M. (2014) Bayesian parameter inference for dynamic infectious

disease modelling: rotavirus in Germany. Statistics in Medicine, 33, 1580–1599.
Weigel, A.P., Liniger, M.A. & Appenzeller, C. (2008) Can multi–model combination really enhance the prediction skill of probabilistic

ensemble forecasts? �arterly Journal of the Royal Meteorological Society, 134, 241–260. Wenger, S. J., N. A. Som, et al. (2013)
Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Global Change Biology 19(11):
3343–3354.

Wilby, R.L. (2005) Uncertainty in water resource model parameters used for climate change impact assessment. Hydrological
Processes, 19, 3201–3219.

Wintle, B.A., Mccarthy, M.A., Volinsky, C.T. & Kavanagh, R.P. (2003) �e use of Bayesian model averaging to be�er represent
uncertainty in ecological models. Conservation Biology, 17, 1579–1590.

Yen, H., Wang, X., Fontane, D.G., Harmel, R.D. & Arabi, M. (2014) A framework for propagation of uncertainty contributed by
parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environmental Modelling
& So�ware, 54, 211–221.

Yuan, Z. & Yang, Y.H. (2005) Combining linear regression models: When and how? Journal of the American Statistical Association,
100, 1202–1214.

Zhang, X., Srinivasan, R. & Bosch, D. (2009) Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms
and Bayesian Model Averaging. Journal of Hydrology, 374, 307–317.

Zhang, X., Wan, A.T.K. & Zou, G. (2013) Model averaging by jackknife criterion in models with dependent data. Journal of
Econometrics, 174, 82–94.

Zhang, Z. & Townsend, J.P. (2009) Maximum–Likelihood Model Averaging To Pro�le Clustering of Site Types across Discrete
Linear Sequences. Plos Computational Biology, 5, e1000421.

Zhao, K., Valle, D., Popescu, S., Zhang, X. & Mallick, B. (2013) Hyperspectral remote sensing of plant biochemistry using Bayesian
model averaging with variable and band selection. Remote Sensing of Environment, 132, 102–119.

Zhou, B. & Du, J. (2010) Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System. Weather and Forecasting, 25,
303–322.

Zhou, H. & Wu, Y. (2014) A Generic Path Algorithm for Regularized Statistical Estimation. Journal of the American Statistical
Association, 109, 686–699.

Zhou, Y., Aston, J.A.D. & Johansen, A.M. (2013) Bayesian model comparison for compartmental models with applications in
positron emission tomography. Journal of Applied Statistics, 40, 993–1016.

Zhu, J., Forsee, W., Schumer, R. & Gautam, M. (2013a) Future projections and uncertainty assessment of extreme rainfall intensity
in the United States from an ensemble of climate models. Climatic Change, 118, 469–485.

33



Zhu, J., Huang, B., Balmaseda, M.A., Kinter, J.L., Peng, P., Hu, Z.–Z. & Marx, L. (2013b) Improved reliability of ENSO hindcasts with
multi–ocean analyses ensemble initialization. Climate Dynamics, 41, 2785–2795.

Zhu, Y.J. (2005) Ensemble forecast: A new approach to uncertainty and predictability. Advances in Atmospheric Sciences, 22,
781–788.

Ziehmann, C. (2000) Comparison of a single–model EPS with a multi–model ensemble consisting of a few operational models.
Tellus Series a–Dynamic Meteorology and Oceanography, 52, 280–299.

Zou, H.F., Xia, G.P., Yang, F.T. & Wang, H.Y. (2007) An investigation and comparison of arti�cial neural network and time series
models for Chinese food grain price forecasting. Neurocomputing, 70, 2913–2923.

34


	 
	Model averaging for parameter estimation
	Analytical treatment of averaging predictions from two correlated, normally distributed models (J.M.C., B.R.)
	Fitting the full model
	Model averaging in machine-learning algorithms
	Method details
	Model averaging via Bayesian posterior model weights (F.H., E.M.)
	BMA using Expectation Maximisation (`BMA-EM') (C.F.D.)
	Information-theory-based model averaging weights
	Naïve bootstrap model weights
	Stacking models (C.F.D.)
	Jackknife model averaging (C.F.D.)
	Bates-Granger model weights
	Cos-squared model weights
	Model-based model combinations (``ensemble supra-model'') (C.F.D.)

	Non-independence of models affects model weights
	Model-averaging literature scanned


