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abstract: Ecological interactions link species in networks. Loss
of species from or introduction of new species into an existing net-
work may have substantial effects for interaction patterns. Predict-
ing changes in interaction frequency while allowing for rewiring of
existing interactions—and hence estimating the consequences of
community compositional changes—is thus a central challenge for
network ecology. Interactions between species groups, such as polli-
nators and flowers or parasitoids and hosts, are moderated bymatch-
ingmorphological traits or sensory clues, most of which are unknown
to us. If these traits are phylogenetically conserved, however, we can
use phylogenetic distances to construct latent, surrogate traits and try
to match those across groups, in addition to observed traits. Under-
standing how important traits and trait matching are, relative to
abundances and chance, is crucial to estimating the fundamental pre-
dictability of network interactions. Here, we present a statistically
sound approach (“tapnet”) to fitting abundances, traits, and phylog-
eny to observed network data to predict interaction frequencies. We
thereby expand existing approaches to quantitative bipartite net-
works, which so far have failed to correctly represent the nonindepen-
dence of network interactions. Furthermore, we use simulations and
cross validation on independent data to evaluate the predictive power
of the fit. Our results show that tapnet is on a par with abundance-
only,matching centrality, andmachine learning approaches. This ap-
proach also allows us to evaluate how well current concepts of trait
matching work. On the basis of our results, we expect that interac-
tions in well-sampled networks can be well predicted if traits and
abundances are the main driver of interaction frequency.
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Introduction

Network ecology has vastly increased our knowledge of
ecosystems, delivered fascinating insights into their orga-
nization (e.g., the slow and fast energy channels in Rooney
et al. 2006), and fostered speculation about coevolution
(e.g., Guimarães et al. 2011).While arguably the litmus test
of any ecological understanding is a test of its predictive
power (Houlahan et al. 2017), only recently have predic-
tive models of network interactions started to emerge
(e.g., Ives and Godfray 2006; Petchey et al. 2008; Crea
et al. 2016; Rohr et al. 2016; Brousseau et al. 2018; Pichler
et al. 2020). After several decades of research on ecological
networks we have learned a lot about their patterns (e.g.,
along latitudinal or elevational gradients, across different
types of interactions) and their stability (see, e.g., Bas-
compte and Jordano 2014; Moore et al. 2017), yet so far
we have had limited success in predicting interaction in-
tensities or even aggregate network structure (as pointed
out by Vázquez et al. 2009; Olito and Fox 2015; Poisot
et al. 2016; Valdovinos et al. 2018; but see Pomeranz
et al. 2019; Vizentin-Bugoni et al. 2020).
Some of the most successful attempts at predicting net-

work structure were made in studies of food webs, where
body size ratios were found to be a good predictor of the
presence or absence of predator-prey interactions (e.g.,
Allesina 2011; Gravel et al. 2013; Pomeranz et al. 2019)
and allometric scaling of parameters allowed amechanistic
model of optimal foraging theory (the contingency model;
hicago. All rights reserved. Published by The University of Chicago Press for

mailto:carsten.dormann@biom.uni-freiburg.de
http://orcid.org/0000-0002-5263-422X
http://orcid.org/0000-0002-9835-1794
http://orcid.org/0000-0002-9835-1794
http://orcid.org/0000-0002-7079-3478
http://orcid.org/0000-0002-9044-4814
http://orcid.org/0000-0002-3449-5748
http://orcid.org/0000-0002-3449-5748


842 The American Naturalist
Stephens and Krebs 1986) to be fitted to large networks
(Beckerman et al. 2006; Petchey et al. 2008). However,
body size is not a suitable predictor for most other inter-
action types, such as host-parasitoid interactions or inter-
actions involving plants (Bascompte and Jordano 2014;
Dormann and Blüthgen 2017). Moreover, while network
predictions should ideally be based on theory, existing
theoretical models such as the contingency model make
strongly simplifying assumptions (e.g., sequential encoun-
ter of resources, maximizing of average resource intake,
ideal knowledge of resource availability, no within-guild
interference; Pyke 1984; Stephens and Krebs 1986) but still
require large numbers of parameter values as input, which
are difficult to provide without a shortcut, such as allo-
metric scaling. Thus, we still lack a general approach to
predicting various types of ecological networks. In addi-
tion, whereas most existing models of ecological networks
only predict binary network structure, models that allow
estimation of the intensity of interspecific interactions
can glean more information from the data.
While a theoretical model encompassing all types of in-

teractionnetworks does not yet exist, there are obvious can-
didate factors for predicting interaction intensities, some
at the level of the individual species (such as their abun-
dance), some at the interplay of species (such as the match
of interaction-relevant traits; Junker et al. 2010, 2013;
Dehling et al. 2016). Since some of the relevant traits are
difficult to measure but show a phylogenetic signal, phylog-
eny can be used as a proxy for such unmeasured traits (Ives
and Godfray 2006; Pearse and Altermatt 2013; Morales-
Castilla et al. 2015; Peralta 2016).
There have been several previous approaches to in-

cluding traits, abundance, and phylogeny in a statistical
method to analyze and possibly predict interactions. They
differ in their scope (binary vs. quantitative networks), the
type of network (bipartite vs. unipartite), and the statistical
method. For example, Ives andGodfray (2006), Pearse and
Altermatt (2013), Rohr et al. (2016), and Crea et al. (2016)
all used regression models to predict binary networks
based on phylogeny and measured traits. Brousseau et al.
(2018) improved on the model of Rohr et al. (2016) by
adding a larger number of traits as predictors and using
a more flexible generalized additive model (GAM). Váz-
quez et al. (2009) and Olito and Fox (2015) chose a differ-
ent statistical approach in which they constructed matrices
of interaction probabilities based on traits and abundances
and assumed that the observed interaction intensities are
drawn from a multinomial distribution with these proba-
bilities. Most recently, Desjardins-Proulx et al. (2017) and
Pichler et al. (2020) modeled interaction networks using
machine learning algorithms, which are highly flexible
but provide little information on the underlying mecha-
nisms of the interactions.
While the above-mentioned approaches have had
some success in describing ecological networks, they face
two issues, one statistical, the other ecological. First, most
methods treat the interactions in a network as statistically
independent (except Vázquez et al. 2009; Olito and Fox
2015; Crea et al. 2016), although this assumption is likely
to be violated. Any interaction with one species precludes
interaction with other species at the same time; thus, one
more observation here inevitably means one less there.
Furthermore, depending on the type of interaction and
method of data collection, the same individual may be
observed multiple times, again violating the indepen-
dence assumption. Finally, interactions of different con-
sumer species may be nonindependent because of intra-
guild competition for resources, which can cause shifts in
species’ preferences (e.g., Loeuille and Loreau 2005; Spies-
man and Gratton 2016). Such nonindependence must be
accounted for in order to not yield biased and overconfi-
dent model estimates.
An ecological issue is how to represent the role of species

traits and their matching. Models based on linear regres-
sion assume that all traits and trait combinations have
linear effects on interaction probabilities, while machine
learning algorithms do not provide any information on
themechanisms connecting traits to interactions. In reality,
interaction intensities may depend on the matching of
quantitative trait values in nonlinear and possibly asym-
metric ways. For instance, large-billed birds can feed on
small seeds, but small-billed ones cannot feed on large seeds
(e.g., Muñoz et al. 2017). Ideally, models of ecological net-
works should allow explicit incorporation of such trait-
matchingmechanisms, to correctly represent the ecological
mechanisms and provide accurate predictions (but for an
implicit approach, see Sebastián-González et al. 2016).
In this article, we present a statistical approach to analyz-

ing and predicting interaction intensity based on observed
and phylogeny-based latent traits and their matching, along-
side abundances of each species. Unlike previous analyses,
which were mostly explorative, we assess our model’s per-
formance on independent network data that were not used
for fitting. For more ecological realism and as an extension
of previous approaches, we provide symmetric and asym-
metric trait-matching functions. In contrast to all previous
approaches for traits and phylogeny, we account for the non-
independence of observations in the network using themulti-
nomial probability approach of Vázquez et al. (2009) and
Olito and Fox (2015). Finally, we assess the quality of our
approach at the level of the individual link, not only at the
level of network patterns, as the aim is to predict a specific
interaction.
Our approach can be used for prediction of, say, intro-

duction or loss of species from a community, which may
lead to a “rewiring” of interactions, or for predicting the
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effects of changes in abundances.Moreover, it can be used
to quantify the importance of observed trait pairs for such
predictions, such as the morphological compatibility of
a plant’s flower corolla and a pollinator’s proboscis or
the beak size of a frugivorous bird and the size of a fruit
(see also Pichler et al. 2020).
We first outline the idea and details behind our ap-

proach, then demonstrate its validity with simulated data,
and finally use three hummingbird-flower networks to
make predictions across habitats. In that case study, we
also use alternative published approaches to gauge their
performances on real-world validation data.
Methods

We call our approach “tapnet,” as it uses traits, abundance
activity, and phylogeny to predict network interactions.
Our background in pollination ecology makes it natural
for us to think of bipartite interaction networks, where
one group’smembers (e.g., pollinators) interact withmem-
bers of another group (e.g., plants), but not within each
group. However, the approach can be similarly applied to
functional group- or individual-based networks and prob-
ably extended to one-mode networks, but that is beyond
the scope of our study. In the case of analyzing individuals,
species’ average traits would be replaced by individual trait
values. Abundances could either be removed completely or
be replaced by some measure of individual activity.
Before explaining our approach in detail, here is an out-

line (fig. 1). We developed a model that outputs expected
interaction probabilities based on traits, abundances, and
phylogenies. We can now compare the output with an ob-
served network and optimize model parameters so as to
maximize fit. In this way, we estimate several (largely) eco-
logically interpretable parameters. For prediction, we can
use the fitted model together with new abundances (in-
cluding previously unobserved species) and yield expected
interaction probabilities.While the role of traits is probably
clear, phylogenies are used to construct so-called latent
traits to be matched across groups. As a side effect, new
Figure 1: Conceptual overview of the tapnet approach. Tapnet combines information on trait matching (T), abundances (A), and phylogeny-
derived matching latent traits (L; top row) into a single matrix I of predicted interaction probabilities. The observed interaction network O is
assumed to be drawn from a multinomial distribution with probabilities given by I and total number of interactions ntotal equaling the observed
number of interactions. Traits have to be provided in pairs across the two levels, which are then compared using a possibly asymmetric trait-
matching function. Each input yields an independent matrix of interaction probabilities, which are then multiplied and rescaled to yield the final
interaction matrix I. Matrix cells are filled with different shades of gray to indicate interaction probabilities from 0 (white) to 1 (black). Some
values that are close to zero appear white.
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species entering a community can be positioned in the
phylogeny, and this position then feeds through to the ac-
tual predictions, in addition to the (optional) observed
traits.
Traits refer to species-specific characteristics that have a

counterpart in a trait of the other group, and the analyst
must provide these traits in matching format (i.e., corolla
and proboscis length, or phenologies during a season,
quantified in such a way that the same value for both would
imply a perfect match). The model can be employed with-
out trait information.
Abundance activity (henceforth, “abundances”) can be

any measure proportional to the probability of encounter-
ing a species in the field. For instance, a plant with an at-
tractive scent would be more conspicuous to a pollinator
than a nonodorant one, and an abundant bee would be en-
countered more often than a rare one if they move at the
same rate (hence, abundance activity). If the trait pairs re-
sponsible for interaction activity are known and provided
to tapnet, the role of actual abundances can be quantified;
otherwise, the twowill remain confounded (as in any other
analysis).
Phylogenies for each group are used as building blocks

for unobserved (latent) traits moderating species interac-
tions. They add complementary information to the ob-
served traits (Pearse et al. 2013) and may be able to sug-
gest possible additional traits that underlie the observed
interactions.
We present the approach starting with the statistical

goal and then going into ever more detail. We provide
R code for simulating tapnet data, for fitting observed net-
works, for assessing model fit, and for predicting new
abundances and traits in the R package tapnet.1
Likelihood

Our approach is to fit a (nonstandard) statistical model
to observed data on interaction networks. While we can
use several networks simultaneously to fit the model, we
restrict our outline here to the simplest case of only one
observed network. Let us call the observed interaction
matrix O of dimension m#n (m rows by n columns).
We compareOwith our model predictions P by means

of a multinomial distribution (eq. [1]), as entries in that
interaction matrix are nonindependent. (Entries in O
are integers, typically the number of observed interac-
tions per standardized observation effort. For continu-
ously valued observations, a Dirichlet distribution could
probably be employed; Crea et al. 2016.) To do so, we rep-
1. Code that appears in The American Naturalist is provided as a con-
venience to readers. It has not necessarily been tested as part of peer review.
resent O as a vector of length mn rather than a matrix.
Formally, we predict the entries in O, oi, on the basis
of the total number of observed interactions, ntotal pPmn

ip1oi, and the vector of predicted interaction probabil-
ities, p̂i, which are the output of our model:

f (o1, ::: , omn; ntotal, p̂1, ::: , p̂mn) p
ntotal!Y
i

oi!

Ymn

ip1

p̂oi
i : ð1Þ

Model Components

Our model yields a matrix of predicted interactions,
P p (p̂i,j) ∈ Rm#n, as a (rescaled) Hadamard (pelement-
wise) product of three prediction components—abundance-
based expected probabilities A, trait matching–based ex-
pected probabilities T, and latent trait–based expected
probabilities L—each scaled to sum to 1:

P p A ∘
(T ∘ L)dP
(T ∘ L)d

: ð2Þ

The term A is the matrix of abundance-based interaction
probabilities based on the cross product of normalized
species abundances vectors for the lower olA and higher
ohA trophic level (note that we reserve capital letters for ma-
trices):A p (olA=

P
olA)#(ohA=

P
ohA). Thus,A represents

the probability of an interaction for each cell based only on
the relative abundances of the different species; we would
expect more interactions among common species than
among rare species. The term ol,hA is based on indepen-
dently measured abundances, not simply the marginal
totals of the observed matrix O. The free exponent, d ∈
(0, 1), allows the optimization to give more or less weight
to traits relative to abundance and thereby also serves as a
quantification of the importance of abundance within the
fit. As a side effect, the abundance-only predictions are a
limiting case of tapnet, for d p 0. The denominator sum-
ming over (T ∘ L)d is necessary to renormalize this term to
sum to 1, on par with A.
The term T is the matrix of expected interaction proba-

bilities based on the degree to which observed traits match
between species of the different groups. If, say, the probos-
cis of a pollinator is a bit too short or too long compared
with the depth of the corolla of a plant species, then inter-
actions become less likely than perfectly matching lengths.
We define a (single parameter) trait-matching function for
a pair (i, j) of trait values f t(t li, thj ) by the Gaussian function:

f t(t li, thj , j) p
1

j
ffiffiffiffiffiffi
2p

p exp 2
ðthj 2 tliÞ2

2j2

0
@

1
A: ð3Þ

Alternatively, we can define an asymmetric matching
function (a lognormal with its mode shifted to zero), as
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too long a proboscis is no obstacle to an interaction, while
one too short is

f t(t li, thj , m) p

1

(thj 2 t li 1 em21)
ffiffiffiffiffiffi
2p

p exp 2
1
2
(ln(thj 2 tli 1 em21)2 m)

2
� �

,

ð4Þ
where em21 is a parameter determining the shape of the
function, in a way similar to j in equation (3). It is fit dur-
ing the model optimization (see below). Other functions
could of course be used, especially when the relationship
between trait values and interaction probability is known.
The trait-matching function is computed for all species;
that is, the inputs are in fact vectors of trait values for
the lower (tl) and higher (th) level. The elements of T,
(tij), are the ft values computed using equation (3) or (4):
(tij) p f t(l

l
i , l

h
j ).

Latent trait–based interaction probability matrix L, fi-
nally, is the most complex matrix of expected interaction
probabilities. Its function is primarily to improve predic-
tions, as abundances and observed traits are unlikely to
be sufficient to capture the information present in the ob-
served interaction matrix. Just like T, L is also found by
matching traits of one level to those of the other by opti-
mizing the j parameter of its Gaussian trait-matching
function (eq. [3]). In this case, however, these traits are
unobserved (latent) and are constructed as part of the op-
timization process from phylogenetic eigenvectors, as ex-
plained in the next section.
Constructing Matching Latent Trait Values

The reasons why a species from one group interacts with
one from another may be extremely complex. Bees, for ex-
ample, may rely on visual and olfactorial signals, as well as
innate preferences and learned behavior, for selecting a
flower to visit (Chittka and Raine 2006). On the other
hand, plants may increase nectar production in response
to sensing pollinators’wingbeats (Veits et al. 2019). If these
traits can be measured, they can be used in tapnet as ob-
served traits. In many cases, however, we may have little
chance to identify, let alone measure, the traits involved.
In such cases, one can “invent” trait values with the sole
aim of improving the fit of the model.
Computationally, it is more efficient—and ecologically

more satisfactory—if there is a basis for computing such
latent trait values (similar to geographic distances in spatial
models used in joint species distribution models; Warton
et al. 2015). In our case, we assume latent traits to summa-
rize traits correlated with phylogeny. These latent traits
typically exhibit no phylogenetic signal anymore, and the
phylogenies are used only as an efficient way to generate
orthogonal vectors. This approach has several benefits.
First, it allows us to introduce new species when predicting
from the fitted tapnet model, as we can compute their phy-
logenetic position relative to the other species in the group
and hence also the value of their latent trait. Second, the
resulting latent trait may, on mapping it to the phylogeny,
suggest a hypothesis about an actual trait behind it.
Technically, constructing a latent trait within a group is

straightforward if a phylogeny is available. Alternatively, a
taxonomy can be used (Clarke and Warwick 1999). From
such a phylogeny one can compute phylogenetic eigenvec-
tors (Guénard et al. 2013), that is, for k species k2 1
vectors that are orthogonal to each other and represent
the information on the phylogeny (similar to the way a
principal component analysis summarizes the informa-
tion in a data set): the first phylogenetic eigenvector ac-
counts for the largest genetic differences in the tree, the sec-
ond accounts for the largest differences in the remaining
variation, and so forth.Mathematically, a phylogenetic tree
can be represented as a (cophenetic) distance matrix, and
an eigenvalue decomposition of said distance matrix yields
the phylogenetic eigenvectors.
For each group, we can now define a latent trait vector

l as a linear combination of the phylogenetic eigenvectors
pi, ::: , pk21, one for each trophic level:

ll p a1pl
1 1 a2pl

2 1 a3pl
3 1⋯1 am21pl

m21,

lh p b0 1 b1ph
1 1 b2ph

2 1 b3ph
3 1⋯1 bn21ph

n21:
ð5Þ

For computational reasons, we will use only the first few
(three to five) phylogenetic eigenvectors.
When ll and lh match, the probability of an interaction

is high, just like for observed traits tl and th above. The
values of ai and bi have to be found by optimization.
Since the values of l are void of meaning, one cannot as-
sume that the latent vectors align optimally. Therefore, a
shift parameter is fitted for the higher trophic level (b0).
Analogous to T, the elements of L, (ℓij), are the ft values
computed using equation (3) based on the latent traits:
(ℓij) p f t(l

l
i , l

h
j ).

Fitting the Model

The tapnet model outlined above can now be fitted to the
observed interaction network by adjusting several param-
eters. As input, the model requires the paired observed
traits (zero to many), the phylogeny of each group, the
abundance vector for each group, and, for computation
of the likelihood, the observed interaction matrix. The
model parameters are (i) the width of the trait-matching
function (j in eq. [3]) for each pair of traits, (ii) the width
of the trait-matching function for the latent traits, and

ð5Þ



846 The American Naturalist
(iii) two vectors of parameters for the construction of the
latent trait (eq. [5]).
In the optimization using the standard Nelder-Mead

algorithm, we used a few tricks to increase the reliability
of the model. To ensure identifiability, we constrained a1
to be positive (i.e., we defined it as ea1 ). Otherwise, the
exact same values with inverted signs would yield the
same fit. Furthermore, any multiple of al, ah would yield
the same prediction. Therefore, we standardized both ll

and lh before entering them into the trait-matching func-
tion (eq. [3]).
When fitting multiple networks simultaneously or

when using different networks for optimization and pre-
diction, we run into the problem of having different species
present in each network. In such cases, we first calculate the
eigenvectors of the phylogenetic tree containing all species
from all networks. In a second step, we select from these
eigenvectors those that are most relevant for the respective
network, that is, the eigenvectors most closely correlated
with each of the eigenvectors of the tree containing only
the species of this particular network. We then fit param-
eters for only the selected relevant eigenvectors.
Assessing Model Quality

Optimizing the model parameters immediately yields the
model’s likelihood. Additionally, we may be interested
in the latent variables, as they code the (combination of)
trait(s) missing in our observed data. For simulated data,
we can compare the reconstructed latent traits with those
actually simulated. Predicted and observed interactions
were additionally compared using other distance mea-
sures, such as the Pearson correlation or Bray-Curtis dis-
tance, or by summarizing the network structure by means
of indices (such as nestedness or specialization). For net-
work indices, we drew 1,000 realizations from the fitted
multinomial distribution of each simulated network (see
below) and computed network indices for these. Then
we computed on which quantile of these 1,000 realization
the observed network’s index lay (sometimes called the
“posterior P value”; Gelman 2005). Ideally, this value
should be .5, indicating no bias in indices in the fitted
network.
Simulations

To assess how performance of the tapnet model varies with
the characteristics of the data used for fitting, we per-
formed two simulation experiments. The first aimed to
evaluate the model’s goodness of fit to the interaction net-
work used for estimating parameters, while the second
was designed to test the model’s accuracy of prediction
to a new network. In both experiments we varied six pa-
rameters (table 1) using Latin hypercube sampling (McKay
et al. 1979). Ranges of numerical parameters were divided
into 500 equally spaced intervals, and a single random
value was drawn from each interval. For parameters with
integer values (e.g., number of observed traits), drawn val-
ues were rounded to the nearest integer. In the case of cat-
egorical parameters, we randomly sampled 500 times with
replacement from the set of possible values. (A prerun with
only 100 samples yielded virtually identical results, indicat-
ing that 500 runs are sufficient.) Since the number of ob-
served traits varied between zero and four, we drew four
sets of 500 values for the width parameter of the trait-
matching function. Depending on the number of observed
traits of the respective parameter combination, we used
only a subset of the four values to calculate matrix T (or
none at all with zero traits).
For each of the 500 parameter combinations, we simu-

lated a data set consisting of relative abundances, phylo-
genetic trees, and pairs of matching traits. Species abun-
dances were either all set to the same value (1=m or 1=n,
respectively) or drawn from a lognormal distribution with
parameters m p 0 and j2 p 1 and standardized to sum to
1. Trait values were likewise drawn from a lognormal dis-
tribution with m p 0 and j2 p 1. We simulated phyloge-
netic trees using the function pbtree from the R package
phytools (Revell 2012) with a speciation rate of 1 and an
extinction rate of 0.
For both experiments, we simulated phylogenies and

traits of 30 and 60 lower- and higher-trophic-level species,
Table 1: Parameters varied in the simulation experiments used to assess the model’s goodness of fit
Parameter
 Type
 Range or possible values
Total no. observed interactions (ntotal)
 Integer
 50–1,000

No. observed traits
 Integer
 0–4

Type of trait-matching function for observed traits
 Categorical
 Normal or shifted lognormal

Shape of abundance distribution
 Categorical
 Uniform or lognormal

Width parameter of trait-matching function for observed traits
 Continuous
 .05–1

Width parameter of trait-matching function for latent traits
 Continuous
 .05–2
Note: The width parameter defines the sensitivity of the probability of an interaction to mismatches between traits; small values demand very neat matching
for an interaction to be likely.
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respectively, for each parameter combination. These data
were used to construct a matrix of interaction probabilities
P according to the tapnet model as described above. While
the width parameters of the trait-matching functions for
observed and latent traits were systematically varied be-
tween simulations, the latent trait linear combination pa-
rameters ai were set to a value of 1 in all simulations. From
the interaction probabilities we constructed a network of
simulated interactions with a total number of interactions
ntotal by drawing from a multinomial distribution with
probabilities p̂i,j.
For the first experiment, we then randomly selected

15 (lower-trophic-level) and 30 (higher-trophic-level)
species. To these data, we fitted tapnet and assessed the
goodness of fit.
For the second experiment, we twice randomly drew a

random set of 15#30 species. Again, tapnet was fitted to
the first but then predicted to the second set. On average,
these two sets share half of their species and 25% of their
interactions. It thus represents a strong test of predicting
to new data. As measures of goodness of fit, we calculated
the Bray-Curtis similarity and Spearman rank correlation
between the entries of simulated and predicted networks.
Independently Observed versus
Network-Derived Abundances

The majority of published interaction networks do not
provide independent estimates of the abundances of each
species (olA and ohA for lower and higher trophic level, re-
spectively; see eq. [2]). In current network analyses, it is
thus customary to use network-derived marginal totals
of the network matrix (Oi• and O•j, respectively) as a
plug-in instead (e.g., to formulate null model expecta-
tions; Vázquez and Aizen 2003; Barber 2007; Blüthgen
et al. 2007; Dormann et al. 2009). However, these mar-
ginal totals carry the imprint of network structure. At
one extreme, pollinators in the region may simply not
be attracted by the flowers in the patch under consider-
ation and hence are not present in the network. Or in
the case of antagonistic networks, a parasite may reduce
the population size of its host to such a degree that inter-
actions are hardly observed, although their intensity is
very high (e.g., Barbosa et al. 2017).
We investigated the consequences of using indepen-

dent versus network-derived abundances on prediction
quality with the simulated data. For the same simulated
data, we fitted tapnet with the simulated independent abun-
dances once and with the marginal totals of the simulated
interaction network once. We then predicted using either
the independent abundances of the second simulated net-
work or its marginal totals, respectively. We expect that
network-derived abundances will lead to a better model
prediction, simply because they contain information on
the structure of the test network.
Case Study

As a demonstration, we use the case study of Tinoco et al.
(2017), who compiled data on hummingbird pollination
networks in three different habitats (forest, shrubland,
and a cattle farm) in the southern Ecuadorian Andes. The
data published alongside the article (https://doi.org/10.5061
/dryad.j860v) include traits for both plants and humming-
birds as well as external abundance data. These networks
are unusually intensively sampled, with 1,288, 3,979, and
2,405 interactions in each of the three habitats, respectively,
across 32 plant and 14 hummingbird species, some occur-
ring only in one habitat.
In the case study, we additionally compare the predictive

performance of tapnet with three alternative approaches:
(1) abundance only; (2) trait-matching and phylogeny GAM,
following the ideas of Brousseau et al. (2018); and (3) a sim-
ilar model using random forest (see the supplemental PDF,
available online, for R code and detailed results).
The abundance-only model can be seen as a baseline:

it uses only the information on the activity/abundance of
the m lower-level and n higher-level species in the vali-
dation data v, specifying the estimated probability of
interactions: P̂v p (ol

v=
Pm

ip1olv,i)#(oh
v=
Pn

jp1ohv,j). Multi-
plying this with the number of observed interactions,
N total p

P
ol p

P
oh, yields the predicted interaction

intensity. Only improving on this model demonstrates
the explanatory power of traits and their matching.
Following the approach of Brousseau et al. (2018), we

fitted a negative-binomial GAM using 2D splines on the
first and second pair of relevant phylogenetic eigenvectors
of each group, andwe used 1D splines for the observed trait
values per species of each group and for the squared differ-
ence between traits (representing trait matching). While
the original approach used traits and phylogenies to predict
binary networks, here we predicted quantitative interaction
matrices and additionally used the abundances as pre-
dictors. Spline complexity was set to k p 3 for univariate
and k p 24 for 2D splines, and an additional shrinkage
was imposed by setting g to 1.4, both following Brousseau
et al. (2018). Note that this approach, as well as the next,
implicitly assumes entries of the interaction matrix to be
(conditionally) independent (see “Discussion”).
The random forest approach was run using the default

setting (i.e., 500 trees, trying the rounded-down square
root of number of predictors at each split). It was provided
with the same information as the previous GAM but using
all phylogenetic eigenvectors; it serves as a comparison
of the algorithm’s flexibility, as it allows for interactions
among the predictors.

https://doi.org/10.5061/dryad.j860v
https://doi.org/10.5061/dryad.j860v
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While tapnet can fit several networks simultaneously
(see the supplemental PDF), we employed it akin to the
other approaches in a cross-validation setting: the models
were fitted to one network and then predicted to the two
others in turn. Results were compared using the correla-
tion between predicted and observed interactions.
Models were fit in R using the packages mgcv (Wood

2006) and ranger (Wright and Ziegler 2017); see the sup-
plemental PDF for R code of simulations and the case
study.
Results

Simulations

In the first simulation experiment, the correlation be-
tween observed and fit networks was overall only mod-
erate (mean value r p 0:76 across all 500 parameter com-
binations). A strong effect of the number of observations
was detectable, yielding high correlations between ob-
served and fit networks (�r 1 0:83) for networks with
more than 0.5 (i.e., 225 interactions in a network with
15#30 p 450 cells) observations per number of cells
(fig. 2, top left). Correlation coefficients were lower for
networks with equal than for lognormal abundances of
all species and higher for the “normal” trait-matching
functions than for shifted lognormal. With an increasing
number of observed traits, correlation coefficients also in-
creased, indicating the usefulness of observed traits for
thinly sampled networks. The two trait-matching func-
tion parameters (trait-matching width of latent and ob-
served traits) did not seem to have a clear effect on the
correlation between observed and predicted networks.
Patterns of variation in Bray-Curtis similarity of observed
and predicted networks were similar to those for Pear-
son’s r (results not shown).
In the second simulation experiment, with prediction

to a new network, patterns were very similar to those
20 50 200 1000

0.2

0.4

0.6

0.8

1.0

Number of interactions

equal lognormal

0.2

0.4

0.6

0.8

1.0

Abundance distribution

normal shiftlnorm

0.2

0.4

0.6

0.8

1.0

Trait matching function

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Number of observed traits

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Trait matching width,
 latent trait

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Trait matching width,
 observed trait

Parameter value

Pe
ar

so
n 

co
rre

la
tio

n 
tru

e/
fit

te
d 

ne
tw

or
k

Figure 2: Pearson correlation between fitted model prediction and the simulated interaction network. Scatterplots show the correlation
coefficient r as a function of six model parameters, whose values were varied simultaneously using Latin hypercube sampling. Data were
simulated for 500 parameter combinations. Networks were of size 15# 30 species. Lines represent local weighted smoothers and their
95% confidence intervals to indicate trends in the simulations.
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in the fitting evaluation, with overall lower correlations
(�r p 0:42 and, for densely sampled networks, �r p 0:49).
Correlation coefficients depended strongly on the number
of observations, abundance distribution, and type of trait-
matching function employed (fig. 3). All other parameters
had much less effect, and the difference between the two
trait-matching functions can thus be seen as two almost
separate sets of points in all plots apart from the categorical
abundances.
Network indices for random realizations of the fitted

network were very similar to those of the observed, usu-
ally falling within the 95% confidence interval of the null
model (fig. 4). To assess the coverage of the fits and their
potential bias, we computed posterior P values for each
index as mean quantile (see “Assessing Model Quality”).
Across the 500 simulations of the first experiment, mean
posterior P values were .42 for connectance, .44 for NODF
(nestedness based on overlap and decreasing fill), .40 for
weighted NODF, and .68 for H0
2, all indicating a slightly

too generalist estimation of network structure (fig. 4, bot-
tom row).
Difference between Independent
and Network-Derived Abundances

The fit of tapnet to the simulated data was slightly im-
proved by using the marginal totals rather than the in-
dependently “observed” abundances (�r p 0:765 0:22
[1 SD] for independent abundances compared with �r p
0:835 0:15 with marginal totals). Also, the prediction
to the second simulated network, where half of the species
were previously unobserved, improved markedly, from
�r p 0:415 0:30 for independent abundances to �r p
0:625 0:25 withmarginal totals of the new network. Note
that using only the marginal totals of the test network
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Figure 3: Pearson correlation between model predictions and a new interaction network simulated with identical parameter values.
Scatterplots show the correlation coefficient r as a function of six model parameters, whose values were varied simultaneously using Latin
hypercube sampling. Data were simulated for 500 parameter combinations. Lines represent local weighted smoothers and their 95% con-
fidence intervals to indicate trends in the simulations.
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(without traits or phylogeny) already predicted interac-
tions well (�r p 0:6650:17).
Case Study

The tapnet model fitted the three hummingbird-flower
networks better than the abundance-only model and
the GAM but worse than the random forest approach (ta-
ble 2). On cross validation, when fitting to one and pre-
dicting to the other two networks in turn, the tapnet ap-
proach was no better or worse than the abundance-only
approach and the random forest approach but was sub-
stantially better than the GAM (table 3). Interestingly,
all approaches except the trait-neutral, abundance-only
approach declined dramatically in performance from
the training to the test data. The GAM, for example, fit-
ted the data moderately but held no predictive power
for the test data. Random forest, although reporting an ex-
tremely good fit, decreased to the level of tapnet and the
abundance-only approach on the test data. This drop in
performance from fitting to predicting suggests that all
statistical approaches overfitted, sometimes heavily.
Discussion

In recent years, two main but not mutually exclusive lines
of modeling approaches to predict network structure
have emerged (as reviewed in Valdovinos 2019). Neutral
models assume all species to be similar and generalist and
hence describe an expectation for network structure pri-
marily based on sampling intensity and abundance distri-
butions. Indeed, such approaches are often used as a null
model against which to gauge the effect of interaction pref-
erences (e.g., Vázquez andAizen 2003; Blüthgen et al. 2006;
Dormann et al. 2009). In contrast, interaction constraint
connectance
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Figure 4: Top row, example of network indices for 1,000 realizations of one fitted network, compared with the simulated true value (vertical
line; number gives quantile of true value within this frequency distribution). Bottom row, quantiles of true network index values across the
500 simulations of experiment 1. Black background indicates ideal uniform distribution. Despite a good overall match, spikes indicate a con-
sistent underestimation of specialization and hence lower connectance, lower nestedness, and higher specialization in the observed network.
Table 2: Pearson correlation coefficients between fitted and
observed hummingbird-flower network (Tinoco et al. 2017) for
the four approaches and their means across the three habitats
Approach
 Forest
 Shrub
 Farm
 Mean
Abundance only
 .25
 .09
 .49
 .28

Random forest
 .93
 .93
 .91
 .92

Tapnet
 .57
 .60
 .65
 .61

Generalized

additive model
 .56
 .29
 .40
 .42
Note: Approaches are sorted by ranking in the cross-validation perfor-
mance (table 3).
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models focus on why some links are not present, typically
using species traits and theirmatch across the groups as ex-
planatory features (Santamaría and Rodríguez-Gironés
2007; Bartomeus et al. 2016). In the approach presented
here, we combine both by allowing abundances to con-
tribute or even entirely dominate the prediction but use
matching between observed traits and between latent traits
as constraints.
The results so far are both promising and sobering. On

the one hand, we demonstrated that we can fit the observed
data well with the tapnet approach and reasonably predict
simulated data. We can also predict with moderate accu-
racy networks from other habitats, and the tapnet approach
did that better than some previous attempts to combine ob-
served and latent traits (Brousseau et al. 2018). On the other
hand, by far themost important predictor for our case study
was species abundance, which makes it easy for any ap-
proach and prevents the trait-matching strength of tapnet
to play out. Thus, a neutral model, using only abundances,
was as good at prediction (but not fit)—and at the same
time much simpler—than tapnet or random forest. We
think that at least two factors contribute to this finding:
(1) the hummingbird-flower network is not very special-
ized, despite featuring the most spectacular sword-billed
hummingbird (Ensifera ensifera), whose pollination-adapted
bill is longer than its body; and (2) when abundance is very
important, the log likelihood becomes very shallow and dif-
ficult to improve on. Also, abundance may be correlated
with a trait relevant for interactions, although in this case
there was no correlation between bill/corolla size and abun-
dances (r p 0:019 and 20.15, respectively; see the supple-
mental PDF).
In simulations with many (1500) observations, tapnet

predictions were very reasonable, while in the case study
all approaches fared relatively poorly. Our simulations
included processes deemed to be most important for de-
termining network structure (compared with the list in
Valdovinos 2019). This suggests either that mutualist net-
works may simply be extremely noisy and under low evo-
lutionary pressure or that the current trait-matching con-
cepts are not good enough for describing, across networks,
the processes that drive interactions. This suggests a strong
context dependence of interactions, depending, probably
substantially, on intraspecific trait variation (Laughlin
et al. 2012), behavioral complexity (Kaiser-Bunbury et al.
2010; Morán-López et al. 2020), competition within guilds
(Vandermeer 2004; Saavedra et al. 2013), nonlinear fre-
quency dependence (Benadi and Pauw 2018), and envi-
ronmental conditions more generally (for a review, see
Valdovinos 2019). Future research across many different
networks has to show whether abundance is consistently
such an important predictor for interaction frequencies.
The Chicken-and-Egg Problem of Abundances
and Network Structure

Not all studies record independent abundances—for ex-
ample, by estimating floral cover, sweep-netting insects,
or the like—and this is more common for birds than for
insects. Without such independent data for abundance,
its role for determining interaction frequencies cannot be
determined. One frequent “solution” is to use the observed
interactions of each species (themarginal totals of the inter-
action matrix) as a surrogate for its abundance. This ap-
proach has been rightly criticized as confounding the effect
of abundances on network interactions with the effect of
network structure on abundances—that is, it is the chicken-
and-egg problem of network interactions (Fort et al. 2016;
Dormann et al. 2017). This conflict was also detectable in
our simulations, where the tapnet prediction to the test
data was substantially improved by using the test network’s
marginal total as the predictor. Clearly, these surrogate
abundances carry some information, beyond abundance,
on network structure and hence interaction intensity.
Flower visitation networks are, in general, only moder-

ately “ecologically specialized” (sensu Armbruster 2017;
see, e.g., Blüthgen et al. 2007; Schleuning et al. 2012; Zanata
et al. 2017), suggesting that neither plants nor pollinators
depend crucially on a specific (set of) species to interact
with. As a consequence, network structure and species
abundances are strongly linked. In these cases, marginal
totals may arguably be used in lieu of independent abun-
dances. Our case study of a plant-pollinator system shows
that this is not the correct approach. Indeed, when pre-
dicting the fitted model once with the external and once
with the marginal abundances, we find a dramatically
Table 3: Pearson correlation of cross validation by predicting with a model fitted to one habitat to the other habitats
(indicated by a right arrow)
Approach
 F→S
 F→C
 S→F
 S→C
 C→F
 C→S
 Mean
Abundance only
 .09
 .49
 .25
 .49
 .25
 .09
 .28

Random forest
 .23
 .36
 .33
 .14
 .40
 .17
 .27

Tapnet
 .21
 .46
 .12
 .53
 .15
 .11
 .26

Generalized additive model
 2.01
 .33
 .26
 .13
 2.01
 2.02
 .11
Note: Habitats are forest (F), shrubland (S), and a cattle farm (C). For cross-validation log likelihoods, which show the same result, see the supplemental PDF.
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better performance for the marginal abundances (across
the three habitats, the predictive correlation is �r p 0:75,
compared with a meager �r p 0:26 with independent abun-
dances; see the supplemental PDF). Clearly, marginal abun-
dances contain an a priori unknown amount of informa-
tion, representing the outcome of within-guild interactions,
variable activity of individuals, selection cues (scent, visual
signals), and so forth.
How Independent Are Observed Interactions?

We believe that treating observed interactions as indepen-
dent data is statistically incorrect (see the introduction),
thus questioning the likelihood used by Rohr et al. (2016)
and Brousseau et al. (2018) as well as the implicit indepen-
dence assumption in Pichler et al. (2020). Therefore, we
here used a (network-wide) multinomial distribution, as
had been suggested by Vázquez et al. (2009), accommodat-
ing the compositional nature of the data. While it recog-
nizes the nonindependence of observations, it does not
thereby automatically capture the processes behind it. That
means that while the inference based on this distribution
is probably correct, our multinomial approach may not re-
sult in better predictions until the drivers of nonindepen-
dence are represented in the model (e.g., intraguild compe-
tition). Additionally, this approach has two statistically
relevant implications. First, we get only a single likelihood
value for a network rather than nm. Second, as a conse-
quence we assess the fit of the entire model, without any
chance of adapting only the fits of some specific species
or interaction, as is the case for the GAM and random for-
est approaches used here for comparison. While we regard
it as a more correct representation of the data, it also se-
verely limits the type of statistical approaches that can be
used for predicting network interactions.
Olito and Fox (2015) focus on a comparison of network

indices produced by their predictive approach with those
of the observed network. They conclude that even similar
networks may have rather different index values (and dif-
ferent networks similar indices), making such indices a
poor target for optimization. In our simulated networks,
we were able to fit networks so that their index values cen-
tered on the observed value. This illustrates that tapnet
did manage to fit network indices in line with the obser-
vations as a by-product of the multinomial likelihood in
principle.
Traits, Observed and Latent

Following the lead of previous studies (in particular, Rohr
et al. 2016), tapnet uses phylogenetic information to con-
struct (not necessarily phylogenetically conserved) latent
traits to improve fit to data. Clearly, these are only a sta-
tistical placeholder for actual but unobserved ecological
traits. Beyond the obvious but difficult-to-measure sen-
sory interaction cues (Junker et al. 2013), traits related
to optimal foraging should also be considered here—
from both groups of interacting species. As Pyke (2016)
exemplifies, the fitness benefit of pollination for plants
depends on the pollen-transfer efficiency of pollinators,
and too-high nectar rewards may give an incentive to in-
efficient visitors. Latent traits may thus reflect a complex
and fine-tuned pair of matching sets of traits, without ob-
vious interpretation.
A corollary of the possibility of fitting trait pairs is a risk

of identifying spurious characteristics of species (Mlambo
2014). At present, interaction traits are almost exclusively
morphological (for an exception, see Junker et al. 2013),
but phenology can be incorporated similarly. In the future,
both ecophysiological and genetic sampling may become
sensitive enough to extend research into interaction traits,
for example, related to vision in the ultraviolet (e.g., Rae
and Vamosi 2013), scent (e.g., Wright and Schiestl 2009),
or ultrasonic sound (e.g., Simon et al. 2019). Until such de-
vices become available, latent traits are a statistical stand-in
for what really makes species interact.
Conclusion

The approach we have presented here predicts network in-
teractions for new networks, conditional on trait, abun-
dance/activity, and phylogenetic data for the new network.
It is flexible enough to include any type of function trans-
lating trait matches into interaction probabilities. As a side
effect, it quantifies the importance of abundance relative
to traits for network interactions. Future applications will
have to assess the importance of traits across different types
of networks, testing the assumption of many network stud-
ies that traits are the driving force of network interactions.
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