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Agricultural intensification greatly gained momentum 
after World War II due to increasing use of agrochemi-
cals and mechanization1–3 to mitigate starvation in almost 

the whole of Europe4. The vision was, at that time, to produce as 
much food as possible to overcome hunger and poverty in both 
the Eastern and the Western blocs (Supplementary Fig.  1). This 
led to increased yields, but was and still is coupled to biodiversity 
loss5,6. In the Eastern bloc, intensification was combined with a 
vast collectivization of farms, as farmers were forced to hand over 
their fields to state-owned cooperatives7. This practice aimed at 
increasing the efficiency of production through landscape-scale 
homogenization, including the removal of minor field roads, field 
margins, hedgerows and any semi-natural habitat inhibiting the 
ambitious production goals leading to large fields. This process 
was implemented in East Germany during 1953–1960 and resulted 
in a rapid change from small-scale agriculture, with more than 
800,000 family farms, to large-scale agriculture, with fewer than 
20,000 cooperatives. Meanwhile, such drastic change did not hap-
pen in the West8. After the German reunification in 1990, field 
sizes remained almost unchanged9, while ownership changed 
from cooperatives to private, often Western or foreign farmers. 
This marked field-size difference is still visible along the former 
‘Iron Curtain’10 (Fig. 1). At the same time, European Union (EU) 
legislation under the Common Agricultural Policy started provid-
ing financial support through agri-environmental schemes (AES) 
with, for example, organic management11. Although some studies  
questioned the effectiveness of AES in terms of biodiversity 

gains12,13, both meta-analytical studies and large-scale field studies  
show that organic management supports threatened farmland 
biodiversity generally better than conventional farming14,15, while 
also producing healthier food and less contamination of soils and 
groundwater16. Biodiversity advantages of small-scale farming 
and landscape heterogeneity have been acknowledged widely in 
ecology17–21. However, to the best of our knowledge, the ecological 
and economic role of large-scale versus small-scale farming has 
never been studied together. Further, we compared ecological and 
economic consequences of small-scale agriculture with those of 
organic farming for the first time.

The historical East–West division enabled us to test the effec-
tiveness of organic cereal management for biodiversity in large-
scale versus small-scale agriculture. We measured the diversity of 
plants and arthropods (Methods) and hypothesized that (1) bio-
diversity is higher in small-scale cropland1 and (2) the effect of 
field size is more important for biodiversity than conversion to 
organic management. In 2013, we selected nine pairs of organic 
and conventional winter wheat fields in small-scale agricultural 
landscapes in former West Germany and in large-scale agricul-
tural landscapes in former East Germany, respectively, all along 
the former inner German border (2 regions ×​ 9 field pairs =​ 36 
study fields; Supplementary Fig. 2). These two neighbouring study 
regions are representative of the farmland areas of the former East 
and West Germany22,23. We aimed to explore how biodiversity pat-
terns change from field edges to field centres with the following 
within-field sampling design. We designated transects at field edges 
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Agricultural intensification drives biodiversity loss and shapes farmers’ profit, but the role of legacy effects and detailed quan-
tification of ecological–economic trade-offs are largely unknown. In Europe during the 1950s, the Eastern communist bloc 
switched to large-scale farming by forced collectivization of small farms, while the West kept small-scale private farming. Here 
we show that large-scale agriculture in East Germany reduced biodiversity, which has been maintained in West Germany due 
to >​70% longer field edges than those in the East. In contrast, profit per farmland area in the East was 50% higher than that 
in the West, despite similar yield levels. In both regions, switching from conventional to organic farming increased biodiversity 
and halved yield levels, but doubled farmers’ profits. In conclusion, European Union policy should acknowledge the surprisingly 
high biodiversity benefits of small-scale agriculture, which are on a par with conversion to organic agriculture.
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(directly next to narrow grassy field margins bordering dirt roads), 
field interiors (15 m from field edge) and field centres (120 m and 
75 m from field edge in East and West, respectively). We performed 
our study in the agricultural matrix, minimizing the area and 
potential effect of non-agricultural habitats (Table 1)24. Landscape 
structure was very different between the two neighbouring regions, 
with fields more than six times larger in the East, and >​70% longer 
field edges in the West. Conventional farmers in both regions used 
about five times the amount of nitrogen fertilizer compared with 
organic farmers, applied synthetic pesticides about five times per 
year (versus never) and had approximately two times higher yields 
than organic farmers25,26. This large difference in winter wheat yield 

between organic and conventional farmers is typical for the rich 
soils farmed in the study region27.

We also performed a detailed economic survey of our study 
farms based on farmer interviews (Methods). Total costs included 
expenses for mechanical field work, seeds, soil analyses, chemical 
plant protection, chemical growth regulators, synthetic and organic 
fertilizers, agricultural wage enterprises and working time. Total 
revenues included grain and straw revenues as well as subsidies for 
organic agriculture. Total profit was calculated by deducting total 
costs from total revenues per field per hectare. We hypothesized 
that (1) large-scale agriculture is more profitable due to lower  
variable costs28 and (2) organic agriculture is more profitable due to 
better marketing possibilities29,30.

West

500 m

East

N

Fig. 1 | Illustrative map of West and East Germany (scale 1:30,000) at 
25 May 2012. Field-size differences are shown between West and East 
Germany along the former Iron Curtain (red line) in the study area (around 
the villages of Weissenborn and Hohes Kreuz, southeast of Göttingen, on 
the border of Lower Saxony (West) and Thuringia (East)). Source of the 
photo: ESRI, World Imagery, DigitalGlobe.

Table 1 | Landscape structure (in 500 m buffer) around and local management intensity of study fields in small- (West) versus  
large- (East) scale agricultural systems with organic versus conventional management (mean ± standard error of the mean)  
during 2013 (n = 36 fields)

Model West East Estimate ±​ 95% CI

Organic Conventional Organic Conventional Region Management R ×​ M

Landscape structure
 Field size (ha) 3.7 ±​ 0.7 3.3 ±​ 0.4 21.7 ±​ 5.5 18.3 ±​ 2.1 −14.14 ±​ 6.90 2.16 ±​ 7.74 −1.55 ±​ 10.95

 Edge length (km) 18.3 ±​ 1.3 19.5 ±​ 1.6 11.0 ±​ 0.8 10.8 ±​ 0.6 8.38 ±​ 3.67 0.02 ±​ 2.90 −1.52 ±​ 4.10

 Grassy field margin (km) 7.2 ±​ 0.5 7.3 ±​ 0.4 5.5 ±​ 0.6 5.0 ±​ 0.9 2.09 ±​ 1.90 0.42 ±​ 1.73 −0.54 ±​ 2.45

 Land-use diversity 1.4 ±​ 0.1 1.3 ±​ 0.0 0.9 ±​ 0.1 0.9 ±​ 0.1 0.43 ±​ 0.26 0.07 ±​ 0.22 −0.03 ±​ 0.31

 Agricultural area (%) 73.9 ±​ 4.1 76.9 ±​ 6.2 81.0 ±​ 5.1 85.5 ±​ 4.5 −9.25 ±​ 16.11 −5.49 ±​ 13.55 2.90 ±​ 19.17

Management intensity
 Fertilizer (kg N ha−1) 21.6 ±​ 10.9 199.3 ±​ 6.3 65.3 ±​ 11.7 193.6 ±​ 8.6 −8.47 ±​ 33.76 −129.61 ±​ 33.76 −57.10 ±​ 22.40
 Pesticide application (#) 0.0 ±​ 0.0 4.3 ±​ 0.4 0.0 ±​ 0.0 5.2 ±​ 0.7 0.19 ±​ 1.03 – –

 Yield (dt ha−1) 40.9 ±​ 2.5 85.2 ±​ 3.3 48.3 ±​ 2.5 85.3 ±​ 1.6 0.54 ±​ 8.25 −37.91 ±​ 8.25 −7.91 ±​ 11.67

 Study field size (ha) 3.0 ±​ 0.5 3.1 ±​ 0.4 21.8 ±​ 3.6 20.0 ±​ 3.0 −16.95 ±​ 7.18 1.23 ±​ 5.59 −1.35 ±​ 7.90
Effects of region (R), management (M) and their interaction are shown as effect estimates ±​ 95% confidence intervals (CIs) from general and generalized linear mixed-effects models. N: nitrogen.  
#: number. Significant effects (P <​ 0.05) are marked in bold.
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Fig. 2 | Effects of region and management on profit, revenue, cost and 
farm size. a–c, Farmers’ profit (a), revenue (b) and cost (c) are measured 
in €​ per ha (n =​ 28 fields). d, Farm size is measured in ha (n =​ 18 farms). 
Organic farmers’ revenue contained the subsidy for organic farming, which 
was €​170 and €​210 per ha in West and East Germany, respectively. Bars 
represent mean ±​ standard error of the mean. See Supplementary Table 1 
for test statistics.
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Results
We found that farmers’ profit from winter wheat was more than 100% 
higher per hectare under organic than conventional management 
(Fig. 2 and Supplementary Table 1). Subsidies for organic agriculture 
were €​170 and €​210 per ha in East and West (AES and subsidies vary 
among German federal states31), respectively, suggesting that these 
subsidies contributed to the difference in profit between the two man-
agement types. Although subsidies were a substantial part of profit 
for organic farmers, large differences between the two management 
regimes remain without these subsidies (mean values for West organic: 
€​1,181 per ha; West conventional: €​412 per ha; East organic: €​1,663 
per ha; East conventional: €​874 per ha). We also found significantly 
higher profits per farmed area (~50–60%) in the large-scale than in 
the small-scale agricultural region. This is because of higher produc-
tion costs in Western conventional farms due to current labour costs 
and higher revenues in Eastern organic farms32 probably associated 
with better marketing possibilities (Fig. 2 and Supplementary Table 1).

There was no effect of region on species richness of plants and 
arthropods (carabids, rove beetles, spiders), as well as no over-
all effect of region when all groups were considered together in 
a fixed-effect meta-analysis33 (Fig.  3, Supplementary Fig.  4 and 
Supplementary Tables  2–6) (Methods). The same was true when 
analysing arthropod abundances and plant cover (Supplementary 
Figs.  5 and 6). Organically managed fields harboured more spe-
cies and individuals of all groups than conventionally managed 
fields. This effect was strongest for plants, which drove the over-
all summary effect resulting in 44% higher overall species richness 
in organically than conventionally managed fields. The statistical 
interaction of region and management was due to a higher effec-
tiveness of organic management in the West for plant richness as  
well as spider abundances. Interestingly, both species richness and 
abundances were reduced by about 25% when comparing field 
edges with field interiors, but there was no further drop towards 

the field centres (except for spider richness). Hence, most farmland 
species and their populations were confined to the very edge of crop 
fields. This also implies that the higher biodiversity in the small-
scale agricultural system in the West can be linked to the much 
higher amount of field edges1,17,19.
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Fig. 3 | Effects of region and management, their interaction and edge effect on plant and arthropod species richness. a–f, Effects of region (a) and 
management (b), their interaction, that is, effectiveness of organic management (c), and edge effect (edge versus interior (d), interior versus centre (e) and 
edge versus centre (f)) on plant and arthropod species richness, as well as the summary effect from meta-analysis, expressed as effect estimate ±​ 95% 
confidence interval (CI) (n =​ 36 fields). Org.: organic; Conv.: conventional; Inter.: interior. Significance levels: (*)P<​ 0.1, *P<​ 0.05, **P<​ 0.01, ***P<​ 0.001.
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Fig. 4 | Effects of region and management on overall species richness.  
We used sample-based rarefaction curves standardized for perimeter per 
field (n =​ 36 fields; dashed lines represent 95% confidence intervals).
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To further explore this pattern, we performed sample-based rar-
efaction curves34,35 on incidence data of all taxa in field edges com-
bined by standardizing for field perimeter (field perimeters originate 
from the mean field size per region, Table 1). The rarefied species 
richness observed in different types of management (organic over 
conventional) and region (West over East) was significantly differ-
ent (P <​ 0.05; Fig. 4). Small-scale conventional management in the 
West supported higher biodiversity than large-scale organic man-
agement in the East (Fig. 4). Although the species richness per field 
was similar in both regions (Fig. 3), having only nine small fields 
in the West gives a much higher species richness than four large 
fields with the same length of field perimeter in the East regard-
less of management type. This means that the species richness in 
the fields, that is, alpha diversity, of these two contrasting regions 
was similar, whereas the species turnover, that is, between-field beta 
diversity, was much higher in the West than in the East. In addition, 
richness was higher in organic than in conventional management.

Discussion
Our study showed how the former Iron Curtain between East and 
West Germany and the associated divide in large-scale and small-
scale agriculture are still shaping economic–ecological trade-offs 
in agriculture. We quantified the great contribution of small-scale 
agriculture to biodiversity, which was more important than organic 
management. Yield levels were the same across the East–West divide, 
but large-scale agriculture led to the highest profit (despite similar 
yield), and organic farming even doubled profit (despite halved 
yield). Although large-scale farms allow higher profits, which is in 
line with economies of scale28, future restructuring of agricultural 
landscapes towards small fields with field margins would probably 
be an economically viable option under an EU-subsidized policy on 
enhancing farmland biodiversity31. We emphasize the importance 
of quantifying ecological–economic trade-offs for a politically bal-
anced view. Further, the long-term stability of former East–West 
contrasts in agricultural politics and farming practices suggests that 
evaluations of ecological and economic costs and benefits need to 
be regionally adapted, taking into account agricultural traditions 
and potential legacy effects36.

Methods
Biodiversity survey. In June 2013, we surveyed plants by estimating the relative 
cover per species in three plots (5 m ×​ 1 m in size and 10 m distance between them) 
per transect (n =​ 324 plots). Arthropods (carabids, spiders and rove beetles) were 
collected with two funnel traps per transect in two one-week periods from May to 
June (n =​ 432 funnel traps; for the trapping method see Duelli et al.37).

Economic comparison. The following cost factors were considered per study 
field: field preparation, including sowing and harvesting (for example, costs due 
to the use of cultivator, milling machine, plough, harrow, chipper, curry comb, 
seed drill, harvester and baler), seeds, soil analyses, chemical plant protection 
(for example, fungicides, insecticides, herbicides, rodenticides or molluscicides), 
chemical growth regulators, synthetic and organic fertilizers, agricultural wage 
enterprises and working time. If costs of preparation, sowing (including seed costs) 
and harvesting were not tractable by farmers, we noted working steps and machine 
data, and later calculated expenses by the use of the online plant process calculator 
of the agricultural advisory board for engineering and building38. In doing so, we 
considered field size, workability of soil (medium or heavy soil), mechanization 
(kW, machine type, working width of machines or sowing quantity), field-to-farm 
distance (set up to 1 km) and farming system (organic or conventional). In terms  
of other parameters (for example, machine costs such as fuel requirement, repair 
costs and depreciation), we used standardized settings of the online calculator.  
If farmers’ data did not fit exactly into the online calculator (for example, 
sometimes in the case of kW, field size or machine width), we used the next 
closest setting. In terms of farm-saved seed, we assumed €​0.40 per kg of seed for 
conventional and €​0.47 per kg of seed for organic farming systems (Association 
for Technology and Structures in Agriculture, personal communication) 
because statements of farmers showed a huge variation. Machine costs emerging 
through fertilization and chemical plant protection were calculated by using the 
default setting of the online calculator38 while considering the farming system 
(organic or conventional), field size, workability of soil (heavy or medium) and 
cultivation method (direct sowing method, non-plough tillage or conventional 

soil cultivation with plough). If farmers provided information only about the 
kind and quantity of product used without prices (four farmers), then costs for 
chemical plant protection products and growth regulators were derived from 
different price lists39–42. If farmers were unable to provide prices for synthetic 
fertilizers, cost calculation was based on individual average prices of the fertilizers 
in Germany for the marketing year 2013–2014 (Agrarmarkt Informations, 
personal communication). Because farmers used organic fertilizers originating 
from their own enterprises, they were able to tell us just the quantity and the type 
of organic fertilizer. Average prices were derived from our own survey of regional 
companies (Nährstoffverwertung Oldenburger Raum Münsterland, Naturdünger 
Verwertungs, Agrovermittlungsdienst Emsland-Bentheim, Bioenergiedorf Jühnde), 
which deal with or use natural fertilizers. Prices for liquid manure and digested 
residue were generally set with €​4 per t or €​4 per m³ (Lower Saxony) and €​5 per t  
or €​5 per m³ (Thuringia), and solid dung with €​10 per t. To calculate the costs 
of working time, we recorded the estimated working hours of each farmer (with 
reference to the whole winter wheat season 2013–2014). Working time was related 
to hectares and multiplied by €​15 (this amount was based on our own experiences 
as well as on a farmer’s estimate) to calculate costs per hectare.

In addition to the costs, we also considered the revenue side of the winter  
wheat season 2013–2014. Here, we recorded grain and straw yield as well as 
additional state grants for organic agriculture per study field. Grain yield was 
multiplied by actual proceeds stated by the farmers. Grain yield was sold or used 
as fodder, as seed or for baking purposes. If a crop was still not sold or used at 
the time of the survey, calculations were based on the estimated proceeds of each 
farmer. If straw was not left on the field, we also calculated the proceeds of straw 
(sold or used as fodder or litter). If not stated by the farmers (nine farmers), we 
used the average German sales price of straw (€​73.8 per t) with reference to the 
marketing year 2013–2014 (Agricultural Market Information Company, 2015). 
Besides grain and straw proceeds, we also took into account state grants for  
organic agriculture as a source of revenue. Here, we considered federal state-
specific subsidy rates of the business year 2013–2014 (cultural landscape 
programme of Thuringia: €​170 per ha if organic farming was practised ≥​six years; 
agri-environmental programme of Lower Saxony: €​210 per ha if organic farming 
was practised ≥​three years; Lower Saxony Ministry of Food, Agriculture and 
Consumer Protection and Thuringian Ministry of Infrastructure and Agriculture, 
personal communication).

All matters of costs and proceeds were calculated per hectare and year for each 
field. To obtain total revenue (€​ per ha, field and business year), aggregated costs 
were subtracted from overall proceeds.

Statistical analysis. Due to limited availability of organic farms in the East  
(fewer organic farms in the East, but with an order of magnitude larger size  
than in the West43), we applied a so-called partly cross-nested design by selecting 
from half of the farmers two fields and from the other half only one field: in  
both regions we had three villages with two organic–conventional pairs and three 
villages with one organic–conventional pair (see Supplementary Figs. 2 and 3). 
Therefore, we applied linear mixed-effects models by using the ‘lme4’44 package 
of the statistical software R45. All biodiversity data were pooled per sampling year 
and per transect before analysis by taking the mean cover for arable plants and the 
sum for arthropods. Response variables, if needed, were either log (carabid and 
rove beetle abundances) or logit (plant cover) transformed to achieve a normal 
error distribution and/or avoid heteroscedasticity and to get a better model fit. 
Additionally, all response data were standardized from zero to one46 to allow for 
direct comparisons of effects on the different dependent variables and to perform 
fixed-effect meta-analyses for getting the overall effects (see next paragraph). The 
partly cross-nested study design was taken into account in the random structure 
of the models. Accordingly, each model included the random effects: field (n =​ 36) 
nested in farm (n =​ 24), nested in village (n =​ 9); and field (n =​ 36) nested in pair 
(n =​ 18), nested in village (Supplementary Fig. 3). In addition, models contained 
the following fixed effects: region (East versus West), management (organic versus 
conventional), transect position (edge, interior or centre) and the interaction 
between region and management. This model formula in R-syntax is

∼ + + + |

+ |

∧lmer(y (Region Management) 2 Transect position (1 Village / Farm / Field)

(1 Village / Pair / Field))

Marginal and conditional R2 values for species richness and abundance  
models were calculated using the ‘r.squaredGLMM’ function of the ‘MuMIn’47 
package of R. We did not simplify the models, to be able to directly compare their 
effect estimates among the different taxa and to summarize these estimates in a 
meta-analysis (see below).

One of the main interests was, besides investigating the environmental effects 
on each individual group, whether these environmental effects showed an overall 
effect. Therefore, we performed a series of unweighted fixed-effect meta-analyses 
for each effect type (region effect, management effect, effectiveness of organic 
management, edge versus interior effect, interior versus centre effect, edge  
versus centre effect) per measure type (species richness, abundance) with the 
‘metafor’48 package of R. Weighting was not used, because data originate from the 
same experimental design with the same sample size per measure. This enabled  
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us to get an effect estimate of all groups expressed as summary effect sizes 
with their corresponding 95% confidence intervals (presented in Fig. 3 and 
Supplementary Fig. 5).

We analysed the effects of region and management and their interaction on 
count data from economic surveys (profit, revenue and cost) with generalized 
linear mixed-effects models based on a negative binomial distribution for avoiding 
overdispersion. Random-effect terms correspond to the biodiversity analyses above 
without the random factor field, because that was the lowest level. This model 
formula in R-syntax is

∼ + + | + |∧glmer(y (Region Management) 2 (1 Village / Farm) (1 Village / Pair))

We analysed the effects of region and management and their interaction  
on farm size with linear regression based on a normal distribution (no random 
effect). Finally, we analysed the effects of region and management and their 
interaction, presented in Table 1 with generalized linear mixed-effects models 
based on a normal distribution for all non-integer continuous data based  
on a normal distribution. One exception was the only count variable, namely, 
number of synthetic pesticide applications, which was analysed based on a negative 
binomial distribution for avoiding overdispersion. The structure of random  
effects was the same as in the case of economic survey data. In the case of number 
of synthetic pesticide applications, where effect of management could not be 
analysed (organic fields excluded because synthetic pesticides are not allowed), 
only village was used as a random factor.

Code availability. A complete description of the main model is provided in the 
Methods, and all code is available on request from the authors.

Data availability. Species presence data are available in the Supplementary 
Information (Supplementary Tables 3–6). The biodiversity and environmental  
data used in the analyses are archived at the research data repository Zenodo 
(https://doi.org/10.5281/zenodo.810513).
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