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Summary

1. Ecological networks are often composed of different subcommunities (often referred to asmodules). Identify-

ing such modules has the potential to develop a better understanding of the assembly of ecological communities

and to investigate functional overlap or specialization.

2. The most informative form of networks are quantitative or weighted networks. Here, we introduce an algo-

rithm to identify modules in quantitative bipartite (or two-mode) networks. It is based on the hierarchical ran-

dom graphs concept of Clauset et al. (2008 Nature 453: 98–101) and is extended to include quantitative

information and adapted to work with bipartite graphs. We define the algorithm, which we call QuanBiMo,

sketch its performance on simulated data and illustrate its potential usefulness with a case study.

3. Modules are detected with a higher accuracy in simulated quantitative networks than in their binary counter-

parts. Even at high levels of noise, QuanBiMo still classifies 70% of links correctly as within- or between-

modules. Recursively applying the algorithm results in additional information of within-module organization of

the network.

4. The algorithm introduced heremust be seen as a considerable improvement over the current standard of algo-

rithms for binary networks. Due to its higher sensitivity, it is likely to lead to be useful for detecting modules in

the typically noisy data of ecological networks.

Key-words: compartments, groups, modularity, null model, pollination networks, weighted
networks

Introduction

The ecological literature is replete with references to interacting

groups of species within systems, variously termed compart-

ments (May, 1973; Pimm 1982; Prado & Lewinsohn 2004),

modules (Olesen et al. 2007; Garcia-Domingo & Salda~n a,

2008; Dupont & Olesen 2009), cohesive groups (Bascompte

et al. 2003; Danieli-Silva et al. 2011; Guimar~aes, Jordano &

Thompson 2011) or simply communities (Fortunato 2010).

Their attraction, for ecologists, is that they promise a way to

simplify the description and understanding of an ecological

system, by representing not each and every species, but aggre-

gating their interactions and energy fluxes into amoremanage-

able set of modules (e.g. Allesina, 2009a). In the following, we

will refer to such aggregated sets of interacting species as

‘modules’. Their characteristic hallmark is that within-module

interactions are more prevalent than between-module interac-

tions (Newman 2003; Newman & Girvan, 2004; Fortunato

2010).

In the extreme case, modules are completely separated from

each other and are then typically called compartments (Pimm

1982). This strict definition has seen some relaxation (Dicks,

Corbet & Pywell 2002), but most recent studies converge on

the term ‘module’ for any identifiable substructure in interac-

tion networks (Prado & Lewinsohn 2004; Lewinsohn et al.

2006; Olesen et al. 2007; Ings et al. 2009; Joppa et al. 2009;

Cagnolo, Salvo&Valladares 2011).

The identification of modules, and the membership of spe-

cies to modules, has received considerable interest in the physi-

cal sciences (as reviewed in extenso by Fortunato 2010).

Particularly the work of Newman and co-workers (e.g. New-

man 2003; Newman & Girvan 2004; Newman 2004a, b, 2006)

has practically defined the current paradigm of module defini-

tion and identification. Algorithms to identify modules are

‘greedy’, that is, highly computationally intensive, relying on

some way of rearranging module memberships and then

quantifying ‘modularity’ until a maximal degree of sorting has

been achieved (Clauset, Newman & Moore 2004; Newman

2004b; Newman 2006; Pons & Latapy 2006; Schuetz &

Caflisch 2008). The focus of virtually all these algorithms was

on unweighted and one-mode networks (see, e.g., Clauset,

Moore & Newman 2008; Kov!acs et al. 2010; Lancichinetti &

Fortunato 2011; Jacobi et al. 2012, for a recent example).

Unweighted (or binary or qualitative) refers to the fact that

only the presence of a link between species is known, but not
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its strength (Levins 1975; Pimm 1982). One-mode refers to the

structure of the community, in which all species are potentially

interacting with each other. The typical ecological example is

a species 9 food web matrix, in which entries of 1 depict an

existing interaction.

In recent years, weighted and bipartite interaction networks

have become more intensively studied. In a weighted network,

the link between two species is actually quantified (e.g. by the

number of interactions observed or the strength of the inter-

action inferred from the data: Newman 2004b). In a bipartite

network, the species fall into two different groups, which

interact with members of the other group, but not within their

group. A typical example are pollinator–visitation networks

(V!azquez et al. 2009), where pollinators interact with flowers,

but flowers do not interact among themselves (see Fig. 1).

Another well-studied examples is host–parasitoid network

(e.g. Morris, Lewis & Godfray 2004; Tylianakis, Tscharntke

& Lewis 2007).

While popular among ecologists (Bl€uthgen 2010; Pocock,

Evans & Memmott 2012; Poisot et al. 2012; Schleuning et al.

2012), weighted bipartite graphs are not amenable to any of

the existing module detection algorithms for one-mode net-

works or for unweighted bipartite networks. Existing software

uses one-mode networks or, more precisely, one-mode projec-

tions of bipartite networks (Guimer#a, Sales-Pardo & Amaral

2007; Mart!ın Gonz#alez et al., 2012; Th!ebault 2013), or

unweighted (binary) bipartite networks (Guillaume & Latapy

2004; Marquitti et al. 2013), while other approaches focus on

the identification of crucial leaves through quantifications of

their position in the network (e.g. centrality or degree: Ravasz

et al. 2002; Borgatti 2006; Mart!ın Gonz!alez et al., 2010). This

lack of an algorithm to identify modules in quantitative, bipar-

tite networks is particularly problematic, as such networks

find their way into conservation ecological considerations

(Tylianakis et al., 2010) and are the focus of a vibrant field of

macroecological research (Ings et al. 2009). Furthermore,

from a statistical point of view, weighted networks offer much

more information and are less likely to lead to erroneous

conclusions about the system (Li & Chen 2006; Scotti, Podani

& Jordan 2007; Bl€uthgen 2010; Fortunato 2010).

Here, we present an algorithm to identify modules (and

modules within modules) in weighted bipartite networks. We

build on an algorithm provided byClauset,Moore &Newman

(2008) for unweighted, one-mode networks, the weightedmod-

ularity criterion developed by Newman & Girvan (2004), and

the bipartite modularity proposed by Barber (2007).

Modularity algorithms

Modules can be interpreted as link-rich clusters of species in a

community. An alternative to finding and delimiting such

modules is to group species by ordination (Borgatti & Everett

1997; Lewinsohn et al. 2006). Correspondence analysis (CA)

of the adjacency matrix is a simple and fast way to organize

species. Typically, however, correspondence analysis will not

be able to identify modules sufficiently well, even if modules

are actually compartments (i.e. perfectly separated: Fig. 2 left,

centre). The QuanBiMo algorithm we present here can do so,

at least in principle (Fig. 2 right). If modules are perfectly sepa-

rated, with no species interacting with species in another mod-

ule, they are called compartments and will be visible as clearly

separated groups of species. It is relatively straightforward to

implement a recursive compartment detection function, but

compartments are much coarser than modules and not the

topic of this publication.

One algorithm proposed and available for detecting mod-

ules in bipartite networks is due to Guimer#a, Sales-Pardo &

Amaral (2007) called ‘bipartmod_w’), which is derived from a

one-mode algorithm (Guimer#a et al. 2005). Their approach

differs substantially from single-run bipartite algorithm in that

they employ a one-modemodularity algorithm on each level of

a bipartite network separately, although they discuss the

approach later developed by Barber (2007). TheGuimer#a et al.

approach was used in several ecological applications of
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Fig. 1. Bipartite graph of a quantitative pollinator–visitation network (Memmott, 1999).
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modularity (Olesen et al. 2007; Dupont & Olesen 2009; Fort-

una et al. 2010; Guimer#a et al. 2010; Carstensen et al. 2011;

Trøjelsgaard & Olesen 2013), although the algorithm does not

explicitly identify combinedmodules (as stated in Barber 2007;

Fortuna et al. 2010). Most recently, Th!ebault (2013) investi-

gated, through simulations, the ability of three modularity

measures (those ofNewman&Girvan 2004; Barber 2007;Gui-

mer#a, Sales-Pardo & Amaral 2007) to identify modules in bin-

ary bipartite networks and comes out in support of that of

Guimer#a et al. (2007).

Finally, Allesina & Pascual (2009b) have proposed an

approach for one-mode networks. It identifies ‘groups’, rather

than modules, which reveal more about the structure of a

food web than modules do, since also their relation towards

each other emerges from the analysis. Their approach is based

on a binary one-mode matrix, however, even when applied to

bipartite networks (as was done by Mart!ın Gonz!alez et al.,

2012).

QUANBIMO: A QUANTITATIVE BIPARTITE MODULARITY

ALGORITHM

Outline

The new algorithm (Dormann & Strauß, 2013) builds on the

hierarchical random graph approach of Clauset, Moore &

Newman (2008), which builds a graph (i.e. a dendrogram) of

interacting species so that nearby species are more likely to

interact. It then randomly swaps branches at any level and

evaluates whether the new graph is more likely than the previ-

ous one, recording and updating the best graph. Fit is com-

puted as modularity of the current graph (detailed in section

Goal function). The swapping is a Simulated Annealing-

Monte Carlo approach, that is, sometimes a worse graph is

chosen as the starting point for the next swap, thereby avoid-

ing being trapped in a local maximum. Each node of the

graph contains the information of whether it is part of a mod-

ule, so that the graph can be transgressed top-down to

identify modules.

Our modifications consist of (i) allowing branches between

species to be weighted by the number of interactions observed

between them, therebymaking the algorithm quantitative; and

(ii) taking into account that species in one group can only inter-

act with species in the other group, rather than the one-mode

network the algorithm was initially developed for. Taken

together, our algorithm computes modules in weighted, bipar-

tite networks, based on a hierarchical representation of species

link weights and optimal allocation tomodules.

Terminology

A graphG = (V,E) denotes a set of vertices t ∈ V connected by
edges e ∈ E. An edge e connects two nodes, thus e = c(ti,tj),
where ti 2 V ^ tj 2 V. G is a weighted (= quantitative) graph if
each edge e has a weight w ∈ W associated with it (w ⊆ R+). We
normalize edge weights so that ∑w ∈ Ww = 1. (For binary graphs
w = 1/|E| for all existing edges, where |.| symbolizes the number of
elements.)
For bipartite graphs, the vertices V are of two non-overlap-

ping subsets, VH and VL (higher and lower level), such that

VH ∩ VL = ; and for all edges, the connected vertices are in

different subsets: ti ∈ VH ⇔ tj ∈ VL (⇔ symbolises equiva-

lence, i.e. if we know ti is in VH, tj must be in VL, and vice

versa).

A graph can be represented as a dendrogram D, that is, a

binary tree with the vertices of the graph G being the tips (or

leaves) of the dendrogramD (Fig. 3a). Thus, any internal split

(or vertex) ofD defines a subset ofG. The idea of the algorithm

is now to find internal vertices ofD so that the subset it defines

is amodule.

Goal function

The algorithm has to divideG into a set ofmodulesC such that

1. each module c ∈ C is a connected subgraph of G. (This

means each species has to have a partner).

2. each vertex t belongs to exactly one module c. (The unique-

ness requirement).

3. edge weights within a module are higher than edge weights

outsidemodules. (Themodularity definition).

To specify point 3 above, Barber (2007) has defined modu-

larity for bipartite networks as

Q ¼ 1

2m

X

ij

Aij " Pij

! "
dðci; cjÞ (eqn 1)

where m is half the total number of observed links in the net-

work and Aij is in fact a binary version of our edge matrix E,

with values of 1 if a link between i and j exists. The expected

value for each link, based on an appropriate null model, is

given in the matrix P. The module to which a species i or j is

Fig. 2. A simulated three-compartment network in random sequence (left), as sorted by a correspondence analysis (centre) and by the modularity
algorithmwith default settings (right).
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assigned is ci, cj. The indicator function d(ci,cj) = 1 if ci = cj
and 0 if ci 6¼ cj.Q ranges from 0, which means the community

has no more links within modules than expected by chance, to

amaximumvalue of 1. The higherQ, themore do the data sup-

port the division of a network intomodules.

FollowingNewman (2004b), we can expand eqn. 1 by allow-

ing Aij and Pij to be weighted, rather than binary. To avoid

confusion, we then replace Pij byKij, which is not a normalized

probability matrix, but really the matrix of expected weights,

based on the null model. Furthermore, for the weighted case,

we computem = ∑i,jAij.We then get:

Q ¼ 1

2m

X

ij

Aij " Kij

! "
dðci; cjÞ; (eqn 2)

where K ¼ kik
T
j

2m , with ki = Ai. and kj = A.j being the marginal

totals for rows and columns of A, respectively (Newman

2004b).

One crucial point of our modifications of the original hier-

archical random graph algorithm of Clauset, Moore &

Newman (2008) was to assign an indicator value to each

dendrogram vertex to label it as being within a module, or

not. To do so, we have to compute the expected value for

each value of Aij in order to be able to evaluate whether the

observed value is lower or higher (the term over which eqn.

2 sums). This step is not required if edges are unweighted,

since then the expectation will always be the same. For

weighted edges, and under random interactions among indi-

viduals, however, we would expect the edge eij connecting

two nodes i and j representing abundant species to have a

high value of wij. Similarly, nodes representing rare species

could be expected to have low edge weights.

Thus, at every internal vertex of the tree, the subtree is inter-

preted as module and the algorithm computes the expectation

matrix K based on the cross-product of marginal totals of all

species in the module, divided by the sum of the number of

observed interactions in that module K ¼ kik
T
j

2m

# $
. (Since we

normalizedalledgeweighttosumto1,K isactuallyaprobability

matrix). Inotherwords: thenumberof interactionswe expect in

a cell depends on the number of observations we have for both

interacting partners; frequently observed species contribute

more to the expected number of interactions than rarely

observed species. Ecologically speaking, we interpret the

marginal totals as being proportional to the probability of

observing this species in interactions.Thisneednot reflectabun-

dance, but rather activity in a given community context. In fact,

we would expect modules to change when further species are

added, as this ecologically affects not only their relative abun-

dance but also their preferenceswith different resources becom-

ing available. If the vertex gives rise to a module, that is, if

∑ij ∈ c(Aij"Kij)>0, this vertex is labelled as a module. We can

nowsumthecontributionsofallverticesandmodulesaccording

toeqn.2tocomputetototalmodularityofgraphG.Foraformal

descriptionofthispartof thealgorithm,pleaseseeAppendixS1.

Swapping

The algorithm starts with a randomdendrogram,wheremodu-

larity Q is likely to be very low. Through random swapping of

branchesand their optimization,Q increasesduringa simulated

annealing procedure. The algorithm stops when a pre-defined

numberof swapsdidnot further increase thevalueofQ.

Random swaps are implemented as exchange of two ran-

domly selected vertices in the dendrogram, subject to the fol-

lowing constraint (Fig. 3b). The vertex to be swapped cannot

be a leaf. Since terminal vertices always connect leaves from

the two bipartitionsVi andVj, thus representing an interaction,

they can be swapped, while their leaves cannot.

After each swap, the modularity of the entire dendrogram is

recomputed (for computational efficiency, only those parts

affected by the swap). If the new configuration has a higher

value ofQ, it is stored and becomes the new best dendrogram,

otherwise the previous configuration will be used as the start-

ing point for the next swap. A worse configuration is accepted

with the probability P\e
dQ
T , where dQ is the change in

modularity from the last configuration to the new one and T is

the current temperature of the simulated annealing algorithm.

We observed that the algorithm converges notably faster if the

temperature is not decreased monotonously, but rather set

back to the average temperature at which an increase in Q

occurs. This is also a better approach in our case, since we do

not know, a priori, how many steps the algorithm will take or

which value ofQ can be obtained.

(a)

(b)

Fig. 3. (a) Representation of bipartite network as dendrogram. s refers
to subtrees or leaves (= species) of the tree, t to vertices of the dendro-
gram. Nodes are shaded to illustrate the modularity within the subtree
(darker means more strengths in that subtree than expected). The
dashed lines indicate where a module is cut out. (b) The two possible
moves in the swapping of randomly selected vertices ti and tk. The algo-
rithm randomly chooses one of these two possible new configurations.
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Since the hierarchical dendrogram is computed through

iterative proposing, evaluation and rejecting dendrogram

structure in a Markov Chain Monte Carlo approach, Clauset,

Moore & Newman (2008)’s, and hence our, algorithm cannot

guarantee finding the optimal module configuration. Since the

algorithm is coded in C++, even billions of MCMC swaps are
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Fig. 4. Interactionmatrix featuringmodules for the data ofMemmott (1999).Top:Modules identified byQuanBiMo(with steps = 1e10, running for
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feasible in a few minutes, yielding reasonable results for typi-

cally sized ecological networks (see below) at acceptable han-

dling time. For large networks, this algorithm can run for

hours to days. See appendix for an example session on how to

employ the algorithm through R (R Development Core Team

2012).

OUTPUT & NESTED MODULES

The algorithm returns an object identifying modules and

sequence vectors for species, as well as a re-order network

ready for visualization of modules and the modularity Q. It

can be plotted as an interactionmatrix (Fig. 4, top).

QuanBiMo can be invoked recursively, searching for

modules within modules (Fig. 4, bottom). When doing so,

QuanBiMowill ignore links outside the innermodule and treat

the ‘parent’ module as all there is. While such nested modules

become ever smaller and are thus ever faster to detect, there are

plenty of them, and hence, nesting will typically dramatically

prolong the search for patterns.

EVALUATION OF QUANBIMO

We analysed over 2000 simulated networks with known mod-

ule structure, as a factorial combination of two sizes, seven lev-

els of noise, two number of modules and two sampling

intensity. The voluminous output is presented in the supple-

mentary material; here, we only briefly summarize our conclu-

sions from these analyses.

Our simulations show that the analysis of quantitative net-

works is clearly superior to that of binary data of the same

network (Fig. 5).

Modularity Q and accuracy are substantially higher in this

case. This seems to be the logical consequence of implicitly

down-weighting rare species and singletons, whose correct

allocation to modules is given a lower importance than that of

species with more information (i.e. a higher number of interac-

tions). In a sense, the outcome of such a comparison is trivial: a

binary network does not allow any weighting of species by

information content. Also, the nullmodel implicit in themodu-

larity criterion of Newman (2004b, eqn. 2) can be computed

with more nuances and hence has a higher chance of correctly

identifyingmodules.

The QuanBiMo algorithm is by no means perfect: at high

levels of noise, such as one would expect in ecological network

data, only two-thirds to three-quarter of all links are correctly

classified (Appendix Fig. 9 right). The levelling-off at low noise

levels gives us some confidence that a misclassification of 25%

in small networks seems realistic, which seems acceptable. For

large networks, however, the misclassification of over 40%

seems too high for comfort, though. Adapting the settings

(specifically the number of steps of no improvement before the

algorithm stops) seems a logical option. However, runtimes

increase substantially with every order of magnitude of num-

ber of steps. The price may be worth paying, as the example of

the Memmott network shows, where increasing the values for

steps from 1e5 to 1e10 boostedQ from 0%1 to 0%3 (see Fig. 4 for
the resultingmodules).

ModularityQ as a network index

ModularityQ is likely to be correlatedwith other networkmet-

ric, as specialization of module members is the prime reason

for the existence of modules. Across the 22 quantitative

pollination networks of the NCEAS ‘interaction webs’

database 1, Q was evidently highly positively correlated with

complementary specializationH2’ (Fig. 6).

Ecologically, the correlation with specialization makes good

sense. Modules only exist because some species do not interact

with some others, that is, because they are specialized. An over-

all low degree of specialization is equivalent to random interac-

tions, which will yield nomodules.

Furthermore, the absolute value ofQ is, like virtually all net-

work indices (Dormann et al. 2009), dependent on network

size (i.e. the number of species) as well as the number of links

and the total number of interactions observed (see also

Th!ebault 2013).We would thus recommend a null model com-

parison (e.g. V!azquez & Aizen 2003; Bl€uthgen et al. 2008;

Dormann et al. 2009), to correct the observed value of Q by
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information (binary or weighted).
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null model expectation (e.g. by standardizing them to

z-scores: zQ ¼
Qobserved"Qnull

rQ
null

; see appendix for an example).

The choice of the null model is and will be contentious, since it

is not clear whether observed interactions are independent

from each other and among species. They may thus differ

among network types (e.g. pollination networks may be use-

fully compared to a null model based on marginal totals, while

host–parasitoid networks, with a stronger feedback

between the two levels, are likely to be overcorrected by such

an approach). Modularity Q is in itself not an index of an

ecological feature. It is merely a measure of how well links and

interactions can be separated into differentmodules. Large net-

works, with many species and links, allow for more combina-

tions of species in modules, leading to higher values of Q, as

Allesina (2009a) pointed out for any grouping algorithm.

USING MODULARITY TO IDENTIFYING SPECIES WITH

IMPORTANT ROLES IN THE NETWORK

Guimer#a et al. (2005) andOlesen et al. (2007) propose to com-

pute standardized connection and participation values, called c

and z, for each species to describe their role in networks, where

c refers to the even distribution of links across modules (called

‘participation coefficient’ P by Guimer#a et al. 2005) and z

refers towithin-module degrees. Originally, both are computed

based on the number of links, but a weighted version based on

species strength (sensu Bascompte et al. 2006) is implemented,

too. Guimer#a et al. (2005) suggest critical values for a binary

and one-mode networks of c and z of 0%625 and 2%5, respec-
tively. Species exceeding both of these values are called ‘hubs’

because they link different modules, combining high between-

module with high within-module connectivity.

In the case of the pollination network of Fig. 1, c-values

range between 0 and 0%78 (with 23 of 79 pollinators and 13 of

25 plant species exceeding the threshold of 0%625); z-values
range between "1%21 and 5%00 (with two pollinators but no

plant species exceeding the value of 2%5: Fig. 7). Put together,
only the syrphid Syritta pipiens (and hawkbit Leontodon

hispidus almost) exceeded both thresholds and would thus be

called a ‘hub species’. As can be seen in Fig. 4 (top), this

syrphid is relatively rare but clearly not randomly distributed

over the six modules, thus linking modules three, five and six

(from the left). In contrast, Leontodon hispidus is a common

plant species, visited by many different pollinators, and it

actually links all modules with the exception ofmodule two.

Fig. 7. Connection (c) and participation (z) values for pollinators (left) and plants (right) in the network of Memmott (1999). Dashed black lines
indicate critical values according toOlesen et al. (2007), those in grey 95%quantiles from 100 null models (see text).
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To objectively define this threshold one could run null mod-

els of the original network and employ 95% quantiles as criti-

cal c- and z-values. For the pollinators in the network of Fig. 1

these would be 0%67 (&0%039) and 1%45 (&0%220), respectively,
based on 100 null models (for plants: ccritical = 0%72 & 0%036
and zcritical = 1%78 & 0%297; Fig. 7 left). While for plant species

this has little effect (except for moving Leontodon hispidus

across the threshold), three more pollinators would become

hub species (the common hoverfly Episyrphus balteatus, the

tachinid fly Eriothrix rufomaculata and undetermined fly ‘Dip-

tera spec.22’).

Conclusion

We here presented an algorithm to compute modularityQ and

detect modules in weighted, bipartite networks. Because it uses

the strength of links as quantitative information, this approach

is more sensitive and also more specific, than current binary

algorithms. By making the algorithm easily available, we hope

that network ecology will benefit from new insights into the

structure of interaction networks.
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Appendix

A Formal de�nition of the identi�cation of module
vertices
Consider an edge (i, j) 2 E with weight wij representing the strength of interaction between
vertices i and j. In a bipartite graph G maintaining for each vertex its original sum of edge
weights, but disregarding themodular structure ofG, theweightwij of the edge between vertices
i and j is given by

wij =

8
><

>:

X
wi. ⇥

X
w.j , if i 2 VA , j 2 VB

0, else.
(3)

Therefore, the di�erence of edge weight and expected edge weight

w0
ij = wij � wij (4)

is positive, if within module, and negative, if outside module.

Therefore, the algorithm attempts to �nd the best trade-o� between a maximum sum of w0

within modules and a minimum sum of w0 outside.
Given a division of V into a set of non-overlapping subgraphs C , we de�ne

g(C) =

8
>><

>>:

X

i2VA

X

j2VB

�C(i, j)⇥ w0
ij � (1� �C(i, j))⇥ w0

ij , if 8c 2 C : c is connected graph

�1, else,
(5)

where

�C(i, j) =

8
<

:

1, if i 2 c ^ j 2 c ^ c 2 C

0, else.
(6)

Obviously, g(C) has to be maximized in order to �nd the best division of V into modules C . For
achieving this goal, we modify the algorithm of Clauset et al. (2008).

Let D be a binary tree with arbitrarily connected internal vertices v 2 Vintern and with n
leaves representing the vertices of G and initially arranged in an arbitrary order. A module c
within D is de�ned as the set of leaves of the sub-tree rooted at an internal vertex v meeting
following requirements:

I v has at least one child being a leaf.

II No ancestor of v has a child being a leaf.

III c \ VA 6= ; ^ c \ VB 6= ;, i.e. there is at least one vertex vA 2 VA and at least one vertex
vB 2 VB within c.

Due to requirement I it is obvious that there are at mostmin(|VA|, |VB|)modules. Note that due
to requirement II on each path from the root of D to a leaf there is exactly one internal vertex
shaping a module. For convenience, we will use the term ’module vertex’ for this kind of vertex.

Each internal vertex v is assigned the information rv whether it is the root of a sub-tree of
D representing a module or whether it is below or above such an internal vertex. Let rv = 1 if
v is above a module vertex, rv = 0 if v is a module vertex itself and let rv = �1 if v is below a
module vertex.
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Additionally, each internal vertex v is assigned its contribution gv to g(C)

gv =

8
>>>>>>>><

>>>>>>>>:

+
X

i2Lv

X

j2Rv

w0
ij , if rv  0 ^

X

i2Lv

X

j2Rv

wij > 0

�
X

i2Lv

X

j2Rv

w0
ij , if rv = 1

�1, else,

(7)

where Lv is the set of leaves of the sub-tree rooted at the left child of v and, analogously, Rv is
the set of leaves of the sub-tree rooted at the right child of v.

For C given by the current state of D, g(C) can now be rewritten as

g(C) =
X

v2Vintern

gv . (8)

In order to compute max(g(C)), the subtrees ofD have to be re-arranged. The algorithm there-
fore randomly selects an edge e of D connecting two internal vertices vi and vj . Let w.l.o.g. e
be the left edge of vj connecting it to its child vi. Then there are three subtrees Lvi , Rvi and
Rvj originating from vi and vj , respectively, and two possible rearrangements ↵ and � (Fig. 3)
of which one is chosen randomly and simulated. In re-arrangement ↵, sub-trees Rvi and Rvj

are permuted, in rearrangement � sub-trees Lvi andRvj . The change dg in g(C) resulting from
the rearrangement is computed according to rvi and rvj .

B Evaluation of the algorithm
The detection of modules has theoretical limits related to the number of between-module links
present, the sparceness of the network matrix and the size of the network (e.g. Fortunato &
Barthélemy, 2007; Lancichinetti & Fortunato, 2011; Lancichinetti et al., 2010). In the following
paragraphs we evaluate the QuaBiMo-algorithm for di�erent simulated networks typical in size
and noise for pollination networks. There is no technical reason why the algorithm should not
work for much larger networks, too, given enough time for computing a large number of den-
drogram con�gurations. Such an evaluation is outside the scope of this study.

B.1 Simulations to investigate algorithm sensitivity and speci-
�city for noisy network data
We analysed simulated networks of di�erent noisiness to evaluate the performance of the mod-
ularity algorithm. We would expect that modules become unidenti�able when the proportion of
links within modules becomes as low as between modules. We hence simulate networks with
increasing degree of noise by moving, randomly, interactions from within a module to a random
position in the adjacency matrix not included in any module (Fig. 8). We simulated two sizes of
networks (30 ⇥ 50 and 100 ⇥ 400), two levels of �lling (achieved through setting the parameter
“size” of the negative binomial distribution to 0.1,“low”, or 1, “high” ), and two levels of modular-
isation (3 and 10 modules). Each combination was evaluated for seven noise levels (0, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5) and replicated 15 times, yielding 840 di�erent networks. Replicates di�er in the
size, position of modules and number of interactions per link. Sizes were maintained at the same
two levels.

Networks were simulated in three steps. First, we de�ned the size of the matrix and position
and size of the modules. This initial network is a matrix of 0s except for all interactions in a mod-
ule, which is thus identi�ed by a block of 1s. Then, second, we drew actual interactions for each
link of a module from a strongly skewed negative binomial distribution (with size = 0.05 and
µ = 2), removed 80% (high �lling) or 40% (low �lling) of 0-values, and then replaced the initial
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Figure 8: Network simulation starts by de�ning the modules (left), then allocating to all links a
number of interactions drawn from a negative binomial distribution (centre) and �nally removing
interactions in a module and placing them outside (right). High levels of noise, as shown here, yield
poorly de�ned modules. Cells with a value of 0 are shown in red.

1s of the module blocks by these random values. Accordingly, the modules had a connectance (=
�lling) of less than 100%. Higher �lling of modules generally increases performance. Third, we
randomly drew a proportion of interactions from the module and moved it to randomly selected
columns and rows of these species outside the module. Thereby we e�ectively added noise to
the network data. There is an upper limit to the third step, where modules become ill-de�ned.
That is the case when the number of interactions outside modules is as high as inside.

We ran the QuaBiMo algorithm �ve times on each network, saving the result with the highest
modularity. This was more e�cient in �nding a good module con�guration than running the
algorithm for much longer. For comparison, we also ran the algorithm on a binarised version
of the data. The code for simulations and analysis is available in appendix B; runtime for the
simulations was approximately two months on a standard desktop computer with 32 GB RAM.

Congruence between the original assignment to modules and the one identi�ed by the algo-
rithm was assessed by means of a confusion matrix. Each link existing in the simulated data was
classi�ed as correctly belonging to a module, falsely assigned to a module, falsely not assigned
to a module, or correctly not assigned to a module. The confusion matrix was then summarised
as sensitivity, speci�city and accuracy.

B.2 Simulation results:modularityQ in binary andweighted net-
works
Modularity Q was strongly dependent on network size, the amount of noise added and the
number of modules (Table 1). Most importantly, however, our quantitative approach strongly
improved on modularity based on binary data, particularly for large networks (Fig. 9). Deteri-
oration of the module detection with increasing network size could possibly be compensated
for by increasing the number of swaps before terminating the search (see example session be-
low). The loss of skill with increasing noise (Fig. 9, right) cannot be alleviated. Here the ability
of QuaBiMo to use not only the binary but the weighted link information is already a dramatic
improvement.

In the following paragraphs, we shall only be looking at the results for the weighted net-
works, since that is the explicit focus of the QuaBiMo algorithm.

B.3 Simulation results: modularity Q
Modularity Q and overall accuracy were a�ected very similarly by network size, noise and the
number of modules (Table 2). The most prominent e�ects were those of size, noise and their
interaction, depicted for Q and overall accuracy in Fig. 10. Evidently, larger networks are more
di�cult to modularise, as are those with a higher level of noise.
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Figure 9: Quality of modularity detection (left and middle: Q; right: overall accuracy) depends on
network size, the amount of noise and type of information (binary or weighted). (This �gure is the
reprint of Fig. 5 in the main body of the publication.)

Table 1: E�ect of di�erent simulation parameters on modularity Q and overall accuracy. Sum of
squares and F -value can be taken as a measure of how strongly these parameters e�ect modularity.
No signi�cances are given since a test of an e�ect is nonsensical for simulations. Information refers
to binary vs. weighted networks. ‘Noise’ has seven levels and was analysed as continuous variable.

Modularity Q df sum of squares F value
noise 1 35.16 2038
size 1 76.34 4424
�ll 1 1.97 114
no.of.modules 1 12.45 722
information 1 28.02 1624
noise:no.of.modules 1 7.61 441
noise:information 1 0.21 12
size:�ll 1 1.81 105
size:no.of.modules 1 3.59 208
size:information 1 9.20 533
Residuals 4106 70.86
Overall accuracy df sum of squares F value
noise 1 38.31 1568
size 1 1.93 79
�ll 1 1.49 61
no.of.modules 1 4.20 172
information 1 22.84 935
noise:no.of.modules 1 0.46 19
noise:information 1 11.63 476
size:�ll 1 0.66 27
size:no.of.modules 1 0.57 23
size:information 1 3.73 153
�ll:no.of.modules 1 0.34 14
�ll:information 1 0.43 18
no.of.modules:information 1 3.58 147
Residuals 4103 100.21
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Table 2: E�ect of di�erent simulation parameters on modularity Q for weighted networks. Sum of
squares and F -value can be taken as a measure of how strongly these parameters e�ect modularity.

df sum of squares F value
noise 1 14.90 1164
size 1 69.19 5402
�ll 1 0.88 69
no.of.modules 1 7.39 577
noise:size 1 0.11 9
noise:no.of.modules 1 2.16 169
size:�ll 1 0.74 58
size:no.of.modules 1 1.15 90
Residuals 2048 26.23
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Figure 10: E�ect of noise and network size on modularity Q (left) and overall accuracy (left).
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Table 3: E�ect of di�erent simulation parameters on module identi�cation accuracy (weighted net-
works only).

df sum of squares F value
noise 1 3.84 237
size 1 5.49 339
�ll 1 1.75 108
no.of.modules 1 0.01 1
noise:size 1 1.03 64
noise:no.of.modules 1 1.96 121
size:�ll 1 0.33 20
size:no.of.modules 1 0.67 42
�ll:no.of.modules 1 0.08 5
Residuals 2047 33.18

B.4 Simulation results: classi�cation accuracy
While modularityQ gives an indication of how well observed links could be grouped into mod-
ules (with a value of 1 indicating that all links are within and none between modules), we can
also quantify the algorithm’s accuracy based on a confusion table. Overall accuracy (= correct
classi�cation rate) is the proportion of all links correctly placed, i.e. (number of links correctly
placed into modules + number of links correctly placed between modules)/total number of links.
Since the purpose of the algorithm is the use of weighted network data, we here only present
results for the weighted and not for the binary networks.

The overall accuracy of module detection decreased with increasing noise levels (Table 3),
an e�ect more pronounced for large networks than for small ones (Fig. 10 right). Again, this
interaction probably could have been reduced if more steps until termination were allowed for
the larger networks.

B.5 Simulation results: sensitivity and speci�city
Classi�cation accuracy has two elements: the correct classi�cation of all module links as be-
longing to modules (sensitivity) and the correct identi�cation of between-module links as not
belonging into modules (speci�city). For the detection of patterns in networks high sensitivity
is desirable, although this may in�ate type II errors (i.e. we may identify modules that do not
really exist). High speci�city indicates that links allocated into modules are indeed correct, but
possibly at the expense of not allocating many links to modules overall (leading to in�ated type
I errors).

Sensitivity and speci�city of the QuaBiMo-algorithm were driven by the same factors as
overall accuracy (Table 4). Increasing noise levels reduced both sensitivity and speci�city, as
did larger networks (Fig. 11). Speci�city, i.e. the correct identi�cation of non-module links, was
strongest driven by the number of modules (0.55± 0.17 (1 sd) for networks with three modules
vs 0.75± 0.16 in networks with ten modules). Apparently the incomplete �lling of the network
led to an identi�cation of several small modules, which reduced sensitivity for networks with
few, but not with many modules.

C Identifying modules - a sample session
The QuaBiMo-algorithm is implemented in C++ and is made available through the open source
R-package bipartite (Dormann et al., 2009). The most important function is computeMod-
ules, which takes three arguments: the matrix representing the bipartite network data (“web”),
a speci�cation of how many MCMC moves should yield no improvement before the algorithm
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Table 4: E�ect of di�erent simulation parameters on sensitivity and speci�city of module identi�ca-
tion (weighted networks only).

Sensitivity df sum of squares F -value
noise 1 6.63 382
size 1 4.81 278
�ll 1 0.84 48
no.of.modules 1 20.44 1178
noise:size 1 4.32 249
noise:�ll 1 0.67 39
size:no.of.modules 1 2.72 157
Residuals 2049 35.54
Speci�citiy df sum of squares F -value
noise 1 9.43 465
size 1 12.91 636
�ll 1 4.55 224
no.of.modules 1 5.52 273
noise:size 1 0.17 8
size:�ll 1 0.55 27
�ll:no.of.modules 1 13
Residuals 2049 41.61
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Figure 11: E�ect of noise and network size on sensitivity (right) and speci�city (left) of the classi�-
cation of links into modules.
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stops (“steps”, with default 1e6) and a logical switch for computing nested modules (“deep”,
defaulting to FALSE). The number of steps should be adapted to the size of the network (see pre-
vious sections). We found thatQ levels o� very soon, once the default of one million is exceeded.
However, we have not extensively trialled this setting for networks larger than that used below.

As a typical analysis we shall use the relatively large (25⇥ 79) and well-sampled pollination
network of Memmott (1999), which is provided along with the bipartite package:

> library(bipartite)
> mod <- computeModules(web=memmott1999, steps=1E8)

The evaluation of these two lines will usually take about one minute and perform around 20
million MCMC moves. The resulting object stores the module composition and the likelihood of
the solution found. The modularity value Q of this solution is simply the likelihood value (0.18,
this value may vary between runs; random seeding is not supported):

> mod@likelihood
[1] 0.18

We can now plot the resulting modules to visualise the compartments (Fig. 4 top).

> plotModuleWeb(mod)

To identify nested modules, we choose a lower value for steps (to reduce computation time),
thus also yielding a di�erent module structure at the highest level. Modularity value Q will still
be based on the non-recursive algorithm.

> modn <- computeModules(memmott1999, steps=1E6, deep=T)

To be able to ecologically interpret these modules (Fig. 4 bottom), expert knowledge on the
system is required. The computation of modularity is primarily an explorative tool helping the
user to objectively detect pattern in typically noisy network data.

C.1 Using Q as an index
To account forQ’s dependence on network size and sampling intensity, we compute null model-
expectations and turn the observed value ofQ into a z-score. In R, this could be achieved by the
following code (which will take more than one hour since we are computing modules in 100 null
model networks):

> nulls <- nullmodel(memmott1999, N=100, method="r2d")
> modules.nulls <- sapply(nulls, computeModules)
> like.nulls <- sapply(modules.nulls, function(x) x@likelihood)
> (z <- (mod@likelihood - mean(like.nulls))/sd(like.nulls))

[1] 7.088665

This means that the observed modularity is 7 standard deviations higher than would be expected
from random networks with the same marginal totals (representing abundance distributions of
plants and pollinators). Since z-scores are assumed to be normally distributed, values above⇡ 2
are considered signi�cantly modular.

C.2 Identifying species with importance for modularity
To compute c- and z-values as proposed by Guimerà et al. (2005) and Olesen et al. (2007), which,
for each species, describe their role in networks, we simply call the function czvalues. Origi-
nally, and by default, both are computed based on the number of links, but a weighted version
based on species strength (sensu Bascompte et al., 2006) is implemented, too.
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> czvalues(mod) # for all species
> czvalues(mod, level="lower") # for lower trophic level
> czvalues(mod, level="lower", weighted=TRUE) #based on strength

The output of the last command is:
$c

Agrimonium.eupatorium Leontodon.autumnalis Lotus.corniculatus Medicago.lupulina
0.64092549 0.21672839 0.00000000 0.00000000

Rubus.fruticosus Hypochaeris.radicata Centaurea.nigra Euphrasia.officinalis
0.00000000 0.08889145 0.30144047 0.41741018

Linum.catharticum Convolvulus.arvensis Knautia.arvensis Aethusa.cynapium
0.65209520 0.31525184 0.44070394 0.58554442

Eupatorium.cannabinum Plantago.major Leontodon.saxatilis Lathyrus.pratensis
0.32225369 0.00000000 0.25853701 0.48347107

Clematis.vitalba Senecio.jacobaea Trifolium.pratense Chamerion.angustifolium
0.55612161 0.35602360 0.11623699 0.62822506

Leontodon.hispidus Crepis.capillaris Torilis.japonica Angelica.sylvestris
0.33256384 0.66497432 0.66366078 0.15796269

Daucus.carota
0.36472241

$z
Agrimonium.eupatorium Leontodon.autumnalis Lotus.corniculatus Medicago.lupulina

-0.7071068 0.0383543 -1.0496042 -0.4840071
Rubus.fruticosus Hypochaeris.radicata Centaurea.nigra Euphrasia.officinalis

-0.7071068 0.1170909 0.9731430 NA
Linum.catharticum Convolvulus.arvensis Knautia.arvensis Aethusa.cynapium

-0.4629702 -0.4838904 0.5310580 -0.5293687
Eupatorium.cannabinum Plantago.major Leontodon.saxatilis Lathyrus.pratensis

1.5704676 0.7071068 -0.4780049 -1.1121634
Clematis.vitalba Senecio.jacobaea Trifolium.pratense Chamerion.angustifolium

-0.7399423 -0.3949799 0.6575666 -0.7252687
Leontodon.hispidus Crepis.capillaris Torilis.japonica Angelica.sylvestris

2.5923834 -0.4439763 0.4241122 NA
Daucus.carota

0.7071068
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