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Summary

1. Ecological networks are often composed of different subcommunities (often referred to as modules). Identify-
ing such modules has the potential to develop a better understanding of the assembly of ecological communities
and to investigate functional overlap or specialization.

2. The most informative form of networks are quantitative or weighted networks. Here, we introduce an algo-
rithm to identify modules in quantitative bipartite (or two-mode) networks. It is based on the hierarchical ran-
dom graphs concept of Clauset et al. (2008 Nature 453: 98-101) and is extended to include quantitative
information and adapted to work with bipartite graphs. We define the algorithm, which we call QuanBiMo,
sketch its performance on simulated data and illustrate its potential usefulness with a case study.

3. Modules are detected with a higher accuracy in simulated quantitative networks than in their binary counter-
parts. Even at high levels of noise, QuanBiMo still classifies 70% of links correctly as within- or between-
modules. Recursively applying the algorithm results in additional information of within-module organization of
the network.

4. The algorithm introduced here must be seen as a considerable improvement over the current standard of algo-
rithms for binary networks. Due to its higher sensitivity, it is likely to lead to be useful for detecting modules in
the typically noisy data of ecological networks.

Key-words: compartments, groups, modularity, null model, pollination networks, weighted
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Introduction

The ecological literature is replete with references to interacting
groups of species within systems, variously termed compart-
ments (May, 1973; Pimm 1982; Prado & Lewinsohn 2004),
modules (Olesen et al. 2007; Garcia-Domingo & Saldan a,
2008; Dupont & Olesen 2009), cohesive groups (Bascompte
et al. 2003; Danieli-Silva et al. 2011; Guimaraes, Jordano &
Thompson 2011) or simply communities (Fortunato 2010).
Their attraction, for ecologists, is that they promise a way to
simplify the description and understanding of an ecological
system, by representing not each and every species, but aggre-
gating their interactions and energy fluxes into a more manage-
able set of modules (e.g. Allesina, 2009a). In the following, we
will refer to such aggregated sets of interacting species as
‘modules’. Their characteristic hallmark is that within-module
interactions are more prevalent than between-module interac-
tions (Newman 2003; Newman & Girvan, 2004; Fortunato
2010).

In the extreme case, modules are completely separated from
each other and are then typically called compartments (Pimm
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1982). This strict definition has seen some relaxation (Dicks,
Corbet & Pywell 2002), but most recent studies converge on
the term ‘module’ for any identifiable substructure in interac-
tion networks (Prado & Lewinsohn 2004; Lewinsohn et al.
2006; Olesen et al. 2007; Ings et al. 2009; Joppa et al. 2009;
Cagnolo, Salvo & Valladares 2011).

The identification of modules, and the membership of spe-
cies to modules, has received considerable interest in the physi-
cal sciences (as reviewed in extenso by Fortunato 2010).
Particularly the work of Newman and co-workers (e.g. New-
man 2003; Newman & Girvan 2004; Newman 2004a, b, 2006)
has practically defined the current paradigm of module defini-
tion and identification. Algorithms to identify modules are
‘greedy’, that is, highly computationally intensive, relying on
some way of rearranging module memberships and then
quantifying ‘modularity’ until a maximal degree of sorting has
been achieved (Clauset, Newman & Moore 2004; Newman
2004b; Newman 2006; Pons & Latapy 2006; Schuetz &
Caflisch 2008). The focus of virtually all these algorithms was
on unweighted and one-mode networks (see, e.g., Clauset,
Moore & Newman 2008; Kovacs et al. 2010; Lancichinetti &
Fortunato 2011; Jacobi et al. 2012, for a recent example).
Unweighted (or binary or qualitative) refers to the fact that
only the presence of a link between species is known, but not
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its strength (Levins 1975; Pimm 1982). One-mode refers to the
structure of the community, in which all species are potentially
interacting with each other. The typical ecological example is
a species x food web matrix, in which entries of 1 depict an
existing interaction.

In recent years, weighted and bipartite interaction networks
have become more intensively studied. In a weighted network,
the link between two species is actually quantified (e.g. by the
number of interactions observed or the strength of the inter-
action inferred from the data: Newman 2004b). In a bipartite
network, the species fall into two different groups, which
interact with members of the other group, but not within their
group. A typical example are pollinator—visitation networks
(Vazquez et al. 2009), where pollinators interact with flowers,
but flowers do not interact among themselves (see Fig. 1).
Another well-studied examples is host—parasitoid network
(e.g. Morris, Lewis & Godfray 2004; Tylianakis, Tscharntke
& Lewis 2007).

While popular among ecologists (Bliithgen 2010; Pocock,
Evans & Memmott 2012; Poisot ez al. 2012; Schleuning et al.
2012), weighted bipartite graphs are not amenable to any of
the existing module detection algorithms for one-mode net-
works or for unweighted bipartite networks. Existing software
uses one-mode networks or, more precisely, one-mode projec-
tions of bipartite networks (Guimera, Sales-Pardo & Amaral
2007; Martin Gonzalez et al., 2012; Thébault 2013), or
unweighted (binary) bipartite networks (Guillaume & Latapy
2004; Marquitti et al. 2013), while other approaches focus on
the identification of crucial leaves through quantifications of
their position in the network (e.g. centrality or degree: Ravasz
et al. 2002; Borgatti 2006; Martin Gonzalez et al., 2010). This
lack of an algorithm to identify modules in quantitative, bipar-
tite networks is particularly problematic, as such networks
find their way into conservation ecological considerations
(Tylianakis et al., 2010) and are the focus of a vibrant field of
macroecological research (Ings et al. 2009). Furthermore,
from a statistical point of view, weighted networks offer much
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more information and are less likely to lead to erroneous
conclusions about the system (Li & Chen 2006; Scotti, Podani
& Jordan 2007; Bliithgen 2010; Fortunato 2010).

Here, we present an algorithm to identify modules (and
modules within modules) in weighted bipartite networks. We
build on an algorithm provided by Clauset, Moore & Newman
(2008) for unweighted, one-mode networks, the weighted mod-
ularity criterion developed by Newman & Girvan (2004), and
the bipartite modularity proposed by Barber (2007).

Modularity algorithms

Modules can be interpreted as link-rich clusters of species in a
community. An alternative to finding and delimiting such
modules is to group species by ordination (Borgatti & Everett
1997; Lewinsohn et al. 2006). Correspondence analysis (CA)
of the adjacency matrix is a simple and fast way to organize
species. Typically, however, correspondence analysis will not
be able to identify modules sufficiently well, even if modules
are actually compartments (i.e. perfectly separated: Fig. 2 left,
centre). The QuanBiMo algorithm we present here can do so,
at least in principle (Fig. 2 right). If modules are perfectly sepa-
rated, with no species interacting with species in another mod-
ule, they are called compartments and will be visible as clearly
separated groups of species. It is relatively straightforward to
implement a recursive compartment detection function, but
compartments are much coarser than modules and not the
topic of this publication.

One algorithm proposed and available for detecting mod-
ules in bipartite networks is due to Guimera, Sales-Pardo &
Amaral (2007) called ‘bipartmod_w’), which is derived from a
one-mode algorithm (Guimera et al. 2005). Their approach
differs substantially from single-run bipartite algorithm in that
they employ a one-mode modularity algorithm on each level of
a bipartite network separately, although they discuss the
approach later developed by Barber (2007). The Guimera et al.
approach was used in several ecological applications of
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Fig. 1. Bipartite graph of a quantitative pollinator—visitation network (Memmott, 1999).
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92 C. F. Dormann & R. Strauss

Fig. 2. A simulated three-compartment network in random sequence (left), as sorted by a correspondence analysis (centre) and by the modularity

algorithm with default settings (right).

modularity (Olesen et al. 2007; Dupont & Olesen 2009; Fort-
una et al. 2010; Guimera et al. 2010; Carstensen et al. 2011;
Troejelsgaard & Olesen 2013), although the algorithm does not
explicitly identify combined modules (as stated in Barber 2007;
Fortuna et al. 2010). Most recently, Thébault (2013) investi-
gated, through simulations, the ability of three modularity
measures (those of Newman & Girvan 2004; Barber 2007; Gui-
mera, Sales-Pardo & Amaral 2007) to identify modules in bin-
ary bipartite networks and comes out in support of that of
Guimera et al. (2007).

Finally, Allesina & Pascual (2009b) have proposed an
approach for one-mode networks. It identifies ‘groups’, rather
than modules, which reveal more about the structure of a
food web than modules do, since also their relation towards
each other emerges from the analysis. Their approach is based
on a binary one-mode matrix, however, even when applied to
bipartite networks (as was done by Martin Gonzalez et al.,
2012).

QUANBIMO: AQUANTITATIVE BIPARTITE MODULARITY
ALGORITHM

Outline

The new algorithm (Dormann & Strauf3, 2013) builds on the
hierarchical random graph approach of Clauset, Moore &
Newman (2008), which builds a graph (i.e. a dendrogram) of
interacting species so that nearby species are more likely to
interact. It then randomly swaps branches at any level and
evaluates whether the new graph is more likely than the previ-
ous one, recording and updating the best graph. Fit is com-
puted as modularity of the current graph (detailed in section
Goal function). The swapping is a Simulated Annealing-
Monte Carlo approach, that is, sometimes a worse graph is
chosen as the starting point for the next swap, thereby avoid-
ing being trapped in a local maximum. Each node of the
graph contains the information of whether it is part of a mod-
ule, so that the graph can be transgressed top-down to
identify modules.

Our modifications consist of (i) allowing branches between
species to be weighted by the number of interactions observed
between them, thereby making the algorithm quantitative; and
(i) taking into account that species in one group can only inter-
act with species in the other group, rather than the one-mode
network the algorithm was initially developed for. Taken

together, our algorithm computes modules in weighted, bipar-
tite networks, based on a hierarchical representation of species
link weights and optimal allocation to modules.

Terminology

A graph G = (V,E) denotes a set of vertices v € ¥ connected by
edges e € E. An edge e connects two nodes, thus e = c(v;,0;),
where v; € V' Av; € V. G is a weighted (= quantitative) graph if
each edge e has a weight w € W associated with it (w € R"). We
normalize edge weights so that ),  yw = 1. (For binary graphs
w = 1/|E] for all existing edges, where |.| symbolizes the number of
elements.)

For bipartite graphs, the vertices V are of two non-overlap-
ping subsets, V' and V; (higher and lower level), such that
Vg N Vy =0 and for all edges, the connected vertices are in
different subsets: v; € Vyy & v; € V, (< symbolises equiva-
lence, i.e. if we know v; is in Vi, v; must be in V;, and vice
versa).

A graph can be represented as a dendrogram D, that is, a
binary tree with the vertices of the graph G being the tips (or
leaves) of the dendrogram D (Fig. 3a). Thus, any internal split
(or vertex) of D defines a subset of G. The idea of the algorithm
is now to find internal vertices of D so that the subset it defines
is a module.

Goal function

The algorithm has to divide G into a set of modules C such that
1. each module ¢ € C is a connected subgraph of G. (This
means each species has to have a partner).
2. each vertex v belongs to exactly one module c. (The unique-
ness requirement).
3. edge weights within a module are higher than edge weights
outside modules. (The modularity definition).

To specify point 3 above, Barber (2007) has defined modu-
larity for bipartite networks as

Q= Q_Z (4 — Py)d(ci,¢)) (eqn 1)

1

"
where m is half the total number of observed links in the net-
work and A is in fact a binary version of our edge matrix E,
with values of 1 if a link between 7 and j exists. The expected
value for each link, based on an appropriate null model, is

given in the matrix P. The module to which a species i or j is
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Fig. 3. (a) Representation of bipartite network as dendrogram. s refers
to subtrees or leaves (= species) of the tree, v to vertices of the dendro-
gram. Nodes are shaded to illustrate the modularity within the subtree
(darker means more strengths in that subtree than expected). The
dashed lines indicate where a module is cut out. (b) The two possible
moves in the swapping of randomly selected vertices v; and v,. The algo-
rithm randomly chooses one of these two possible new configurations.

assigned is ¢;, ¢;. The indicator function d(c;c) = 1 if ¢; = ¢;
and 0if ¢; # ¢;. Q ranges from 0, which means the community
has no more links within modules than expected by chance, to
a maximum value of 1. The higher Q, the more do the data sup-
port the division of a network into modules.

Following Newman (2004b), we can expand eqn. 1 by allow-
ing A; and P; to be weighted, rather than binary. To avoid
confusion, we then replace P; by K;;, which is not a normalized
probability matrix, but really the matrix of expected weights,
based on the null model. Furthermore, for the weighted case,
we computem = Y ;;A4;. We then get:
Q = ﬁz (A,j — K,")(S(Cl‘, Cj), (eqn 2)

i

kT . .
where K = kz':;’ , with k; = A; and k; = A ; being the marginal
totals for rows and columns of A, respectively (Newman
2004b).

One crucial point of our modifications of the original hier-
archical random graph algorithm of Clauset, Moore &
Newman (2008) was to assign an indicator value to each
dendrogram vertex to label it as being within a module, or
not. To do so, we have to compute the expected value for
each value of A4 in order to be able to evaluate whether the
observed value is lower or higher (the term over which eqn.
2 sums). This step is not required if edges are unweighted,
since then the expectation will always be the same. For
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weighted edges, and under random interactions among indi-
viduals, however, we would expect the edge e; connecting
two nodes i and j representing abundant species to have a
high value of wj. Similarly, nodes representing rare species
could be expected to have low edge weights.

Thus, at every internal vertex of the tree, the subtree is inter-
preted as module and the algorithm computes the expectation
matrix K based on the cross-product of marginal totals of all

species in the module, divided by the sum of the number of

. . . kk! .
observed interactions in that module (K = 2—m/) (Since we

normalized all edge weight to sum to 1, Kisactually a probability
matrix). In other words: the number of interactions we expect in
a cell depends on the number of observations we have for both
interacting partners; frequently observed species contribute
more to the expected number of interactions than rarely
observed species. Ecologically speaking, we interpret the
marginal totals as being proportional to the probability of
observing this species in interactions. This need not reflect abun-
dance, but rather activity in a given community context. In fact,
we would expect modules to change when further species are
added, as this ecologically affects not only their relative abun-
dance but also their preferences with different resources becom-
ing available. If the vertex gives rise to a module, that is, if
Y e (A;—K;)>0, this vertex is labelled as a module. We can
now sum the contributions of all vertices and modules according
toeqn. 2 tocompute to totalmodularity of graph G. For a formal
description of this part of the algorithm, please see Appendix S1.

Swapping

The algorithm starts with a random dendrogram, where modu-
larity Q is likely to be very low. Through random swapping of
branches and their optimization, Q increases during a simulated
annealing procedure. The algorithm stops when a pre-defined
number of swaps did not further increase the value of Q.

Random swaps are implemented as exchange of two ran-
domly selected vertices in the dendrogram, subject to the fol-
lowing constraint (Fig. 3b). The vertex to be swapped cannot
be a leaf. Since terminal vertices always connect leaves from
the two bipartitions V;and V;, thus representing an interaction,
they can be swapped, while their leaves cannot.

After each swap, the modularity of the entire dendrogram is
recomputed (for computational efficiency, only those parts
affected by the swap). If the new configuration has a higher
value of Q, it is stored and becomes the new best dendrogram,
otherwise the previous configuration will be used as the start-
ing point for the next swap. A worse configuration is accepted
with the probability P<e% where 0Q is the change in
modularity from the last configuration to the new one and 7'is
the current temperature of the simulated annealing algorithm.
We observed that the algorithm converges notably faster if the
temperature is not decreased monotonously, but rather set
back to the average temperature at which an increase in Q
occurs. This is also a better approach in our case, since we do
not know, a priori, how many steps the algorithm will take or
which value of Q can be obtained.
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Fig. 4. Interaction matrix featuring modules for the data of Memmott (1999). Top: Modules identified by QuanBiMo(with steps = 1el0, running for
several hours; Q = 0-30). Darker squares indicate more observed interactions. Red boxes delineate the seven modules. (Note that results may vary
between runs.) In the central module, yellow Asteraceae feature heavily, while a possible ecological cause pattern for the other modules is less apparent.
Bottom: Nested modules based on a recursive call of QuanBiMo. Module arrangement is slightly different from top, since the algorithm is stochastic.

Since the hierarchical dendrogram is computed through Moore & Newman (2008)’s, and hence our, algorithm cannot
iterative proposing, evaluation and rejecting dendrogram guarantee finding the optimal module configuration. Since the
structure in a Markov Chain Monte Carlo approach, Clauset, algorithm is coded in C++, even billions of MCMC swaps are
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Fig. 5. Quality of modularity detection (left and middle: Q; right: overall accuracy) depends on network size, the amount of noise and type of

information (binary or weighted).

feasible in a few minutes, yielding reasonable results for typi-
cally sized ecological networks (see below) at acceptable han-
dling time. For large networks, this algorithm can run for
hours to days. See appendix for an example session on how to
employ the algorithm through R (R Development Core Team
2012).

OUTPUT &NESTED MODULES

The algorithm returns an object identifying modules and
sequence vectors for species, as well as a re-order network
ready for visualization of modules and the modularity Q. It
can be plotted as an interaction matrix (Fig. 4, top).

QuanBiMo can be invoked recursively, searching for
modules within modules (Fig. 4, bottom). When doing so,
QuanBiMo will ignore links outside the inner module and treat
the ‘parent’ module as all there is. While such nested modules
become ever smaller and are thus ever faster to detect, there are
plenty of them, and hence, nesting will typically dramatically
prolong the search for patterns.

EVALUATION OF QUANBIMO

We analysed over 2000 simulated networks with known mod-
ule structure, as a factorial combination of two sizes, seven lev-
els of noise, two number of modules and two sampling
intensity. The voluminous output is presented in the supple-
mentary material; here, we only briefly summarize our conclu-
sions from these analyses.

Our simulations show that the analysis of quantitative net-
works is clearly superior to that of binary data of the same
network (Fig. 5).

Modularity Q and accuracy are substantially higher in this
case. This seems to be the logical consequence of implicitly
down-weighting rare species and singletons, whose correct
allocation to modules is given a lower importance than that of
species with more information (i.e. a higher number of interac-
tions). In a sense, the outcome of such a comparison is trivial: a
binary network does not allow any weighting of species by
information content. Also, the null model implicit in the modu-
larity criterion of Newman (2004b, eqn. 2) can be computed

with more nuances and hence has a higher chance of correctly
identifying modules.

The QuanBiMo algorithm is by no means perfect: at high
levels of noise, such as one would expect in ecological network
data, only two-thirds to three-quarter of all links are correctly
classified (Appendix Fig. 9 right). The levelling-off at low noise
levels gives us some confidence that a misclassification of 25%
in small networks seems realistic, which seems acceptable. For
large networks, however, the misclassification of over 40%
seems too high for comfort, though. Adapting the settings
(specifically the number of steps of no improvement before the
algorithm stops) seems a logical option. However, runtimes
increase substantially with every order of magnitude of num-
ber of steps. The price may be worth paying, as the example of
the Memmott network shows, where increasing the values for
steps from /e5 to Iel0 boosted Q from 0-1 to 0-3 (see Fig. 4 for
the resulting modules).

Modularity Q as a network index

Modularity Q is likely to be correlated with other network met-
ric, as specialization of module members is the prime reason
for the existence of modules. Across the 22 quantitative
pollination networks of the NCEAS ‘interaction webs’
database !, Q was evidently highly positively correlated with
complementary specialization H,’ (Fig. 6).

Ecologically, the correlation with specialization makes good
sense. Modules only exist because some species do not interact
with some others, that is, because they are specialized. An over-
all low degree of specialization is equivalent to random interac-
tions, which will yield no modules.

Furthermore, the absolute value of Q is, like virtually all net-
work indices (Dormann et al. 2009), dependent on network
size (i.e. the number of species) as well as the number of links
and the total number of interactions observed (see also
Thébault 2013). We would thus recommend a null model com-
parison (e.g. Vazquez & Aizen 2003; Bliithgen et al. 2008;
Dormann et al. 2009), to correct the observed value of Q by

'http://www.nceas.ucsb.edu/interactionweb
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Fig. 6. Modularity (Q) is highly correlated with specialization Hy’
(Bliithgen er al., 2006) across 22 pollination networks. Names refer to
network data sets in bipartite which were taken from http://www.ncea-
s.ucsb.edu/interactionweb.

null model expectation (e.g. by standardizing them to

w; see appendix for an example).
“null

The choice of the null model is and will be contentious, since it
is not clear whether observed interactions are independent
from each other and among species. They may thus differ
among network types (e.g. pollination networks may be use-

Z-8Cores: Zg =

fully compared to a null model based on marginal totals, while
host—parasitoid networks, stronger feedback
between the two levels, are likely to be overcorrected by such
an approach). Modularity Q is in itself not an index of an

with a

S‘yn'tta pipiens

z value

T T T T T
0-0 0-2 0-4 0-8

¢ value

z value

ecological feature. It is merely a measure of how well links and
interactions can be separated into different modules. Large net-
works, with many species and links, allow for more combina-
tions of species in modules, leading to higher values of Q, as
Allesina (2009a) pointed out for any grouping algorithm.

USING MODULARITYTO IDENTIFYING SPECIES WITH
IMPORTANT ROLES INTHE NETWORK

Guimera et al. (2005) and Olesen et al. (2007) propose to com-
pute standardized connection and participation values, called ¢
and z, for each species to describe their role in networks, where
c refers to the even distribution of links across modules (called
‘participation coefficient” P by Guimera et al. 2005) and z
refers to within-module degrees. Originally, both are computed
based on the number of links, but a weighted version based on
species strength (sensu Bascompte ez al. 2006) is implemented,
too. Guimera et al. (2005) suggest critical values for a binary
and one-mode networks of ¢ and z of 0-625 and 2-5, respec-
tively. Species exceeding both of these values are called ‘hubs’
because they link different modules, combining high between-
module with high within-module connectivity.

In the case of the pollination network of Fig. 1, c-values
range between 0 and 0-78 (with 23 of 79 pollinators and 13 of
25 plant species exceeding the threshold of 0-625); z-values
range between —1-21 and 5-00 (with two pollinators but no
plant species exceeding the value of 2-5: Fig. 7). Put together,
only the syrphid Syritta pipiens (and hawkbit Leontodon
hispidus almost) exceeded both thresholds and would thus be
called a ‘hub species’. As can be seen in Fig. 4 (top), this
syrphid is relatively rare but clearly not randomly distributed
over the six modules, thus linking modules three, five and six
(from the left). In contrast, Leontodon hispidus is a common
plant species, visited by many different pollinators, and it
actually links all modules with the exception of module two.

7 T T nr R
Leontodon hispidus

2:0 !

15

1:0

05 :

00 i

-1:0 4

T
04
c value

00 02 06

Fig. 7. Connection (c) and participation (z) values for pollinators (left) and plants (right) in the network of Memmott (1999). Dashed black lines
indicate critical values according to Olesen ez al. (2007), those in grey 95% quantiles from 100 null models (see text).
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To objectively define this threshold one could run null mod-
els of the original network and employ 95% quantiles as criti-
cal ¢- and z-values. For the pollinators in the network of Fig. 1
these would be 0-67 (+0-039) and 1-45 (4-0-220), respectively,
based on 100 null models (for plants: ceigical = 0-72 £ 0-036
and Zgigeal = 1-78 + 0-297; Fig. 7 left). While for plant species
this has little effect (except for moving Leontodon hispidus
across the threshold), three more pollinators would become
hub species (the common hoverfly Episyrphus balteatus, the
tachinid fly Eriothrix rufomaculata and undetermined fly ‘Dip-
tera spec.22’).

Conclusion

We here presented an algorithm to compute modularity Q and
detect modules in weighted, bipartite networks. Because it uses
the strength of links as quantitative information, this approach
is more sensitive and also more specific, than current binary
algorithms. By making the algorithm easily available, we hope
that network ecology will benefit from new insights into the
structure of interaction networks.
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Appendix

A Formal definition of the identification of module
vertices

Consider an edge (i, j) € E with weight w;; representing the strength of interaction between
vertices i and j. In a bipartite graph G maintaining for each vertex its original sum of edge
weights, but disregarding the modular structure of G, the weight w;; of the edge between vertices
i and j is given by

> wi x> wy, ifi€VaejeVp
Wij = (3)

0, else.
Therefore, the difference of edge weight and expected edge weight

ng = wWjj — Wyj (4)

is positive, if within module, and negative, if outside module.

Therefore, the algorithm attempts to find the best trade-off between a maximum sum of w’
within modules and a minimum sum of w’ outside.
Given a division of V into a set of non-overlapping subgraphs C, we define

Z Z dc(i,7) x wi; — (1= 6c(i,§)) x wi;, if Ve € C: cis connected graph
g(c) _ i€Va jEVB

—00, else,

(5)
where
1, ifieccnjechcel’

éc(i,j) = (6)
0, else.

Obviously, g(C) has to be maximized in order to find the best division of V' into modules C' For
achieving this goal, we modify the algorithm of Clauset et al. (2008).

Let D be a binary tree with arbitrarily connected internal vertices v € Vipern and with n
leaves representing the vertices of G and initially arranged in an arbitrary order. A module ¢
within D is defined as the set of leaves of the sub-tree rooted at an internal vertex v meeting
following requirements:

I v has at least one child being a leaf.
I No ancestor of v has a child being a leaf.

Il cNVa#DOAcnN Vg # 0, ie. there is at least one vertex v4 € V4 and at least one vertex
vp € Vg within c.

Due to requirement I it is obvious that there are at most min(|Va4|, |Vg|) modules. Note that due
to requirement II on each path from the root of D to a leaf there is exactly one internal vertex
shaping a module. For convenience, we will use the term 'module vertex’ for this kind of vertex.

Each internal vertex v is assigned the information 7, whether it is the root of a sub-tree of
D representing a module or whether it is below or above such an internal vertex. Let r, = 1 if
v is above a module vertex, r, = 0 if v is a module vertex itself and let r, = —1 if v is below a
module vertex.



Additionally, each internal vertex v is assigned its contribution g, to g(C')

(X Tl <00 XY w0
€Ly JER 1€LY JERY
Jv = —Zngj, ifr,=1 (7)
€Ly JERy
—00, else,

where L, is the set of leaves of the sub-tree rooted at the left child of v and, analogously, R, is
the set of leaves of the sub-tree rooted at the right child of v.
For C given by the current state of D, g(C') can now be rewritten as

9@ = > g . (8)

Ue‘/;ntern

In order to compute max(g(C')), the subtrees of D have to be re-arranged. The algorithm there-
fore randomly selects an edge e of D connecting two internal vertices v; and v;. Let wlo.g. e
be the left edge of v; connecting it to its child v;. Then there are three subtrees £,,, R,, and
Ry, originating from v; and vj, respectively, and two possible rearrangements « and 3 (Fig. 3)
of which one is chosen randomly and simulated. In re-arrangement c, sub-trees R, and R,
are permuted, in rearrangement /3 sub-trees £,, and R,,. The change dg in g(C) resulting from
the rearrangement is computed according to r,, and r,.

B Evaluation of the algorithm

The detection of modules has theoretical limits related to the number of between-module links
present, the sparceness of the network matrix and the size of the network (e.g. Fortunato &
Barthélemy, 2007; Lancichinetti & Fortunato, 2011; Lancichinetti et al, 2010). In the following
paragraphs we evaluate the QuaBiMo-algorithm for different simulated networks typical in size
and noise for pollination networks. There is no technical reason why the algorithm should not
work for much larger networks, too, given enough time for computing a large number of den-
drogram configurations. Such an evaluation is outside the scope of this study.

B.1 Simulations to investigate algorithm sensitivity and speci-
ficity for noisy network data

We analysed simulated networks of different noisiness to evaluate the performance of the mod-
ularity algorithm. We would expect that modules become unidentifiable when the proportion of
links within modules becomes as low as between modules. We hence simulate networks with
increasing degree of noise by moving, randomly, interactions from within a module to a random
position in the adjacency matrix not included in any module (Fig. 8). We simulated two sizes of
networks (30 x 50 and 100 x 400), two levels of filling (achieved through setting the parameter
“size” of the negative binomial distribution to 0.1, low”, or 1, “high” ), and two levels of modular-
isation (3 and 10 modules). Each combination was evaluated for seven noise levels (0, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5) and replicated 15 times, yielding 840 different networks. Replicates differ in the
size, position of modules and number of interactions per link. Sizes were maintained at the same
two levels.

Networks were simulated in three steps. First, we defined the size of the matrix and position
and size of the modules. This initial network is a matrix of Os except for all interactions in a mod-
ule, which is thus identified by a block of 1s. Then, second, we drew actual interactions for each
link of a module from a strongly skewed negative binomial distribution (with size = 0.05 and
p = 2), removed 80% (high filling) or 40% (low filling) of 0-values, and then replaced the initial



1:N

Figure 8: Network simulation starts by defining the modules (left), then allocating to all links a
number of interactions drawn from a negative binomial distribution (centre) and finally removing
interactions in a module and placing them outside (right). High levels of noise, as shown here, yield
poorly defined modules. Cells with a value of 0 are shown in red.

1s of the module blocks by these random values. Accordingly, the modules had a connectance (=
filling) of less than 100%. Higher filling of modules generally increases performance. Third, we
randomly drew a proportion of interactions from the module and moved it to randomly selected
columns and rows of these species outside the module. Thereby we effectively added noise to
the network data. There is an upper limit to the third step, where modules become ill-defined.
That is the case when the number of interactions outside modules is as high as inside.

We ran the QuaBiMo algorithm five times on each network, saving the result with the highest
modularity. This was more efficient in finding a good module configuration than running the
algorithm for much longer. For comparison, we also ran the algorithm on a binarised version
of the data. The code for simulations and analysis is available in appendix B; runtime for the
simulations was approximately two months on a standard desktop computer with 32 GB RAM.

Congruence between the original assignment to modules and the one identified by the algo-
rithm was assessed by means of a confusion matrix. Each link existing in the simulated data was
classified as correctly belonging to a module, falsely assigned to a module, falsely not assigned
to a module, or correctly not assigned to a module. The confusion matrix was then summarised
as sensitivity, specificity and accuracy.

B.2 Simulation results: modularity Q in binary and weighted net-
works

Modularity () was strongly dependent on network size, the amount of noise added and the
number of modules (Table 1). Most importantly, however, our quantitative approach strongly
improved on modularity based on binary data, particularly for large networks (Fig. 9). Deteri-
oration of the module detection with increasing network size could possibly be compensated
for by increasing the number of swaps before terminating the search (see example session be-
low). The loss of skill with increasing noise (Fig. 9, right) cannot be alleviated. Here the ability
of QuaBiMo to use not only the binary but the weighted link information is already a dramatic
improvement.

In the following paragraphs, we shall only be looking at the results for the weighted net-
works, since that is the explicit focus of the QuaBiMo algorithm.

B.3 Simulation results: modularity Q

Modularity () and overall accuracy were affected very similarly by network size, noise and the
number of modules (Table 2). The most prominent effects were those of size, noise and their
interaction, depicted for () and overall accuracy in Fig. 10. Evidently, larger networks are more
difficult to modularise, as are those with a higher level of noise.
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Figure 9: Quality of modularity detection (left and middle: (); right: overall accuracy) depends on
network size, the amount of noise and type of information (binary or weighted). (This figure is the
reprint of Fig. 5 in the main body of the publication.)

Table 1: Effect of different simulation parameters on modularity () and overall accuracy. Sum of
squares and F'-value can be taken as a measure of how strongly these parameters effect modularity.
No significances are given since a test of an effect is nonsensical for simulations. Information refers
to binary vs. weighted networks. ‘Noise’ has seven levels and was analysed as continuous variable.

Modularity () df sum of squares [’ value
noise 1 35.16 2038
size 1 76.34 4424
fill 1 1.97 114
no.of.modules 1 12.45 722
information 1 28.02 1624
noise:no.of.modules 1 7.61 441
noise:information 1 0.21 12
sizeill 1 1.81 105
size:no.of. modules 1 3.59 208
size:information 1 9.20 533
Residuals 4106 70.86

Overall accuracy df sum of squares F’ value
noise 1 38.31 1568
size 1 1.93 79
fill 1 1.49 61
no.of. modules 1 4.20 172
information 1 22.84 935
noise:no.of.modules 1 0.46 19
noise:information 1 11.63 476
size:fill 1 0.66 27
size:no.of. modules 1 0.57 23
size:information 1 3.73 153
fill:no.of modules 1 0.34 14
fill:information 1 0.43 18
no.of.modules:information 1 3.58 147
Residuals 4103 100.21




Table 2: Effect of different simulation parameters on modularity () for weighted networks. Sum of
squares and F'-value can be taken as a measure of how strongly these parameters effect modularity.
df sum of squares F’value

noise 1 14.90 1164
size 1 69.19 5402
fill 1 0.88 69
no.of.modules 1 7.39 577
noise:size 1 0.11 9
noise:no.of.modules 1 2.16 169
size:fll 1 0.74 58
size:no.of.modules 1 1.15 90
Residuals 2048 26.23
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Figure 10: Effect of noise and network size on modularity () (left) and overall accuracy (left).



Table 3: Effect of different simulation parameters on module identification accuracy (weighted net-
works only).

df sum of squares F value

noise 1 3.84 237
size 1 5.49 339
fill 1 1.75 108
no.of.modules 1 0.01 1
noise:size 1 1.03 64
noise:no.of.modules 1 1.96 121
sizeill 1 0.33 20
size:no.of.modules 1 0.67 42
fill:no.of . modules 1 0.08 5
Residuals 2047 33.18

B.4 Simulation results: classification accuracy

While modularity () gives an indication of how well observed links could be grouped into mod-
ules (with a value of 1 indicating that all links are within and none between modules), we can
also quantify the algorithm’s accuracy based on a confusion table. Overall accuracy (= correct
classification rate) is the proportion of all links correctly placed, i.e. (number of links correctly
placed into modules + number of links correctly placed between modules)/total number of links.
Since the purpose of the algorithm is the use of weighted network data, we here only present
results for the weighted and not for the binary networks.

The overall accuracy of module detection decreased with increasing noise levels (Table 3),
an effect more pronounced for large networks than for small ones (Fig. 10 right). Again, this
interaction probably could have been reduced if more steps until termination were allowed for
the larger networks.

B.5 Simulation results: sensitivity and specificity

Classification accuracy has two elements: the correct classification of all module links as be-
longing to modules (sensitivity) and the correct identification of between-module links as not
belonging into modules (specificity). For the detection of patterns in networks high sensitivity
is desirable, although this may inflate type II errors (i.e. we may identify modules that do not
really exist). High specificity indicates that links allocated into modules are indeed correct, but
possibly at the expense of not allocating many links to modules overall (leading to inflated type
I errors).

Sensitivity and specificity of the QuaBiMo-algorithm were driven by the same factors as
overall accuracy (Table 4). Increasing noise levels reduced both sensitivity and specificity, as
did larger networks (Fig. 11). Specificity, i.e. the correct identification of non-module links, was
strongest driven by the number of modules (0.55 = 0.17 (1 sd) for networks with three modules
vs 0.75 4 0.16 in networks with ten modules). Apparently the incomplete filling of the network
led to an identification of several small modules, which reduced sensitivity for networks with
few, but not with many modules.

C Identifying modules - a sample session

The QuaBiMo-algorithm is implemented in C++ and is made available through the open source
R-package bipartite (Dormann et al, 2009). The most important function is computeMod-
ules, which takes three arguments: the matrix representing the bipartite network data (“web”),
a specification of how many MCMC moves should yield no improvement before the algorithm



Table 4: Effect of different simulation parameters on sensitivity and specificity of module identifica-

tion (weighted networks only).
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Figure 11: Effect of noise and network size on sensitivity (right) and specificity (left) of the classifi-

cation of links into modules.

Sensitivity df sum of squares [F'-value
noise 1 6.63 382
size 1 4.81 278
fill 1 0.84 48
no.of.modules 1 20.44 1178
noise:size 1 4.32 249
noise:fill 1 0.67 39
size:no.of.modules 1 2.72 157
Residuals 2049 35.54
Specificitiy df sum of squares F-value
noise 1 9.43 465
size 1 12.91 636
fill 1 4.55 224
no.of.modules 1 5.52 273
noise:size 1 0.17 8
size:Afill 1 0.55 27
fill:no.of . modules 1 13
Residuals 2049 41.61
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stops (“steps”, with default 1e6) and a logical switch for computing nested modules (“deep”,
defaulting to FALSE). The number of steps should be adapted to the size of the network (see pre-
vious sections). We found that () levels off very soon, once the default of one million is exceeded.
However, we have not extensively trialled this setting for networks larger than that used below.

As a typical analysis we shall use the relatively large (25 x 79) and well-sampled pollination
network of Memmott (1999), which is provided along with the bipartite package:

> library(bipartite)
> mod <- computeModules (web=memmottl1999, steps=1E8)

The evaluation of these two lines will usually take about one minute and perform around 20
million MCMC moves. The resulting object stores the module composition and the likelihood of
the solution found. The modularity value @) of this solution is simply the likelihood value (0.18,
this value may vary between runs; random seeding is not supported):

> mod@likelihood
[1] 0.18

We can now plot the resulting modules to visualise the compartments (Fig. 4 top).
> plotModuleWeb (mod)

To identify nested modules, we choose a lower value for steps (to reduce computation time),
thus also yielding a different module structure at the highest level. Modularity value ) will still
be based on the non-recursive algorithm.

> modn <- computeModules (memmottl1999, steps=1E6, deep=T)

To be able to ecologically interpret these modules (Fig. 4 bottom), expert knowledge on the
system is required. The computation of modularity is primarily an explorative tool helping the
user to objectively detect pattern in typically noisy network data.

C.1 Using () as an index

To account for ()’s dependence on network size and sampling intensity, we compute null model-
expectations and turn the observed value of () into a z-score. In R, this could be achieved by the
following code (which will take more than one hour since we are computing modules in 100 null
model networks):

> nulls <- nullmodel (memmottl1999, N=100, method="r2d")

> modules.nulls <- sapply(nulls, computeModules)

> like.nulls <- sapply (modules.nulls, function(x) x@likelihood)
> (z <- (mod@likelihood - mean(like.nulls))/sd(like.nulls))

[1] 7.088665

This means that the observed modularity is 7 standard deviations higher than would be expected
from random networks with the same marginal totals (representing abundance distributions of
plants and pollinators). Since z-scores are assumed to be normally distributed, values above ~ 2
are considered significantly modular.

C.2 Identifying species with importance for modularity

To compute c- and z-values as proposed by Guimera et al. (2005) and Olesen et al. (2007), which,
for each species, describe their role in networks, we simply call the function czvalues. Origi-
nally, and by default, both are computed based on the number of links, but a weighted version
based on species strength (sensu Bascompte et al., 2006) is implemented, too.



> czvalues (mod)

> czvalues (mod, level="lower")

> czvalues (mod,

level="lower",

# for all species

# for

The output of the last command is:

weighted=TRUE)

lower trophic level
#based on strength

Sc
Agrimonium.eupatorium Leontodon.autumnalis Lotus.corniculatus Medicago.lupulina
0.64092549 0.21672839 0.00000000 0.00000000
Rubus.fruticosus Hypochaeris.radicata Centaurea.nigra Euphrasia.officinalis
0.00000000 0.08889145 0.30144047 0.41741018
Linum.catharticum Convolvulus.arvensis Knautia.arvensis Aethusa.cynapium
0.65209520 0.31525184 0.44070394 0.58554442
Eupatorium.cannabinum Plantago.major Leontodon.saxatilis Lathyrus.pratensis
0.32225369 0.00000000 0.25853701 0.48347107
Clematis.vitalba Senecio. jacobaea Trifolium.pratense Chamerion.angustifolium
0.55612161 0.35602360 0.11623699 0.62822506
Leontodon.hispidus Crepis.capillaris Torilis.japonica Angelica.sylvestris
0.33256384 0.66497432 0.66366078 0.15796269
Daucus.carota
0.36472241
Sz
Agrimonium.eupatorium Leontodon.autumnalis Lotus.corniculatus Medicago.lupulina
-0.7071068 0.0383543 -1.0496042 -0.4840071
Rubus.fruticosus Hypochaeris.radicata Centaurea.nigra Euphrasia.officinalis
-0.7071068 0.1170909 0.9731430 NA
Linum.catharticum Convolvulus.arvensis Knautia.arvensis Aethusa.cynapium
-0.4629702 -0.4838904 0.5310580 -0.5293687
Eupatorium.cannabinum Plantago.major Leontodon.saxatilis Lathyrus.pratensis
1.5704676 0.7071068 -0.4780049 -1.1121634
Clematis.vitalba Senecio. jacobaea Trifolium.pratense Chamerion.angustifolium
-0.7399423 -0.3949799 0.6575666 -0.7252687
Leontodon.hispidus Crepis.capillaris Torilis.japonica Angelica.sylvestris
2.5923834 -0.4439763 0.4241122 NA
Daucus.carota
0.7071068
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