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Abstract 

Seed transfer and the suitability of tree provenances to the target climate are im-

portant factors for reforestation and forest management issues. These aspects are 

expected to gain significance considering the imminent era of anthropogenic climate 

change. One of the most common practices in this field of research involves re-

sponse functions that calculate growth as a function of climate variables. In this 

bachelor thesis, I applied response functions to European forests by using data from 

112 common garden experiments to investigate the future growth of Douglas-Fir and 

its multiple provenances under different climate change scenarios. The main findings 

of this thesis are that Douglas-Fir is likely to stay a promising tree species for forestry 

in Europe, particularly at high altitudes and latitudes. According to my models, the 

optimal selection of planting provenances is not going to change significantly, even 

though we can perceive a trend towards seed material from dryer origins. Further-

more, in terms of methodology I conclude that GLMs are a more suitable tool for 

modelling future tree height than predictions made with Random Forests models as a 

comparison. 
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Zusammenfassung 

Der Transfer von Pflanzmaterial und die Tauglichkeit von Baumprovenienzen in Be-

zug auf das Zielklima sind wichtige Faktoren für Wiederaufforstung und forstwirt-

schaftliche Entscheidungen. Im Angesicht des anthropogenen Klimawandels ist zu 

erwarten, dass diese Aspekte noch an Bedeutung gewinnen. Response Functions 

sind eine weit verbreitete Methode auf diesem Forschungsgebiet. Diese berechnen 

Wachstum als eine Funktion klimatischer Variablen. In dieser Bachelorarbeit wende 

ich response functions auf europäische Wälder an, um das zukünftige Wachstum der 

Gewöhnlichen Douglasie und ihrer zahlreichen Provenienzen unter verschiedenen 

Klimawandel-Szenarien zu untersuchen. Dabei nutzte ich Daten aus 112 Pflanzver-

suchen in Europa. Die wesentlichen Ergebnisse dieser Arbeit zeigen, dass die Ge-

wöhnliche Douglasie vorrausichtlich auch weiterhin eine vielversprechende Spezies 

für das Forstwesen in Europa darstellt, insbesondere in hohen Höhenlagen und Brei-

tengraden. Nach meinem Modell wird sich die optimale Pflanzprovenienz nicht signi-

fikant ändern, auch wenn ein Trend hin zu Samenmaterial aus trockeneren Regionen 

zu beobachten ist. In Bezug auf die Methodik lässt sich zudem feststellen, dass sich 

GLMs als ein geeigneteres Instrument für eine Modellierung des zukünftigen Wachs-

tums erwiesen haben als Random Forest-Modelle. 
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1 Introduction  

1.1 Forests under the Influence of Climate Change 

A growing number of scientific publications have identified the severe challenges, 

climate change is likely to impose on health and productivity of forest ecosystems 

(LINDNER ET AL. 2010). As climate zones start to shift northwards, so do optimal habi-

tat conditions for a variety of species (HAMANN & WANG 2006). The frequency of ex-

treme weather events such as droughts, fires, or floods is likely to increase signifi-

cantly in Europe and especially in the Mediterranean regions (IPCC 2013B). Together 

with these abiotic factors, biotic stress factors such as harmful fungi or pests will shift 

their distribution range and thereby affect ecosystems that will often have difficulties 

to react effectively to these new exposures (AITKEN ET AL. 2008). Tree species are 

especially prone to changing climate conditions of their environment, since due to 

slow reproduction rates and rotation periods, their adaptive capacities are limited 

(LINDNER ET AL. 2010). For example, REHFELDT ET AL. (2002) predicted that some Pine 

species need 12 generations or, considering the life span of individual trees, approx-

imately 1500 years to fully adapt to a new climatic environment. Given the current 

rate of climate change, it is obvious that the local adaptation of tree species is too 

slow to keep up with the rapidity of anthropogenic global warming (DAVIS & SHAW 

2001).  

The same applies to migration, which is the second possible reaction of tree species 

to a changing environment. Even though palaeobiotic pollen analyses show that tree 

species have successfully reacted to changing climate conditions by shifting their 

habitat towards areas with optimal growing conditions, the dynamic of the current, 

anthropogenic climate change is already outpacing migratory rates of many tree spe-

cies by an order of magnitude (DAVIS & SHAW 2001). The fragmentation of natural 

landscapes by human activities is an exacerbating factor, which can additionally 

compromise successful range shifts on a local level (MALCOLM ET AL. 2002; SCHWARTZ 

1992). 

Thus, many of the trees that are currently being planted in European forests will still 

be standing there, when the global temperature will have risen by up to 4.8°C 

(RCP8.5, IPCC 2013A) and the frequency of extreme weather events will have 

changed significantly as well (IPCC 2013B). As a result of Europeôs climatic and 
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topographic variability, it is difficult to make general statements about the effects of 

climate change on European forest ecosystems. While in some areas, such as the 

northern and boreal zones, the outcomes might even be beneficial, most European 

forests are expected to increasingly show signs of maladaptation to their current and 

rapidly changing environment, including decreasing health and growth performance, 

increasing susceptibility to pests (LINDNER ET AL. 2010), and eventually dropping sur-

vival rates of individual trees and the extinction of species or populations (THOMAS ET 

AL. 2004; AITKEN ET AL. 2008). Against this background, especially drought and heat 

resistance are valuable traits for future forest trees (EILMANN ET AL. 2013). In an as-

sessment of heat and dryness stress on forests, ALLEN ET AL. (2010) documented that 

the number of scientific reports on warming/drought-induced forest mortality has in-

creased considerably.  

This degradation can have dramatic consequences, as forests provide a variety of 

purposes for society: from an economic perspective, fading productivity rates are all 

the more concerning in the face of a constantly rising global demand for timber prod-

ucts, which is caused by the worldôs population and economic growth and an increas-

ing interest in forests as renewable resources for biomass (FAO 2009). Furthermore, 

forests are highly important carbon sinks. Their well-being mitigates climate change, 

and decreasing growing and survival rates might trigger climate feedback mecha-

nisms (PAN ET AL. 2011; ALLEN ET AL. 2010). Finally, there are concerns about biodi-

versity loss and the recreational benefits for society that forests provide. Against this 

background, the development of climate resilient forest ecosystems should be a cen-

tral concern from both research and management perspectives. 

1.2 Implications for Forest Management and Seed Transfer 

When adaption and migration responses fail, many species would face extinction un-

der natural circumstances. Six to eleven percent of species in natural reserves are 

predicted to go extinct under current emission scenarios (ARAÚJO ET AL. 2004). An-

other study by THOMAS ET AL. (2004) investigating the survival of endemic species in 

the face of climate change found extinction rates between fifteen and thirty-seven 

percent. However, due to intensive forestry most European forests can actually not 

be considered natural ecosystems. For centuries, European forests have been ac-

tively managed and altered by decision-makers, such as private land owners, munic-

ipalities or state representatives (JOHANN 2004). The fact that forest owners decide 
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about the composition of tree species on their land might be a solution to the impend-

ing scenario described above. When future climate conditions are taken into consid-

eration in forest management decisions, and when seeds and saplings are chosen 

wisely, anthropogenic influence could counteract natural limitations of species adap-

tation and migration (WANG ET AL. 2010; LEDIG & KITZMILLER 1992). Natural migration 

rates of tree populations do not have to keep up with the shift of climate ranges. In-

stead, seeds can be transferred and planted at locations, where projected climate 

conditions better match the treeôs biological requirements. Moreover, the previously 

mentioned expansive time spans for in-situ adaptation could be bypassed by planting 

seeds from tree populations that have been adapting to similar climate conditions at 

different sites for generations. 

Tree species show an especially high variety of phenotypes and quantitative traits as 

a result of local adaptation to external factors such as climate, soil conditions, or in-

ter- and intraspecific competition (SAVOLAINEN ET AL. 2007). With climatic variables as 

a very influential factor in this regard, tree populations have developed a great genet-

ic variation along climatic clines (HOWE ET AL. 2003). Therefore, growth and productiv-

ity of seed material at a certain site rely on the compatibility of climatic conditions of 

origin and transfer location. Most research on seed and gene transfer in forestry is 

based on data from provenance trials, which are also known as common garden ex-

periments. Provenance trials are long-term field studies, in which tree seeds from a 

variety of provenances are planted under standardized conditions at a certain site. 

Eventually, differences in height, health and survival rates reveal the suitability of cer-

tain populations for the environmental conditions of this specific area. 

Targeted seed transfer under consideration of future climate conditions at respective 

sites not only offers a great opportunity, but also entails a mandate for environmental 

research to identify and optimize transfer models. Using transfer models as a forest 

management tool, means making large economic decisions based on models and 

predictions, which should be as accurate as possible. One of the most promising ap-

proaches in seed transfer research is the investigation of future growth performance 

through response functions, which will also be applied in this bachelor thesis. 
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1.3 Response Functions  

Response functions are a well-recognized tool for modelling growth performance of 

tree populations as a function of predicting parameters, which usually characterize 

the prevailing climate. They are based on data from provenance trials and have been 

frequently used in current research on seed transfer (E.G. CHAKRABORTY ET AL. 2015; 

O'NEILL ET AL. 2008) 

Response functions return the response of a certain population to the range of a cli-

mate variable. The response is usually measured as height, breast height diameter or 

presence-absence data, but the number and combination of explanatory climate var-

iables can vary and depend on the data available. From a conceptual perspective, 

response-functions are usually inversed quadratic functions with growth performance 

rising from both sides towards a biological optimum. When trees of similar genetic 

origin are planted in several common gardens, whose locations cover different reali-

zations of a certain climate variable, it is possible to determine the optimal growing 

conditions or growing locations for a given genetic group. An alternative to response 

functions are transfer functions, which describe the relationship between a response 

variable and a transfer distance (with equal climate conditions at transfer distance 

zero). This option was also considered but later rejected, because as WANG ET AL. 

(2010) stated, ña transfer from mean annual temperature (MAT) 10° to 8°C (i.e., 2°C 

transfer) may have a dramatically different effect on phenotypes than a transfer from 

0° to 2°C (also a 2°C transfer)ò (p. 154). 

In this research project, provenance trial data has been used to create response 

functions of genetically similar Douglas-Fir populations, in order to predict the future 

growth of Douglas-Fir in Europe.  

1.4 History of the Douglas-Fir and its Importance for Seed Transfer 

Research 

The Douglas-Fir (Pseudotsuga menziesii) is an important commercial timber species, 

which produces wood of high-quality at high growing rates (KLEINSCHMIT & BASTIEN 

1992). Its natural range covers a huge area in the west of North-America, where it is 

the predominant conifer species. It abundantly occurs along the coastal mountain 

ranges from southern British Columbia down to the coastal areas of California. Fur-

ther inland it also inhabits the Rocky Mountain range from widely spread habitats in 
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British Columbia and the northwest of the United States and discontinuously south-

wards through Utah, Colorado, New Mexico and Arizona down to small fragmented 

populations in Mexico (Figure 1). While there are some pseudotsuga varieties of 

smaller prominence in Asia and Mexico (HOWE ET AL. 2006), two main subspecies are 

primarily mentioned in common literature: Pseudotsuga menziesii var. menziesii, 

which inhabits the coastal strip of land and is therefore also known as coastal Doug-

las-Fir, and P. menziesii var. glauca or the interior Douglas-Fir, which grows in the 

continental habitats east of the Cascades (HERMANN & LAVENDER 1999). 

Throughout its widespread natural range Douglas-Fir populations have adopted to a 

large number of regional climates. Coastal trees from provenances west of the Rocky 

Mountain Range, for instance, grow under extremely wet and mild conditions, with 

mean annual precipitation rates of up to 4617mm/yr. Precipitation, humidity, tempera-

tures, and length of growing season decrease from east to west, as the Douglas-Firôs 

habitat crosses the Rocky Mountain, Cascade, and Sierra Nevada Range (MORGEN-

STERN 1996). On the other side of the climate spectrum, interior Douglas-Fir can also 

be found in continental areas, where the annual precipitation does not exceed 114 

mm/yr and temperatures can vary by more than 40K in the course of a year (ISAAC-

RENTON ET AL. 2014). 

In the early 19th century the Douglas-Fir was introduced to Europe. Due to its favour-

able traits and growth performance it became a quite important timber wood in sev-

eral European countries. According to the German federal tree inventory 2015, Doug-

las-Fir now covers 217604 ha of forest land in Germany, which makes it the most 

important introduced timber species from North America (BMEL 2014). Fortunately 

for todayôs research on Douglas-Fir, its introduction to European forests was accom-

panied by comprehensive research efforts aiming to find the best performing seed 

sources of this promising new timber species (KLEINSCHMIT & BASTIEN 1992). This is 

one of the reasons for the sound spatial coverage of provenance trials in our dataset. 

1.4.1 Differences within the Douglas-Fir species 

According to MORGENSTERN (1996), provenance trials revealed ña parallel pattern of 

decreasing growth rate from west to eastò. Seeds from the coastal areas of Oregon, 

Washington and the southern part of British Columbia generally performed best in 

European climates, followed by coastal populations from montane provenances, and 

interior populations showing the worst growth-performance. As a result, seeds from 
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coastal populations were predominantly used in Europe, whereas planting the interior 

variety has not been pursued on a large scale. Since the mid-19th century silvicultural 

yield tables from forestry research in Europe exclusively mention coastal varieties 

(HERMANN & LAVENDER 1999).  

Differences in the growth-performance of coastal and interior taxa can be explained 

biologically with the trade-off between growth rates and stress tolerance (ST CLAIR ET 

AL. 2005). The more inhospitable the climate in which a population is situated, the 

more energy individual trees have to invest in protective traits. As tree damage is 

most dangerous when the tree is actively growing, one example of an adaptive trait is 

the adjustment of bud-burst and growing cessation (WHITE 1987), which results in a 

generally shorter growing season and thus smaller yields from this particular popula-

tion. Populations from mild climates can therefore invest more of their energy sup-

plies into growth performance. In Europe, where the climate is generally less extreme 

than in North-America, this biological trade-off mechanism favors coastal prove-

nances. Even among provenances of the coastal variety, which are known to be su-

perior seed sources for European plantations EILMANN ET AL. (2013) found substantial 

differences in terms of seedling survival, yield, wood quality and drought tolerance.  

1.5 Research Gap and Hypotheses  

Douglas-Fir is a very suitable species for the investigation of seed transfer models in 

the European context for a number of reasons. First, the steady economic interest in 

Douglas-Fir timber during the past century set the ground for a large number of 

common garden experiments and a comprehensive amount of data. Second, Doug-

las-Fir is expected to further gain importance in the European forestry sector because 

of its favourable traits such as high productivity, wood quality, and drought resilience 

with the latter becoming increasingly important considering prospects of future cli-

mate conditions in Europe (EILMANN ET AL. 2013). Third, because of its huge and di-

verse natural range, there is a great variety of provenances to draw potential seed 

material from. As a consequence, there are a number of recent publications providing 

the scientific context in which this thesis is located. 

In 2007, (ST. CLAIR & HOWE) AND HOWE investigated adaptive traits in provenance 

trials in order to assess the potential maladaptation of Douglas-Fir to future climates 

in Oregon and Washington, USA. They drew the conclusion that human intervention 
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would be necessary to ensure a successful adaptation and to maintain the productivi-

ty of Douglas-Fir forests. Furthermore, they recommended planting seed sources 

from more southern and montane provenances in order to address the challenges of 

a warming climate. MONTWÉ ET AL. (2015) found comparable results when conducting 

a similar experiment in British Columbia. Their research focus on drought tolerance 

did not only confirm the trade-off between drought resistance and productivity. They 

also call for a profound consideration of water availability for future forest manage-

ment decisions, because the desired yield results of vigorously growing provenances 

only arise under optimal conditions, while planting more resilient populations under 

moist conditions might be counterproductive and cause significant productivity losses. 

EILMANN ET AL. (2013) stated that currently followed planting recommendations for 

Douglas-Fir in Europe might be outdated, because they did not consider todayôs rap-

idly changing climate conditions. Their objective to identify the most suitable prove-

nances for future climates coincides with my research goal. However, only one com-

mon garden site in the Netherlands was used as a proxy for European climate. In 

addition, in their research they conducted a mixture of dendrochronological research 

with linear regression analysis, whereas the methodology of my approach is more 

similar to the research by WANG ET AL. (2010). In this study, universal response func-

tions were used to predict the distribution of lodgepole pine under different climate 

change scenarios in British Columbia. I intended to create similar optimal distribution 

and growth-response maps, but for Douglas-Fir in Europe. Such predictions have 

been conducted before by ISAAC-RENTON ET AL. (2014), but on the basis of climate 

envelope models instead of response functions and without a quantitative analysis of 

the implications for forests management. 

Against this background, I created response functions from a dataset of Douglas-Fir 

provenance trial data, in order to further research on Douglas-Fir seed transfer in Eu-

ropean forests. For this purpose, I set the following research objectives: 

1. Detect and quantify the general provenance effect in growth-response-

functions between genetically similar Douglas-Fir subpopulations on the basis 

of the provenance trail data. 

2. Use these functions to develop recommendations for forest management 

about the performance of different provenances under future climates. 
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2 Methods 

2.1 Retrieving Provenance Trial Data 

The dataset was compiled and adapted by ISAAC-RENTON ET AL. in 2013. In the 

course of a master thesis they compared growth expectations from bioclimatic enve-

lope models with measured Douglas-Fir heights from European common garden ex-

periments. For this purpose, they collected data from 39 publications and technical 

reports. The resulting data set consisted of 2795 Douglas-Fir trees, which originate 

from a variety of 375 provenance locations and were planted at 120 different sites in 

Europe. The quality of the data was validated and adjusted with the geographic in-

formation system software ArcGIS from ESRI. In order to create applicable results for 

forest management, the wide range of provenance locations was grouped into 14 

provenance groups of similar genetic origin. 

 

Figure 1 (from ISAAC-RENTON ET AL. 2014, p. 2610): Distribution of Douglas-Fir in grey with classification of 
provenances 

As described previously, the climatic conditions of a tree populationôs environment 

have a strong influence on the treeôs genetic traits and their growth performance un-

der different climates. Since the desired outcome of this grouping procedure was a 
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set of genetically similar subpopulations that would perform equally if planted at a 

given site, climatic resemblance worked as a key differentiator in this classification. 

Principal component analysis and multivariate regression tree analysis was per-

formed with the provenanceôs climate data to determine climatic proximity. In some 

cases, political boundaries were also used to separate provenance populations. Yet, 

this criterion was mainly used in the coastal habitat, where not only the habitatôs huge 

North-South expansion requires certain latitudinal partitioning, but where an adminis-

trative division procedure also facilitated the research projectôs application of seed 

acquisition. Another criterion besides climatic analogy was geographic proximity. The 

actual possibility to exchange genes is a mandatory condition for sharing a common 

genepool. Similar to the grouping of tree origin by provenance climate, a site group 

had been assigned to all planting sites as well. Sample trees younger than 5 years 

were excluded from the data, because climate transfer distances need a certain time 

to reveal the investigated impacts through differentiated tree heights (ISAAC-RENTON 

2013). 

2.2 Retrieving Climate Data 

Climate data was retrieved as open source data from the website of Andreas Ham-

man, Professor at the Faculty of Agricultural, Life, and Environmental Sciences at the 

University of Alberta. This climate data has been created with two software packages 

called ClimateWNA and ClimateEU, which are based on methodology described by 

HAMANN ET AL. (2013) and allow free access to a database of high-resolution climate 

data for western North America and Europe. Geographic climate surfaces for the Eu-

ropean continent are available for 22 bioclimatic variables as well as 48 monthly me-

teorological variables. The climate normal period of 1961 to 1990 was used as the 

reference basis for climate data before anthropogenic global warming and also as the 

training data for growth-expectation models. Future European climate data, coordi-

nate grids containing climate variable values in 1km resolution, was downloaded for 

three decades (2020s, 2050s, 2080s) and two emission scenarios (RCP4.5 and 

RCP8.5). The climate models on the Hammanôs website are based on the average of 

15 Atmosphere-Ocean Global Circulation Models of the CMIP5 multimodel dataset 

corresponding to the IPCC AR5.  
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2.3 Adjustment of the Initial Data 

The first steps of data analysis required some preparatory work on the data set. The 

provenance group ñmexicanò was merged with ñinterior southò. With a sample size of 

only five trees it was impossible to generate a reliable model, but adding them to ñin-

terior southò also improved this relatively weak sample to 27 entries. The loss of ac-

curacy and applicability due to this conjunction should be acceptable, because Mexi-

can provenances will be genetically more similar to the southern interior populations 

than to any coastal or northern variety, while the southern interior provenance group 

is already stretching over a wide geographic distance. Obviously flawed data was 

identified mostly in residual plots and if a site showed a consistent unreliability, it was 

removed from the dataset. For instance, at one site close to Saint-Julien-le-Petit in 

France (site ID #80) height had been documented as standardized values, which 

showed up as negative growth values. Another site near Kirchzarten, Germany (site 

ID #71) had been adjusted the wrong coordinates. Finally, measurements from a site 

near Bande in Spain (site ID # 97) were excluded because they included obviously 

wrong data, such as trees with height 10m at the age of 5 years. Two other singular 

trees were removed after an analysis of their impact on the models. Even though re-

moving outliers is a questionable procedure, I decided to remove them for a number 

of reasons; mainly, because they severely impacted the models of the provenances 

"I" (tree ID #180) and "IC" (tree ID #102). I identified them in residual plots, where for 

different GLMs they had repeatedly differed by 4 (GLM) to 8 (RF) standard deviations 

in otherwise evenly distributed data values. Moreover, their cookôs distance was more 

than 28 (#180) and 135 (#102) times higher than the following values. They massive-

ly violated an even distribution of ñageò as the most important predictor and finally, 

these extremely deviating data points belonged to provenances with a relatively small 

sample size (see Appendix). In the end, my dataset consisted of 2731 trees from 362 

provenances planted at 112 European test sites.  

Contrary to the first analysis of this dataset by ISAAC-RENTON ET AL. (2014), I refrained 

from using standardized heights, but decided to use actual heights, and include ñageò 

as a predictor in my models. I believe that it produces better results, because stand-

ardized heights reflect the height of a given tree relative to the average tree height at 

a site. Whereas this method takes site-specific factors like soil conditions or tree care 
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out of the equation, standardized values depend of the choice of provenances pre-

sent at a site, which is not at all consistent. 

Whereas trees of less than 5 years of age were already excluded from the dataset, I 

also set the maximum limit of my data to 50 years. The growth rate of trees is a func-

tion of age. As a tree grows towards its natural maximum height, the growth rate de-

creases resulting in a saturation curve, as shown in Figure 2. By modelling only with-

in the linear growth period I was able to treat tree age as a linear model predictor, 

which simplified the models without losing accuracy. 

 

Figure 2 (from KING, J.E. 1966): Douglas-Fir growth-rate against age 

2.4 Transforming Climate Data 

The ASCII-file-packages containing climate grids had to be adjusted as well. I made 

a preselection of important bioclimatic variables based on previous research and 

publications. Apart from the variables in Table 1, I included ñfrost free periodò (FFP) 

and ñextreme minimum temperatureò (EMT) into my model to account for traits like 

bud-set and frost resistance. All bioclimatic variables were highly correlated, because 

they are combinations of monthly and yearly measurements of temperature and pre-

cipitation. As a result, they were unsuitable as predictors, as correlated predictors 

cause problems with collinearity and variance inflation (DORMANN 2013). To avoid 

collinearity I performed a principal component analysis with R.  
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Table 1: Bioclimatic Indicators for Tree Growth and where they have been used in recent studies 

Literature  Selected Variables 

CHAKRABORTY  (2013)  MAT   TD  SHM 

EILMANN   (2013)   MDMP 

GRIESBAUER   (2013)  MAT   MAP   AHM 

LEITES    (2012)  MCMT   

MONTWE   (2015)  MWMT  MDMP 

OôNEILL   (2008)  MCMT 

REHFELDT   (2003)   DD5 / DD_0 MAT  AHM  TD 

REHFELDT   (2002)  DD5  DD_0  MAT  AHM  

WANG    (2010)  MAT   AHM 

 

I downscaled the data to a 10 km resolution and I implemented a PCA of the selected 

variables using prcomp in the {stats}-package. Then I transformed all climate data, 

the 1961ï1990 as well as the six future scenarios with my PCA. Every climate sur-

face was downscaled from a 1km to a 2km grid size. Given the size of the climate 

surface files I had to sacrifice some accuracy in order to reduce the otherwise exces-

sive computing time. I continued to work with the first 5 PCs (see chapter 3.1) 

2.5 Model Development and Validation 

Even though from a biological reasoning growth response functions display an in-

verted quadratic function, I decided to apply not only a GLM with quadratic predictors 

(as the mathematical equivalent), but for comparative reasons also a Random Forest 

(RF) model to my data.  

RF is a method for classification or regression (in my case the latter), which is based 

on a repeated creation of decision trees. For each tree, data is repeatedly split by the 

predictor which explains the most variance until splitting the data any further does not 

account for a significant reduction of variance. The response value of the data points 

building a terminal end node are averaged and represent the output value of new 

data applied to the model. RF models produce robust results by averaging over a 

large number of trees with randomly selected subsets of data and predictor sets. 

GLMs are a bit easier to interpret, because the predictorôs coefficients depict their 

relationship to the response variable. The interpretive output of RFs is an importance 

table, which shows the significance of different predictors for the splitting process. 

The more often and the earlier in the classification process a predictor served as divi-

sion criterion, the higher the predictorôs importance for the response value. 
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For the GLMs, I used age and the PCs as linear, and the PCôs squared terms as 

quadratic predictors for height. As my research objectives require my models to ex-

trapolate over 90 years and for a large geographic range, the fragile balance be-

tween accuracy and overfitting was a major concern. This is why I tested GLMs and 

RF-models with 3 to 5 PCs in order to find the best predicting models. The function 

stepAIC in {MASS} is often used in R to determine the most important predictors, but 

its procedure of excluding one predictor at a time repeatedly changes the signifi-

cance of all other predictors. Therefore, the final combination depends on the order 

of exclusion. For the GLMs, I used the dredge-command in the R-package {MuMIn}, 

which tests all predictor combinations and returns the most accurate model. RF mod-

els were built with 2000 classification trees. Afterwards, each model was validated 

through a 16-fold cross-validation.  

Cross-validation (CV) is a method to test for a model's prediction capacity. Methods 

like AIC or likelihood can quantify a model's fit to a dataset, but a model with a great 

fit is not necessarily a model that predicts equally well. In a CV, the dataset is split 

into several folds. Points from all but one fold build the training data for calibrating the 

model, which is then used to predict values for the left-out fold. This step is repeated 

until values for the whole dataset have been predicted. This way, the model is re-

peatedly confronted with unknown data, which had not been used to create the mod-

el itself. In the end, prediction quality can be estimated through the comparison of 

observed and predicted values. At best, the folds represent independent datasets, 

which in my case means different climatic conditions. A model that predicts well for 

unknown climates should also perform well when confronted with future climates. 

Furthermore, we can also see how well the models extrapolate to areas where there 

is no data available. Even though our dataset has a fair spatial distribution of planting 

sites (see Figure 3), especially in the south and east of Europe the model has to ex-

trapolate from the data available - an ability which is also tested by CV.  
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Figure 3 (from ISAAC-RENTON ET AL. 2014, p.2609): Spatial distribution and climatic classification of prove-
nance trial locations in Europe 

 

The planting sites had already been grouped by ISAAC-RENTON ET AL. (2014) into 16 

climatically similar areas. Since some groups only contained very few sites, I also 

tried to merge all groups with less than 5 sites to get folds of similar size and repeat-

ed the procedure. However, clustering different climates resulted in very bad predic-

tions for the merged groups, so I abandoned this approach. Then, the predicted re-

sults of the 16-fold cross-validation were evaluated via RMSE for the modelôs quanti-

tative accuracy, and correlation indices (Pearsonôs r and Spearmanôs rank coefficient) 

for the qualitative accuracy, respectively (Table 3). Finally, both a GLM, and a Ran-

dom Forests model was created for every provenance group with the provenance 

trial data.   

TELFORD & BIRKS (2005) stated that many publications on response functions are un-

reliable, as they neglect the effect of spatial correlation between their observations. A 

general assumption in statistics is the independence of samples. Since my models 

run on climate data, absolute independency of samples would require spatially inde-
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pendent climate data, which is an unrealizable assumption. A certain degree of spa-

tial autocorrelation is yet not problematic, as long as there is no far-reaching spatial 

structure in the modelôs error. By testing for a random distribution of the modelôs re-

siduals across the sites we can see if the model correctly accounts for all those co-

herences that it can avoid. Thus, I performed a ñMoranôs Iò- test on special autocorre-

lation of the modelsô residuals to prevent biased results due to autocorrelation of my 

samples. 

2.6 Height Prediction and Validation 

With the individual growth functions I predicted the height of an average tree from 

each provenance for the 61-90 normal period and the six future climate scenarios, 

three decades (2020s, 2050s, and 2080s) and two emission scenarios (RCP4.5 and 

RCP8.5) with the factor ñageò set to 30 years. I ran the models with the previously 

created future climate surfaces and saved the results as ASCII-files containing height 

predictions.  

In order to test my results I implemented a number of tests. The first one is called 

ñvalue above averageò (VAR) and determines if the choice of provenances made by 

my models results in a better growth performance than a random sample of planting 

material. I split the provenance trial data by planting location, recorded the combina-

tion of provenance groups planted at each site, and modelled height with my models, 

the observed tree age, and the 61-90 climate data. Then, I ranked the provenances 

according to my predicted heights and took the mean of the first three genetic groups. 

If a site only contained three provenances, the choice size was reduced to two and if 

there were only two provenance groups at a site, I still tried to find the superior one. 

Then, I calculated the mean observed height from a random sample of three (two, or 

one depending on the number of provenances at the respective site) provenances, 

and calculated the difference between modelled-best and random-observed height 

values. To account for the random selection of comparison-provenances in the VAR 

estimation, I repeated the step 10 times and averaged the results. VAR investigates if 

following the modelsô recommendations results in a better wood harvest than choos-

ing planting material randomly. The higher the overall VAR, the better the model 

works.  
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However, by taking VAR as the only validation criteria, massively overestimating 

models would appear to provide good guidance for management decisions, whereas 

the bias towards high values would be an inherent mistake and would not reflect a 

realistic scenario. This is why I performed a second test, a ñvalue against bestò- test 

(VAB), which is similar to VAR, but instead of taking a random sample of the ob-

served values, I built the mean of the three best performing provenances. A good 

prediction model should produce a VAB close to zero. The predictions should not be 

higher than the actual values, because a strong positive value would be an indicator 

for an overly optimistic model. A negative value either shows that the model is under-

estimating tree heights, or that it chooses wrong and badly performing provenances.  

In order to preclude the latter possibility, it is crucial not only to compare tree heights, 

but the compliance of observed and modelled provenance types. Therefore, I created 

error-of-confusion matrices for the accuracy with which both models correctly identi-

fied the best performing provenance.  

2.7 Application 

My research objective was to investigate future Douglas-Fir growth in Europe. The 

main assumption in this regard is that those provenances that have been performing 

best in the past might not necessarily be the superior genotypes for future European 

climates. In order to put that assumption to the test, I implemented a final test: ñvalue 

above consistencyò (VAC). I computed average future growth-expectations scenarios 

using the response functions of the three currently best performing provenances as 

observed in provenance trials. Then, I repeated the procedure with the three best 

provenances recommended by my models. Subtracting the entries of these two 

ASCII-files produced a locally defined prediction on where and how much forest 

owners would benefit from changing habits according to my model predictions.  

3 Results 

3.1 Transforming Climate Data 

Figure 4 shows a bar plot of the first 7 principal components of my data. Y-axis and 

bar length display explained variance, while the barôs labels show the cumulative ex-

plained variance. The loadings shown in Table 2 indicate the importance of each var-

iable for each PC, thereby allowing for an interpretation of the predictive models.  
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Table 2: PCA Loadings of bioclimate variables on each PC 

  PC1  PC2  PC3  PC4  PC5 

MAT  -0.3676  0.0272  0.0862  -0.1541  -0.0014 

AHM  -0.2688  -0.3162  -0.2272  -0.1662  0.5715 

MWMT  -0.3086  -0.2325  0.4061  -0.2659  -0.0225 

MCMT  -0.3426  0.2025  -0.1715  0.0635  -0.0214 

MAP  0.0156  0.5014  0.5059  0.2064  -0.0217 

DD5  -0.3524  -0.1175  0.2588  -0.0592  -0.1531 

DD_0  0.3222  -0.2035  0.1295  0.2552  -0.2627 

FFP  -0.3541  0.0552  0.0784  -0.0680  -0.4073 

EMT  -0.3467  0.1811  -0.1156  0.0728  -0.1634 

SHM  -0.2421  -0.2293  0.2414  0.7868  0.3415 

TD  0.1958  -0.4134  0.5004  -0.2682  0.0098 

MDMP  0.0958  0.4882  0.2805  -0.2487  0.5197 

 

 

Figure 4: Bar graph of the first 7 principal components 

 

3.2 Model Development and Validation 

The results of the spatial autocorrelation test are presented in Figure 5, where I plot-

ted the modelôs residuals against distance between test sites. The graphs show that I 

have not missed an essential predictor in my selection of climate variables. We can 

see at low x-values that climate is always spatially dependent to a certain degree (0.5 

for GLM and 0.02 for RF), but the correlation drops quickly to values close to zero at 
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around 50 km lag-distance. This means that apart from close local proximity I have 

not missed any overarching trends, which would spatially influence the modelsô re-

siduals. This test revealed another beneficial feature of my data, besides the low I-

value at close distance: As most of the samples are located further apart than 50 km, 

they lie entirely out of the correlated range.  

 

Figure 5: Moran's I (Test on Spatial Autocorrelation) for GLM and RF-model 

 

The results from the cross-validation shown in Table 3 identify the GLM with three 

PCs and the Random Forest with five PCs as the superior models within their group. 

RMSE values quantify the average difference between projected and observed val-

ues. The higher the RMSE, the higher will be the absolute mistakes regarding tree 

heights in our projections. The correlation coefficients indicate if the model gets the 

trend in our data correctly, which is equally important, as its final application should 

be a classification of species according to their rank against others. Figure 6 is a 

chart of the cross-validationôs residuals, which should ideally be equally distributed 

around and as close to zero. Whereas the GLMs look almost identical, the superiority 

of RF5 can be seen in the visual analysis as well.  
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Table 3: Results from 16-fold cross-validation of different models 

 

 PCs  RMSE  Pearsonôs p  Spearmanôs rho 

GLM  3  0.04017  0.94854  0.85600 

GLM  4  0.04178  0.94412  0.85423 

GLM  5  0.04383  0.93911  0.86782 

RF  3  0.06315  0.89586  0.66857 

RF  4  0.06714  0.88477  0.70915 

RF  5  0.04651  0.94579  0.85460 

 

 

Figure 6: Residual Analysis from Cross-Validation Values 

 

The predictorôs importance values for RF5 in Table 4 show that ñageò is clearly the 

most important distinguishing factor, but it is followed by PC4 with more than a sev-

enth of the predictive capacity of ñageò. Mapping the distribution of PC4 values 

across Europe (Figure 7) revealed a strong spatial concentration of high values in the 

Mediterranean climate. According to the PCA rotation matrix (Table 2), the factor 

which dominates PC4 is ñsummer heat moistureò (0.78), which makes sense, as dry-

ness is a major concern for tree growth in the dry Mediterranean climate.  
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Table 4: Importance measures of RF5 

 

Predictor 
 Importance 

Measures 

AGE  81791.209.. 

SITE_PC1  3819.490 

SITE_PC2  5753.564 

SITE_PC3  6151.757 

SITE_PC4  11739.593. 

SITE_PC5  7320.985 
 

 

Figure 7: Spatial distribution of PC4 

 

Even though it reduced the overall prediction accuracy of the model a little bit (Table 

3), I still included PC4 into my GLM, because firstly, the reduction of precision did not 

occur before the third decimal place. Secondly, excluding this factor would have 

compromised the modelôs validity of all of south Europe. PC5, however, was waived, 

because I did not want to sacrifice more accuracy for a factor that also accounted for 

dryness values (AHM, SHM, MDMP; Table 2) and only accounted for 2% of ex-

plained variance (Figure 4).  

The results of the multiple regression analysis for GLM4 are presented in Table 5. Of 

course, the treesô age explains the main share of height variance with more than 92%. 

However, as I predicted tree height for a set age of 30 years, this factor is taken out 

of the equation when the performances of different provenances are compared.  

Table 5: Multiple regression analysis of GLM4 

Predictors  Estimate  Std. Error  t-Value  p-Value  Expl. Dev. in % 

Intercept  -4.808177  0.180029  -26.708  < 2e-16   

Age  0.713159  0.003696  196.949  < 2e-16  92.6577 

PC1  -1.009865  0.033166  -15.285  < 2e-16  1.0287 

PC1²  -0.198455  0.033166  -5.984  2.47e-09  0.0195 

PC2  0.202117  0.091656  2.205  0.0275  0.2451 

PC2²  0.079813  0.017999  4.434  9.60e-06  0.0698 

PC3  -0.241932  0.106980  -2.261  0.0238  0.0253 

PC3²  -0.711040  0.081921  -8.680  <2e-16  0.1605 

PC4  -0.301703  0.166841  -1.808  0.0707  0.0227 

PC4²  -0.830603  0.294980  -2.816  0.0049  0.0168 

Whole Model          94.2067 
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3.3 Height Prediction and Validation  

After identifying GLM4 and RF5 as the superior models, they were applied to the ac-

tual purpose of this study ï predicting the best performing provenances and their ex-

pected height compared to each other, and to the current Douglas-Fir growth habits. 

Both models were fed with PCA transformed climate data from different emission 

scenarios and timeframes including the reference basis of climate data from 1961 to 

1990 and subsequently, the validation tests described in ñ2.6. Height Prediction and 

Validationò were implemented.  

As described in more detail in chapter 2.6., VAR is supposed to test if following the 

modelsô recommendations for planting Douglas-Fir seeds would result in an increase 

in forest productivity at a given site, whereas VAB investigates if the model overesti-

mates its predictions. VAR histograms of GLM and RF are presented in Figure 8 and 

VAB histograms in Figure 9.  

  

Figure 8: VAR-values in comparison between GLM and RF 
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Figure 9: VAB-values in comparison between GLM and RF 

 

According to the VAR test, choosing the modelsô provenance selection over a ran-

dom pick of seed material increases the average height by a bit more than 28 cm for 

the GLM and almost half a meter for the RF. Moreover, the RFôs larger value does 

not seem to be due to overestimation, because its VAB is with 2,3 cm very close to 

zero. The VAB of the GLM model, on the other hand, is with minus 17 cm significant-

ly below zero, even though values seem to be evenly distributed around zero.  

Table 6 and Table 7 show how well both models identified the best performing prov-

enance. Correct classifications are marked bold diagonally across the table. At first 

glance, each modelsô match rate seems to be quite unreliable. Some general obser-

vations are that RF provides better results than GLM, and provenances with larger 

sample sizes are identified with a higher accuracy than small samples. In order to 

include the classification procedure into the validation, I grouped provenances into 

five subgroups (second row). In doing so, I revealed provenance distinctions, which 

were made according to administrative boundaries rather than climatic clines. A mis-

match such as for C_WA in Table 6 (only 12 in C_WA, but 30 overall in the coastal 

type) is less severe than the misclassification in row 9 of INs as C_WA, because the 

only concrete difference between the former three regions are the state borders of 

Washington state. When assessing the modelsô reliability for a certain provenance, it 

is worth looking also at the values in the overarching category.  
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Table 6: Correct classification of optimal provenance made by GLM 

 Predicted            

 C  CC  DC  I  CA   

Observed C_BC C_OR C_WA  CC_OR CC_WA  DC_OR DC_WA  IC IN  LE_CA HE_CA n 
Match 
rate % 

Coastal                  
    C_BC 1 1 4  0 0  0 0  1 0  0 1 8 13 
    C_OR 1 10 2  1 0  0 1  0 0  0 1 16 62 
    C_WA 1 17 12  2 0  2 5  0 1  2 0 41 30 

Cascades                  

    CC_OR 0 1 0  1 0  0 1  0 0  1 0 3 33 
    CC_WA o 2 5  0 0  0 0  1 0  0 0 8 0 

Dry Coast                  

    DC_OR 1 1 1  1 1  1 0  0 2  1 1 8 13 
    DC_WA 1 6 1  1 0  1 3  1 0  1 0 19 16 

Interiors                  

    IC 0 1 0  0 0  0 0  1 0  0 0 2 50 
    IN 0 0 3  0 0  0 0  0 1  0 0 5 20 

California                  

    LE_CA 0 0 0  0 0  0 1  0 0  1 0 2 50 

 

Table 7: Correct classification of optimal provenance made by RF 

 Predicted           

 C  CC  DC  I  CA   

Observed C_BC C_OR C_WA 
 

CC_OR CC_WA 
 

DC_OR DC_WA 
 

IN IS 
 

LE_CA n 
Match 
rate % 

Coastal                 
    C_BC 2 2 0  2 1  1 0  0 0  0 8 25 
    C_OR 0 9 3  1 1  0 2  0 0  0 16 56 
    C_WA 0 5 28  2 2  0 2  0 1  1 41 58 

Cascades                 

    CC_OR 0 0 0  2 0  0 1  0 0  0 3 66 
    CC_WA 1 1 3  0 1  1 0  0 0  1 8 12 

Dry Coast                 

    DC_OR 0 0 2  0 0  2 2  0 2  0 8 25 
    DC_WA 0 3 2  2 0  0 12  0 0  0 19 63 

Interiors                 

    IC 0 0 0  0 0  2 0  0 0  0 2 0 
    IN 0 0 1  0 0  0 0  4 0  0 5 80 

California                 

    LE_CA 0 0 0  0 0  0 0  0 0  2 2 100 

 

3.4 Application 

The following test is already a trial of its potential application as a forest management 

tool. Furthermore, it is an approach to verify my initial research objective. At the out-

set there was the question of whether the optimal composition of Douglas-Fir prove-

nances in Europe might diverge from its current state due to climate change. The 

VAC-test quantifies this change in species composition and locates it. Only the re-
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sults from the 2020ôs and the 2080ôs are going to be shown. These two scenarios 

combined make underlying trends clearly visible, whereas the 2050ôs values usually 

only represent a transition scenario. 

 

Figure 10: Visualization of VACs from GLM predictions 

 

The graphs in Figure 10 show GLM-predicted VAC values across Europe. The de-

velopment from left to right shows the expected long term trend, whereas the com-

parison between upper and lower graphs display the influence of the intensity of cli-

mate change on the results, which is remarkable. Whereas the difference might not 

yet be visible in the 2020, in the course of just 60 years a change in planting patterns 

would result in a significant height increase. Especially in high latitudes, Spain, Italy 

and the southern Balkans, precautionary guided planting would make a significant 

difference. Figure 11 show a comparison between current and future optimal tree 

heights, if management policies were altered towards the optimal provenances. The 
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largest gains compared to the current state could therefore be achieved in the North-

East of Europe, the Scandinavian Coast, southern Spain and Greece, as well as in 

the high altitudes of central Europe.   

 

 

Figure 11: Visualization of GLM-recommended provenancesô growth vs. current optimal growth heights  

 

Red areas indicate regions in which even with optimal management implementations 

Douglas-Fir is going to lose habitat as a result of climate change. An interesting ob-

servation in this regard are the conditions in coastal west Europe and especially in 

some parts of the UK, where according to Figure 10 choosing the ñrightò mixture of 

provenances would make a large difference, but where productivity is going to de-

crease either way.  
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Figure 12: Visualization of VACs from RF predictions 

 

Also according to the RF model, a change in planting policies would have exclusively 

positive outcomes. The distribution of benefits, however, is different from the projec-

tions made with GLMs. Firstly, the absolute values are less optimistic. Even though 

all predictions of the RF are positive, the main share lies within a height gain of 10 cm. 

(Figure 14). Therefore, with between 20 cm (4.5/2020) and 90 cm (8.5/2080), the av-

erage height gain predictions are also much smaller than those from the GLM, which 

lie between 55 cm and 154 cm (even though except for comparing models these av-

erage height gains are of limited significance, because the average is taken over the 

whole and very diverse European climate). A look at VAC maps in Figure 12 shows 

that the RFôs optimistic predictions are strong punctual improvements in central and 

southern Europe, besides the extensive area in the North-East of Europe, which the 

GLM also identifies as a region, which yields a high potential for Douglas-Fir.  
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Concerning the overall suitability of Douglas-Fir the two models coincides in the two 

major observations (Figure 11, Figure 13). Both identify the Atlantic coast, England, 

and Ireland as areas, which are likely to become increasingly unsuitable for growing 

Douglas-Fir. On the other hand, large areas in the North-West have a tremendous 

potential for enhanced Douglas-Fir growth in near future. Nevertheless, there are al-

so some regions where the RFôs overall estimation of suitability of Douglas-Fir differs 

from the findings of the first model. Apart from a generally more positive height ex-

pectation in east Europe, the projected height gain for North-East Europe is much 

stronger than in the GLM data. Another interesting observation is how fast climate 

change will drive species northwards. For 2080, there is a massive difference be-

tween RCP4.5 and RCP8.5 regarding the northbound expansion of optimal height 

gain towards the Baltic, North Russia and Finland, which is not that striking just 60 

years earlier.  

 

Figure 13: Visualization of RF-recommended provenancesô growth vs. current optimal growth heights 
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Figure 14: Histogram of VAC-Values form RF predictions 

 

While the previous graphs have visualized the prosperity of the Douglas-Fir as a spe-

cies represented by its best subpopulations, the figures on the following pages are 

supposed to unravel the prospects for individual provenances and illustrate their 

ranking. Figure 15 we can see histograms of models extrapolations for the current 

performance of each provenance. The black line indicates the average tree height, 

so that not only comparisons between provenances, but their height against the 

mean can be estimated. In compliance with past forestry research and Douglas-Fir 

management, both models correctly locate the interior types substantially below av-

erage and identify the coastal and dry-coastal populations as the well performing 

types. The graphs not only reveal insights about provenances, but about the underly-

ing models as well. The RF projection is a much more precise in its ranking, whereas 

for some provenances such as high (HE_CA) and low elevation California (LE_CA) 

the GLM projection expects the whole range from almost zero to 20 m to appear on 

the European continent. As these overview plots only depict the frequency of ex-

pected data realization, Figure 16 and Figure 17 provide the corresponding spatial 

analysis.  
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Figure 15: Distribution of response values by provenance for reference climate condition (1961 - 1990) 

 

Here (Figure 16) we can see the reason for the widely stretched data sets in the 

GLMs. Expectations for HE_CA and LE_CA, for example, cover the whole range of 

height realizations in almost equal shares across the continent. The long tails to-

wards low values in all histograms of coastal types except C_BC (Figure 15) originate 

from exclusively bad growth expectations in Scandinavia and the Mediterranean. IN, I 

and C_BC seem to be a good choice for plantations in southern Europe, where all 

other provenances have severe problems. Apart from that, differences between all 

provenances from C_OR to DC_WA appear to be minor. A questionable property of 

the extrapolations is the occurrence of extreme gradients in transition areas, where 

height expectations are expected to drop or increase by 15 m within few kilometers. 

The RF model results show a more outbalanced extrapolation within each group and 
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stronger distinctions between them. C_OR and DC_WA are the clear front runner 

with adaptation problems in extreme northern and southern locations. C_BC and 

C_WA follow with a more evenly distributed above-average growth height, while 

C_BC performs better in cold regions. DC_OR and CC_OR appear to grow especial-

ly well in the plains of Italy, the Balkans and East Europe. All other provenances 

seem to be uninteresting for successful forestry purposes with IC, IS and I lagging 

particularly far behind. 

Looking at predictions for 2020 and 2080 (Figure 18, Figure 19) confirms observa-

tions from VAC and comparison against current height analyses. Optimal growing 

habitats of all provenances shift northwards, which occurs a lot stronger under 

RCP8.5 than RCP4.5. In order to fit future projections on two pages, I left out the ñIn-

terior Southò map, since these trees were far from catching up with any other prove-

nance at any time or location. I further chose the RCP8.5 emission scenario, because 

trends were similar, but stronger and therefore more discernible than in RCP4.5.  

According to GLM projections, large parts of previously unsuitable forest land in 

Scandinavia are going to become habitable for several Douglas-Fir provenances. 

One could say C_BC keeps it status as "universal" population that grows well every-

where in west Europe. There are local differences between the otherwise similarly 

top performing types C_WA, CC_OR, and the dry-coast provenances. C_OR grows 

especially well in central Europe, DC_OR a bit further south around the Alps and 

down the coast of the Balkan peninsula, where also LE_CA seems to be a good al-

ternative. Trees from Washington are predicted to grow pretty well everywhere ex-

cept for the south. The bad growth characteristics of the otherwise superior prove-

nances in the dry climate of the Mediterranean increases and expands. Here, IC and 

IN would be the best choice. 

The RF-projections are, once again, generally more consistent. Even though all 

populations experience the same northbound shift in their habitat range, this trend is 

most obvious for CC_OR; DC_OR, and DC_WA. According to Figure 19, the latter 

develops an almost universal applicability combined with exceptional height reaching 

more than 20 m at age 30. DC_OR shows a similar development, except for worse 

values in oceanic West Europe and Scandinavia, where especially on the lee side of 

the Skagen mountain range C_OR is predicted to grow well. All other provenances 

lag considerably behind these three dominant subspecies. 
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Figure 16: 1961-1990 extrapolation by provenance made with GLMs 
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Figure 17: 1961-1990 extrapolation by provenance made with Random Forests 






























