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Abstract

Detecting patterns of interaction in networks is a primary goal of ecological research and a nest-
edness pattern has been detected frequently over the last years. Nestedness is a interaction pat-
tern of a network that shows high occupancy of links in the upper left triangle of the ordered
interaction matrix. As this shape may be the result of environmental gradients, it can be used
to detect which gradients are those shaping the community and is therefore a very interesting
ecological pattern. While there are many ways of interpreting a nested pattern, there are just as
many ways of calculating it. More and more null models and metrics are developed, while their
performance was not su�ciently tested for. While some metrics as well as some null models
have been compared, there are still many unsatisfying evaluated possible combinations. It was,
for example, not tested su�ciently for the in�uence of di�erent matrix types. The possibility of
method combinations leads to a problem in comparing the “nestedness” that was conducted by
these di�erent methods. The question arises whether di�erent calculated nestedness even de-
scribes the same pattern. Di�ering in matrix ordering process, choice of metric and null model,
ecologist have many options when it comes to evaluating data on whether or not it is nested.
Therefore it is di�cult to compare and infer from the result of nestedness analysis, if the pro-
cesses in which this “nestedness” was created vary in the underlying methods. Existing literature
on this topic was summarised to give a introduction on common metrics and null models and
the results of previous analysis on their performance. Seven null models and ten metrics were
chosen to test how they perform together. Intrinsic metric scaling was compared before applying
the null models and was found to be inconsistent in their return. The same was done after apply-
ing the null models, which lead to even less consistency. Metric and null model performance on
moduled matrices was analysed and were all found to be unsuited for such an analysis. One very
constraint model was analysed on how di�erent metrics in�uence it. I found that the metrics are
not consistent in their de�nition of a nested pattern. Especially the T metric returns results very
di�erent from all other metrics.

1





1. Introduction

1.1. Motivation

Amajor aspect in ecology is detecting patterns in networks and understanding their origin. One
such pattern, that has gained more and more attention over the years, is nestedness. While there
are di�erent de�nitions of nestedness used, they all agree that a nested pattern consists of two
properties: �rstly a core of generalists species, where generalists interact with other generalist
and secondly an asymmetry of interaction strength, where specialist species only interact with
generalists but not other specialists (Krishna et al., 2008). If translated into a matrix representing
the network, such a pattern would show a high occupancy of links in the upper left triangle after
ordering rows and columns for example by marginal totals. A link is an observed interaction
between two species or a sighting of a species at an area.
To quantify the degree of nestedness in such a matrix di�erent ways of calculation have been

proposed. There are multiple variations of metrics currently used. They have been developed
over the last decades and authors proposed ever new di�erent ways of calculating the nested-
ness of a matrix (Patterson and Atmar, 1986; Atmar and Patterson, 1993; Brualdi and Sanderson,
1999; Almeida-Neto et al., 2008; Corso et al., 2008; Staniczenko et al., 2013; Wright and Reeves,
1992; Wright et al., 1997; Cam et al., 2000; Lomolino, 1996; Cutler, 1991, 1994; Hausdorf and
Hennig, 2003a). Another impotent part of nestedness analysis is the use of null models. They
are a benchmarking test to indicate the signi�cance of the degree of nestedness measured by
the metric. Quantifying the degree of nestedness of a matrix and the test with a null model on
signi�cance can give insight into how nestedness arose in the given network. However, null
models have always been a highly controversial topic and this is not di�erent with regards to
nestedness analysis (Gotelli and Ulrich, 2012). Clearly representing only one ecological driver
is a very challenging task and therefore it is di�cult to infer or conclude something from an
analysis accomplished with an unclear null model.
Metrics and null models were used to calculate nestedness in di�erent networks and nest-

edness was detected frequently. There is no agreed on metric-null model-combination. With
networks that di�er not only in size or �ll but might even be nested only in part, it is highly
unlikely that a overall applicable method exists at all. However, it is possible to �nd combi-
nations that perform better than others (Ulrich et al., 2009). The current diversity of applied
metrics and null models seems to cause more confusion than clarity and it is highly questionable
whether studies that used di�erent methods are comparable. Furthermore, networks may have
been declared nested with inappropriate methods and might not be nested after all. There are
combinations that detect nestedness much more frequently than it really exists and therefore
signi�cant nestedness would be detected were in fact there was none (Almeida-Neto et al., 2008).
Drawing conclusions or even infer from questionable results is to be avoided in any case and
therefore a reanalysis of previous studies is necessary if the methods used were inappropriate.
Which methods are inappropriate has to be analysed �rst and while many analyses regarding

the combination of null models and metrics have been made, there are still many combinations
that are not evaluated. Ulrich et al. (2009) analysed metric-null model performance but only for
binary metrics. Recently, new metrics have been developed, that allow the analysis with abun-
dance data (Staniczenko et al., 2013; Galeano et al., 2009; Almeida-Neto and Ulrich, 2011). Ulrich
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and Gotelli (2010) conducted an analysis similar to Ulrich et al. (2009) for abundance data, but did
not include several of the new metrics. The performance of abundance metrics has to be evalu-
ated further with a wider range of null models. While metrics are used whenever nestedness is
analysed, there is no evidence that they are consistent in their de�nition of nestedness. There
was no study so far, that compared the intrinsic consistency of di�erent metrics.

Comparing the various analyses is not possible if they make use of di�erent metrics which are
inconsistent in their intrinsic scaling of degree of nestedness. Therefore, commonly used metrics
were chosen in the present work and their correlation in identifying degrees of nestedness was
compared.
The di�erent types of constraints in null models in�uence the results to a high degree (Haus-

dorf and Hennig, 2007). There are still gaps in knowledge as to which null model contributes
how severely to the outcome. Di�erently constrained null models were chosen and combined
with a selection of metrics to address this issue. Special interest was taken in the performance of
metrics and null models on moduled matrices as there are no studies that treat this topic so far.

1.2. Definition and history

The concept of nestedness was �rst described in biogeography by Eric Hultén in 1937 and Philip
J. Darlington in 1957, who observed di�erent species sets on islands, that di�ered in size and
shape. With nestedness, they described the pattern by which these species sets occurred together
on de�ned spacial areas. A metacommunity was classi�ed “nested”, if the species set found in
a species poorer area, was a subset of the species set found in a richer unit (Ulrich et al., 2009).
This was nicely put by Patterson and Atmar (1986) when they said that

“the species comprising a depauperate fauna should constitute a proper subset of
those in richer faunas” (Patterson and Atmar, 1986, page 68).

Generally speaking, nestedness is de�ned by the following properties (Krishna et al., 2008):

• an asymmetry of interaction strength (specialists only interacting with generalists)

• a“core of generalists” (generalists interacting with generalists)

The sorted interaction matrix ful�lling these properties would exhibit a high occupancy of the
upper left triangle. This, however, is a very vague de�nition as there is no clear consensus of
nestedness. Figures 1.1, 1.2 and 1.3 show three matrices with a di�erent degrees of a nested
pattern.
The idea of a nested pattern spread from biogeography to other �elds of application in ecology,

with a slightly changed de�nition. New interpretations of a nested pattern were discovered and
with these, nestedness gained in popularity. The �rst of which was introduced by Atmar and
Patterson (1993); Patterson and Atmar (1986), who declared that a nested pattern can also be used
to predict the order of extinction in a network. They introduced the so called matrix temperature
metric T , the �rst metric, to calculate the degree of nestedness of a given matrix.
Since then, three major metrics types to calculate nestedness have asserted themselves in ecol-

ogy. Atmar and Patterson (1995) developed the nestedness temperature calculator (NTC), the
�rst software for nestedness calculation, which uses the matrix temperature T metric. It is still
one of the most frequently used metrics to calculate nestedness. Brualdi and Sanderson (1999)
introduced a “gap metric’ (BR), which calculates nestedness according to the sum of necessary
pushes of 1s and 0s in each row or column in order to obtain a perfect nested matrix. The third
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major way to calculate nestedness is the “overlap metric”, which counts the number of species
that form a perfect subset of the larger scaled set of species in a given row or column pair. The
�rst of this type of metric was introduced by Hausdorf and Hennig (2003a) and is called HH,
after the developers initials. “Matrix temperature” T , “gap metric” and “overlap metric” are the
three common types of metrics that have been applied and varied by many authors. The recently
introduced metric by Almeida-Neto et al. (2008) NODF (NO for paired nestedness overlap, DF for
decreasing �ll) is a variation of the HH metric and is the now the most commonly used “overlap
metric”. Other metrics have been introduced, like ⌘ by Corso et al. (2008) or “nestedness” by
Bastolla et al. (2009). The Weighted-Interaction Nestedness Estimator (WINE) is software using
the WIN metric, which takes abundance into account. It was introduced by Galeano et al. (2009)
and is the �rst metric using abundance data. This was an important step to future analysis as
many studies showed that abundance can play a major role in networks and highly in�uences
whether or not a network is nested (Staniczenko et al., 2013).
When Bastolla et al. (2009) claimed that nestedness is the cause for greater biodiversity in

mutualistic networks by applying nestedness on plant-pollinator networks, it caused another
wave of great interest in its �eld. Many others found these results to be contradictory to their own
analysis (Kondoh et al., 2010). They also found nestedness in food webs, showing that not only
mutualistic networks, but also competitive ones can show a nested structure. The occurrence of
highly nested sub webs in antagonistic networks, which result in a moduled matrix was another
important �nding of Kondoh et al. (2010).
Another important and highly controversial part of nestedness analysis have always been the

benchmarking test for signi�cance of a nested pattern. As the number of metrics increased, new
benchmarking procedures were developed. The Monte Carlo method, which uses the average
of a large number of random simulations, asserted itself as the benchmarking procedure for
nestedness analysis. In nestedness analysis, these simulations are created by the null models
which represent di�erent ecological gradients. The Monte Carlo method was among others used
by Patterson and Atmar (1986); Lomolino (1996); Hausdorf and Hennig (2003b).
Nestedness is an important pattern in ecology, but its analysis is complex and di�cult to un-

dertake for an outsider. Therefore many software packages have been developed tomake it easier
to choose between the di�erent options to evaluate nestedness. Recently, new software includes
the possibility to evaluate binary and abundance matrices as well (Beckett et al., 2014; Ulrich and
Gotelli, 2010; Ulrich et al., 2009; Hausdorf and Hennig, 2003b).
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Figure 1.1.: Perfectly nestedness

Figure 1.2.: Decreasing nestedness

Figure 1.3.: Not nested

1.3. Causes of nestedness and nestedness as cause

There are many theories on how nestedness arises. They can be divided into three main groups:
1) caused by site properties, shown in table 1.1
2) caused by species properties, shown in table 1.2
3) caused by other factors, shown in table 1.3

The site properties are only applicable to metacommunities, or networks in which one species
acts as a site (host-parasite). These causes often can not be seen as the singular cause of nested-
ness because they in�uence each other. Real networks are highly complex systems, each having
it’s own speci�c processes shaping the community. This makes it di�cult to �nd a null model
that unambiguously describes one of these processes. Species-species networks are also ruled by
di�erent underlying processes since there is a di�erence between mutualistic and antagonistic
networks (Corso et al., 2008). The di�culty of �nding the cause of nestedness in a network was
well phrased by Patterson and Atmar (2000, page 10) :

“Yet most ecological systems are nested, and the factors in�uencing this ecological
structure are as diverse as nature itself.”

Krishna et al. (2008) found that 60% - 70% of nestedness was explained by relative species
abundance. In a purely neutral mutualistic network, generalisation leads to higher abundance
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and higher abundance leads to more interaction partners. Therefore nestedness would arise
solely from abundance. Johnson et al. (2013) found that degree heterogeneity and the �nite size
of a real network are su�cient to create the level of nestedness observed in empirical networks.
They concluded that networks are nested by chance as real networks were found to be naturally
disassortative and nestedness was found correlated with disassortativity. Bascompte et al. (2003)
suggested that more interactions would lead to a higher degree of nestedness. They claimed that
compartments in food webs would not arise from tight specialisation. Ulrich et al. (2009) sum-
marised all the causes by proposing that they are all variations of ordered extinction or colonisa-
tion, and other causes are merely the di�erent gradients that lead to extinction of colonisation.

Nestedness as a cause Bastolla et al. (2009) gained much attention and fed the interest in
nestedness when he claimed that nestedness would increase the biodiversity of a network. It is
stated that the maximum number of species was reached through a nested pattern. This theory
has been proven incorrect by James et al. (2012) who found that the total number of links di-
vided by the network magnitude (hence connactance), not the degree of nestedness in�uences
persistence and the survival of a species and therefore the biodiversity. It was even found that
randomization, which decreased nestedness, simultaneously increases persistence.
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1.4. Short analysis guide

Seven steps have to be taken in a nestedness analysis:
1. Acquire data on the network.

2. Create a matrix from the data, which will hereafter be called the “original matrix”.

3. Choose an appropriate metric.

4. Apply the metric on the original matrix and obtain the original metric value.

5. Choose an appropriate null model that represents the ecological gradient to analyse the
network for.

6. Apply the null model on the original matrix and generate su�cient new matrices, which
will hereafter be called “null matrices”.

7. Apply the chosen metric on each null matrix and obtain a metric value distribution.
If the original metric value is in the signi�cant interval of the distribution, the network is signif-
icantly nested and the gradient excluded by the null model contributes to the nestedness in the
network.

1.5. Matrices

To analyse a network, it must be translated into a matrix. Two matrix types are used for this pur-
pose. The �rst is the commonly used presence-absence matrix (McCoy and Heck Jr, 1987). It can
be subdivided into two matrices: a matrix whose rows and columns represent species and sites
respectively, and an interaction matrix in which rows and columns both describe species. The
former describes a metacommunity where a non-zero entry indicates the presence of a species
at a site, whereas the latter describes an interaction matrix and a 1 indicates an interaction be-
tween the two species. If parasitic-host networks are analysed, a species can also be seen as a site
(Ulrich et al., 2009; Almeida-Neto et al., 2007). Therefore interactions of any kind between two
parties (species-location or species-species) are denoted with 1 and conversely, 0 denotes that
no interaction has been observed (Ulrich et al., 2009). The number of non-zero entries is called
the frequency of the matrix. The connectance of the matrix is the number of non-zero entries
divided by the number of matrix cells. Presence/absence matrices do not make it clear whether
there has been only one or multiple interactions. The abundance frequency is not evaluated and
information is lost. The matrix that includes such data is an abundance matrix. The principle
is the same as with the presence-absence matrix, only that instead of a binary value (0 or 1) the
actual observed interaction values are noted.
A third matrix type to be mentioned here is a hybrid between the classic presence-absence

matrix and the abundance matrix. This matrix is �lled with 1s and 0s but based on the probability
of a cell �ll determined from a abundance matrix. Therefore abundance values are incorporated
indirectly. It can be evaluated with classic presence-absence metrics (Ulrich et al., 2009).
A maximal nested matrix has a 50% �ll and nodes are perfectly aggregated in the upper left

triangle of the matrix. A perfectly nested matrix however is independent of �ll as long as the
interactions match the criteria of perfect nestedness of the speci�c metric used (Almeida-Neto
et al., 2007). Depending on whether an empirical matrix is tested for nestedness or a metric
quality is tested, these original matrices can either be produced from observed data, or drawn
from a appropriate distribution that approximates the distribution of the network of interest.
Almeida-Neto et al. (2007) warned to use the term anti-nestedness as it is not well de�ned. It

is used to describe a perfectly checkerboarded pattern as well as a completely random pattern.
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1.6. Metrics

A metric is a way to calculate the degree of nestedness of the original matrix according to a
de�ned method (Ulrich et al., 2009). According to Ulrich (2009) there are 4 properties that a good
metric must provide:

1. it has to be independent of matrix �ll;

2. it has to be independent to size and shape of the matrix;

3. it has to be invariant to the transposition of the matrix;

4. it has to be invariant to the inversion of presence and absence.

An other de�nition of a good metric was made by Gotelli and Ulrich (2012, page 4) :

“A proper nestedness metric should measure the degree to which species poor sites
appear to be random subsamples of species rich sites.”

Many metrics have been proposed over the years to calculate nestedness of a non-weighted
network. Generally spoken, a classic binary matrix is analysed based on the number of non-zero
cells and their position in the matrix. Three main metric types have asserted themselves for the
calculation of nestedness: the temperature metric (T ), gap metrics and overlap metrics. There
are metrics that use di�erent approaches, which could prove useful for future analysis. For each
of these types, many variations have been proposed. However, only the most commonly used
will be reviewed here.

Temperature metric T T is the metric developed by Patterson and Atmar (1986) and is used
in their NTC (Atmar and Patterson, 1995). For the calculation of T , rows and columns are both
sorted �rst by marginal totals and then to obtain the most nested matrix according to its calcu-
lation. It is calculated using the squared distance of unexpected absence above the isocline of
perfect nestedness and of unexpected presence below the isocline. It sums the squared devia-
tions of these “surprises”, divides the sum by the maximum value possible for this matrix and
then multiplies it by 100 to obtain the temperature scale from 0 to 100 (Atmar and Patterson,
1993; Almeida-Neto et al., 2007). It was believed that unexpected absence and presence are more
meaningful than expected absence and presence, because they are less likely to occur and there-
fore should be assigned more weight. The isocline of perfect nestedness is drawn from the lower
left corner to the upper right corner of the matrix, thereby dividing it into two triangles with
equal size. It crosses the line (and dividing the space above and below them equally) drawn from
the lower left edge to a point XY and from the point XY to the upper right edge. The point XY is
chosen according to size and �ll of the matrix (Ulrich, 2006b; Beckett et al., 2014). It ranks from
0°-100° where 0° represents perfect nestedness and 100° perfect anti-nestedness in the matrix
(Johnson et al., 2013). Anti-nestedness meaning a perfectly random pattern in the NTC. Bas-
compte et al. (2003) used a normalised version to obtain values from 0 to 1 for better comparison.
T is still among the most used measures although it has been proven to have many �aws. Ulrich
et al. (2009) found it to be correlated to the matrix size, James et al. (2012) found it to be at least
more prone to type 1 error than the BR metric and Ulrich and J Gotelli (2007) found the type 1
error rate too high as well. Corso et al. (2008) found several problems and found T to be “not
well de�ned”. Almeida-Neto et al. (2008) even suggested that all previous studies using T should
be re-evaluated because of its many �aws. Matrix dimension seems to have a bigger in�uence
than matrix �ll on this metric (Wright et al., 1997; Greve and L Chown, 2006).
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BR The discrepancy metric (BR) introduced by Brualdi and Sanderson (1999) is used on matri-
ces ordered by marginal totals. The various approaches of ordering the matrices are discussed
in paragraph sorting. It measures the necessary corrections of presence or absence that must be
made to obtain a perfectly nested matrix. It counts the ‘wrong‘ 0s and 1s that have to be moved to
obtain the perfectly nested matrix. This means that it counts all 0s that follow a 1 and counts how
many “pushes” it takes until perfect order is acquired. It is calculated for both rows and columns
and the version that requires least pushes will be used. Using it only on rows or columns would
resolve in a metric that is not invariant to matrix transpose. Therefore a separate calculation
of this metric for rows and columns and a later combination of both was used by Beckett et al.
(2014) for the BR metric. Smaller BR scores indicate higher nestedness. The normalisation of this
metric is given by dividing its value by the matrix �ll (the total number of occurrences) (Ulrich,
2008). It is sensitive to ordering of rows and columns, reaching its maximum when ordered by
row and column total (Ulrich and J Gotelli, 2007; James et al., 2012; Beckett et al., 2014). Ulrich
and J Gotelli (2007) also found it to be less prone to type 1 error than T . Type 1 error is the
wrongful detection of an e�ect that is not there. Type 2 error is the missing detection of an e�ect
that is present. Further details are given in section 1.7.

Ulrich et al. (2009) analysed eight gap counting metrics and found the NC (Wright and Reeves,
1992) and BR metrics (Brualdi and Sanderson, 1999) to be most independent of matrix shape, �ll
and size and the UT (Cutler, 1991) and again the BR metric to be most invariant to occurrence
inversion and transposition. Six other gap metrics called N0, N1, Ua, Ut, Up, D were analysed by
Ulrich et al. (2009), but found to be less well operating and will not further be discussed.

HH The overlap metric, �rst introduced by Hausdorf and Hennig (2003b) which was later re-
ferred to as HH, measures nestedness regarding decreasing �ll and paired overlap. This means
that it counts the number of cases in which one set is a proper subset of a set of a larger scale.
Smaller values indicate a nested pattern. Two identical species are not enough to count as a
subset. This metric allows for the test of several nested subsets, as it was done by Hausdorf and
Hennig (2007).

NODF The HH overlap metric is the basis for the popular NODF metric by Almeida-Neto et al.
(2008) also based on decreasing �ll and paired overlap. Decreasing �ll is measured on a scale
from 0 to 100 with 100 (perfect nestedness) when the marginal totals of a row (column) further
away from most �lled row (column) is lower than the one before. Otherwise it will be 0 (no nest-
edness). This also means that row pairs with identical marginal total (tied ranks) will be counted
as 0. Therefore NODF counts such tied ranks as negative contributions to overall nestedness
(Podani and Schmera, 2012). This also leads to a problem in distinguishing between a perfect
checkerboard pattern and perfect compartmented pattern, as both would return 0 nestedness.
Paired overlap is the count of all row (column) pairs in which a connection appears in the row
(column) further away from most �lled row (column) where a connection is already in the same
place of the previous row (column). If this is the case for all �lls in the row pair, it is measured
as 100 (nested). If a �ll appears in the row (column) further away from most �lled row (column)
it is measured as 0 (no nestedness). Then both counts for each pair are summed and averaged
to obtain a nestedness measure ranging from 0 (no nestedness) to 100 (perfect nestedness). As
nestedness is calculated separately for rows and columns and then combined later, it could be
calculated for only one of these two. Therefore it could be used as a measure of the overlap
of species from poor to rich sites as well as a measure for distribution richness (Beckett et al.,
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2014; Strona et al., 2014; Ulrich and Almeida-Neto, 2012). Almeida-Neto et al. (2008) claim that it
reaches maximum nestedness at 50% �ll. They compared it to other commonly used metrics ( T ,
BR, NC) and found it less sensitive to matrix size and shape and less prone to type 1 error. Beckett
et al. (2014) found it to be sensitive to ordering reaching its maximum for ordering according to
marginal totals. Podani and Schmera (2012) modi�ed NODF and called the new metric NODF-
max. They claimed this measure to be independent of matrix ordering. Yet in their opinion, both
metrics still gave too much weight to the overlap component and too little to di�erences in rich-
ness.

PRN and PRSN Podani and Schmera (2012) introduced variations of the overlap metric. The
percentage relativized nestedness (PRN) and the percentage relativized strict nestedness (PRSN).
They also included the mean Simpson similarity into their analysis. According to them NODF
is a variation of the mean Simpson similarity of site pairs. This is for matrices in which column
margins are strictly monotonically decreasing from left to right. The PRN and PRSN metrics
uses paired overlap and richness di�erence and are insensitive of column ordering, but count
tied ranks di�erently. PRN counts them positively, while PRSN counts them negatively. Mean
Simpson and NODFmax both don’t handle richness di�erences specially. Mean Simpson handles
tied ranks positively, NODFmax negatively. The main di�erence of those metrics to the NODF
is that they are order-invariant. All metrics that count ties negatively have the same problem as
NODF in distinguishing between completely segregated pattern (checkerboard) and pattern with
di�erent but internal completely aggregated compartments. It could also happen that nested pat-
tern measured less nested than random pattern. They also found that their metrics performed
very well with unconstrained null models and claimed that they were resistant to type1 and type
2 errors. They found that PRSN and NODFmax performed better than PRN and mean Simpson.

⌘ Another metric has been introduced by Corso et al. (2008) called ⌘, based on the Manhat-
tan distance MD, which is the distance of a point to another in a matrix using only vertical and
horizontal lines. It sums the row and column index of each connection and assigns this sum
as the weight of the connection (Beckett et al., 2014). It uses a reference point (upper left cor-
ner cell) as the “epicenter” of nestedness and sums the distance of all �lled cells to this point.
It is projected into a Cartesian coordination system and rescaled to the unit square to obtain a
symmetric matrix which takes values from 0 (nested) to 1 (random). It then undergoes a bench-
marking procedure that takes into account the maximum possible distance (random) and the
minimal distance (nested). Beckett et al. (2014) found it to be sensitive to ordering and maximal
for ordering according to row and column totals.

“nestedness” Bascompte et al. (2003) suggested a metric which they called “nestedness” rang-
ing from 0 to 1. It averages the number of interactions that are shared by two species relative to
their number of overall interactions in mutualistic networks. Johnson et al. (2013) introduced a
variation of the “nestedness” metric, which will be referred to as JDM as suggested by Beckett
et al. (2014). They found the “nestedness” metric to depend on the heterogeneity of the degree
distribution in some cases and criticised the normalisation factor used. The new metric uses
the adjacency matrix and measures the disassortivity between the nodes of the network. It nor-
malises the overlap (calculated using the adjacency matrix) using the expected nestedness of a
random graph that has the same degree distribution as the original matrix. This way it accounts
for degree heterogeneity e�ects. It can easily be applied to bipartite networks and show the nest-
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edness value of a single connection as well as the overall nestedness. It also suggests a better
way of normalisation and was found to be invariant to row and column ordering (Beckett et al.,
2014).

checkerboard Another way to analyse the matrix is for its checkerboard character is the so
called C-score suggested by Stone and Roberts (1990). It is the count of all 2x2 submatrix of the
original matrix, after ordering according to marginal totals, in which two species never appear
together, averaged over the community. It returns values from 0 (nested) to 1 (perfect checker-
board). The structure of such a matrix would be

�
1 0
0 1

�
or

�
0 1
1 0

�
. The higher the C-score, the

higher the species segregation. Therefore it can be used to analyse nestedness. The checkerboard
score CH (Ulrich and J Gotelli, 2007) is the non-normalised version of this score. Checkerboard
is the de�nition for anti-nestedness used by Jonsson (2001). This metric has found overall accep-
tance but must be used with care as it cannot distinguish between segregation and aggregation
under certain null models (�xed-�xed): since it is the average of all pairwise values of di�erent
species it is not clear whether the high checkerboard character of the matrix arose from a equal
distribution of segregation or from segregation and aggregation. Positively as well as negatively
associated species pairs are detected by this metric.

Recently a number of new metrics were proposed by di�erent authors, which can be used for
the analysis of weighted networks. Ulrich and Gotelli (2010) tested six of these new metrics.
Although they see high potential in further abundance analysis they found nearly all of these
metrics in combination with various null models to have too high type 1 error rates when tested
with randommatrices. The Mantel test, that compares two matrices to detect non-random corre-
lation, is mentioned as the only acceptable metric, but criticised for its poor power when testing
for signi�cant aggregation or segregation.

WIN Manhattan distance is the basis of the weighted metric that WIN uses in the WINE soft-
ware. With this metric, ordering of rows and columns according to marginal totals puts highest
totals in the lower right corner, but keeps the reference point in the upper left corner. Nestedness
is highest if the distance is greatest. Values range from 0 to 1, where 0 indicates a random matrix
and 1 a nested one. To account for the weight of an interaction, two adjacency matrices are cal-
culated to show the dependency of a row element on a column element and vice versa. Just as
with its binary brother eta, the matrix is rescaled to a unit square in a Cartesian space. This way
a weighted interaction distance is calculated for all non-zero elements. The mean of this results
is the nestedness metric WIN. This metric was found independent from matrix �ll and size and
invariant to transposition. But, like all analysis, it is sensitive to the number of sample. (Galeano
et al., 2009).

WNODF The weighted NODF called WNODF is calculated very similar to the above men-
tioned NODF. It is also based on decreasing �ll, meaning that if the marginal total of the upper
row of a pair of rows is smaller than the lower one, the paired nestedness is zero. If not, the
paired nestedness is the percentage of cells that have a lower value than the according cell in
the row above. Therefore it is more strict than NODF, not only requiring an paired overlap but
also greater values in this paired overlap (Beckett et al., 2014). A mean nestedness value can
then be calculated from all row paired nestedness. The mean nestedness of all column paired
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nestedness’ is calculated likewise. WDNODF then uses both, the row paired and column paired
values to calculate the overall nestedness. Just as NODF the values of WNODF rank between 0
(no nestedness) and 100 (perfect nestedness) (Almeida-Neto and Ulrich, 2011). Staniczenko et al.
(2013) criticised that WNODF does not take all quantitative information available into account.

SR A very interesting and new approach called SR (for spectral radius) was proposed by Stan-
iczenko et al. (2013). This metric can calculate nestedness for binary as well as for abundance
matrices. They used the spectral radius of the largest eigenvalue of the adjacency matrix to cal-
culate the nestedness of a matrix. The matrix is ordered according to the entries of the dominant
eigenvalue. It is controlled for the in�uence of mass e�ect by scaling preferences relative to mass
action in the binary matrix. They found that a nested structure would have the largest spectral
radius for binary as well as quantitative matrices. This method was proven to be very fast and
invariant to permutation of the matrix. If the largest spectral radius of the empirical matrix is
greater than the lowest of a perfectly nested matrix of same type then it is highly likely for it to
be nested. (Staniczenko et al., 2013).

One needs to keep in mind that nestedness is scored di�erently among the di�erent met-
rics. The degree of nestedness increases with increasing values for NODF, SR, JDM, WIN, and
WNODF but with decreasing values for T , BR, eta, “nestedness”, and C-score. C-score, WIN,
eta,“nestedness” have a scale from 0 to 1, T , NODF and weighted NODF from 0 to 100 (Beckett
et al., 2014). This is shown in table 1.4. The diversity of scoring systems is another example for
the non-uniform character of the �eld and the multitude of di�erent approaches.

Table 1.4.: Common metrics and their scaling of nestedness.
Metric Nested Random Example
T 0 100 Atmar and Patterson (1993)
nestedness 0 100 Bascompte et al. (2003)
C.score 0 1 Stone and Roberts (1990)
eta 0 1 Corso et al. (2008)
BR 0 >0 Brualdi and Sanderson (1999)
checker 0 >0 Dormann (2008)
NODF 100 0 Almeida-Neto et al. (2008)
wNODF 100 0 Almeida-Neto and Ulrich (2011)
PRN 100 0 Podani and Schmera (2011)
WIN 1 0 Galeano et al. (2009)
JDM >1 1 Johnson et al. (2013)
HH low high Hausdorf and Hennig (2003a)
SR high low Staniczenko et al. (2013)

1.7. Null models

“A null model is a pattern-generating model that is based on randomization of eco-
logical data or random sampling from a known or imagined distribution. The null
model is designed with respect to some ecological or evolutionary process of inter-
est. Certain elements of the data are held constant, and others are allowed to vary
stochastically to create new assemblage patterns. The randomization is designed to
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produce a pattern that would be expected in the absence of a particular ecological
mechanism” (Gotelli and Graves, 1996, pages 3-4)

To analyse nestedness, null models are needed to evaluate the signi�cance of the metric value
of the original matrix. Which null model is the right choice, and whether null models are appro-
priate in general, has been a highly controversial topic. As a result, there are many null models
that are more or less useful and more or less tested for their performance (Gotelli and Ulrich,
2012). A null model is a method to test the signi�cance of a pattern calculated with a speci�c
metric. The null model will generate a certain number of matrices under chosen constrains from
which a metric value distribution is drawn. Excluding one speci�c factor will give conclusion on
how this factor contributes to nestedness. The excluded factor of the null model should solely
represent the one speci�c gradient to test for. If the original metric value is in the signi�cant part
of this distribution, the original matrix is indeed signi�cantly nested, and the excluded factor is
the reason for the nestedness of the network. To be able to draw a conclusion, this distribution
has to be drawn from a su�cient number of null matrices. Galeano et al. (2009); Ulrich (2006b)
found that 100 matrices should be enough to avoid undersampling, but still have a short enough
calculation process. However, null models are highly debated regarding their quality of perfor-
mance and also need to be analysed for their proneness to type 1 or type 2 errors. Before testing
with a null model (to detect the in�uence of a factor) it is therefore necessary to test the null
model itself and its vulnerability to be prone to type 1 or type 2 error.

Null model is prone to type 2 errors if it does not detect nestedness when there is nestedness.
Null model is prone to type I errors if nestedness is detected when a matrix is random.

(Gotelli and Graves, 1996)
Test of the null model (Gotelli and Ulrich, 2012) :

1. Decide on a null model to test for a particular pattern.

2. Decide on a metric.

3. Create a set of random R matrices and of structured S matrices.

4. Apply null model and metric on S matrices.

a) Evaluate type 2 error rate for null model and metric for structured matrices.

5. Apply null model and metric on R matrices.

a) Evaluate type 1 error rate for null model and metric for random matrices.

6. Decide on the quality of null model and metric.

7. If good : test on empirical data.

8. If bad: choose new null model and metric. Repeat process.

After the performance of the null model is tested, a null model can be chosen to do the actual
analysis.

Test with the null model (Gotelli and Ulrich, 2012) :

1. Obtain empirical matrix M
E

.

2. Apply chosen ordering process on M
E

.
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3. Apply chosen metric on M
E

-> obtain metric value for M
E

.

4. Apply chosen null model on M
E

-> obtain new set of matrices M
N

.

5. Apply chosen metric on M
N

-> obtain metric values for M
N

.

6. Draw signi�cance interval (5%) from metric values of M
N

distribution.

7. Compare metric value of M
E

with the value distribution of M
N

.

8. Draw ecological inference.

The right choice of null model is essential for the analysis. Finding the right null model is a very
di�cult task and depends not only on the matrix and metric used but mostly on the ecological
gradient one wants to test for. There are many null models to choose from, each with its own
perks and �aws and it is up to the ecologist to �nd the appropriate null model for his analysis.
Table 1.5 lists the most commonly used null models1.
There are two things to combine, �rstly the type of null model and secondly the constraints on
the null model. There are three di�erent types of null models: those using only binary data, those
using abundance data to calculate the probabilities for a �ll in the binary matrix, and those using
the abundance data in the returning null matrices. All null models di�er additionally in the way
they are constrained. Constraints can for example be applied to �ll, row sums, column sums,
connectance, frequency, dimension, row/column connectance and probability. For abundance
matrices it can additionally be an individual (�ll) constraint or a population (value) constraint.
(Ulrich and Gotelli, 2010).
The number of generated null models to be used on eachmatrix is a trade-o� between accuracy

and time. More null models will generate a better result, but it requires much more calculation
e�ort. The aim is to avoid undersampling by using too few null models but to generate enough
for a sound result (Beckett et al., 2014). According to Galeano et al. (2009); Ulrich (2006b), 100
matrices yield an accurate result while keeping calculation time reasonably short.
Since presence-absence matrix is the predominantly used matrix type, the binary based null

models that go along with it are more common than the others. The least constrained binary null
model is the equiprobable-equiprobable (EE) model. It does not constrain the marginal totals and
lets individuals �oat within the matrix, but keeps the occurrence constrained (Ulrich, 2006b). The
EE null model can be used if the matrix is independent of variations of richness or incidence and
therefore independent on the marginal distribution (Moore and Swihart, 2007).
The most constrained binary null model is the �xed-�xed model, that constrains matrix size,

�ll, marginal totals and frequency (Strona et al., 2014; Ulrich et al., 2009).
There are null models that either constrain row sums but not column sums (EF) or vice versa

(FE) (Ulrich et al., 2009).
The FF null model should be used if the factors that contributed to the marginal distribution

are gradients of interest for the analysis (Gotelli et al., 2010; Moore and Swihart, 2007). Joppa
et al. (2010) found that a null model with unconstrained column totals generates distributions
that do not resemble nature. Ulrich et al. (2009) prefers the FF model as it is more conservative
and more of the original elements are retained. He further found the EE to have a problem with
its dependency of variance for di�erent matrix sizes. Ulrich (2009) found that null models that
are too liberal would give similar distributions with increasing matrix size and thereby lower
the variance produced. They also found a positive in�uence of restrictive models on passive
sampling e�ects. Ulrich and J Gotelli (2007) found that the FFmodel is better suited for nestedness
analysis than the EEmodel. The FFmodel decreases the occurrence of type 1 error but it therefore

1A full characterisation of all null models is near impossible due to the lack of information given by the authors.
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increases the occurrence of type 2 errors (Ulrich et al., 2009; Ulrich and Gotelli, 2007). It can not be
applied to extremely �lled or empty matrices as there are not enough possible rearrangements
(Ulrich and J Gotelli, 2007). Hausdorf and Hennig (2007) showed that the constraints have a
major impact on the result as they showed that 14 out of 18 matrices were not nested under
constrainedmodels but showed high nestedness when compared to unconstrainedmodels. There
is a tendency not to use the EEmodel as it was found to identify nestedness too frequently (Ulrich
et al., 2009).
The null models that use abundance to calculate the resulting binary matrices are similar to

the classic binary matrices. They use the abundance data to calculate the probability of a �ll for
either rows and columns or for each cell in the matrix and assign 1 and 0 to each cell according
to these probabilities. Moore and Swihart (2007) found that the null model choice again was a
very important in�uence on the results. They used the Recol model to analyse seven datasets
that were already analysed with the Randnest model and identi�ed only one as nested, although
Randnest originally found all seven to be nested. Nielsen and Bascompte (2007) found that the
CE model performed well and had a low rate of type 1 errors. These models are described in
table 1.5.
Until recently, the commonly used presence-absence matrix only required a null model that

uses binary data. The use of abundance data requires null models that can use abundance data.
According to Ulrich and Gotelli (2010), such null models could be more powerful than the sole
analysis of presence-absence matrices. These null models use the actual values that were ob-
served, and so contain more of the original information. Staniczenko et al. (2013) reanalysed
binary matrices that showed signi�cant nestedness using abundance data. They found that the
nestedness was no longer observable after the application of the abundance data on those matri-
ces. Ulrich and Gotelli (2010) analysed 14 di�erent abundance null models and found those four
null models to be overall best performing that kept �ll constant, but allowed individuals to vary
and did not retain the original zero cells.

A main reason to use a null model is to identify the ecological pattern that structured the
network. Therefore a good null model should distinctly represent one factor (ecological gradient,
forbidden links, etc).
If the original matrix was identi�ed as highly nested by the metric and the application of the

null model on this matrix indicates signi�cance of the degree of nestedness, then the factor left
out by the null model played an important role in shaping the network. If it is identi�ed as not
signi�cantly nested, then the factor has no in�uence on the nestedness of this network. Consider
two null models that both constrain marginal totals with only one of them additionally keeping 0
�xed. This additional constraint represents “forbidden links”, that is, interactions that can never
occur. These two null models are applied to the original matrix. If the �rst does not identify
signi�cance but the second does, one can conclude that the “forbidden links” are the reason for
nestedness in the network. However, �nding the correct null model is a challenging task because
it is very di�cult to represent only one clearly de�ned gradient. The essence of this problem was
captured by Gotelli and Ulrich (2012) :

“Relating complex patterns in presence–absencematrices to explicit ecologicalmech-
anisms remains a di�cult challenge.” (Gotelli and Ulrich, 2012, page 8)

Sorting Before a null model is applied, it is common to order the matrix. There are di�erent
methods to order a matrix. The most intuitive way is to order it by row and column marginal
totals. Hereby rows and columns are swapped until as many interactions as possible are in the de-
sired (normally upper left) corner (nested pattern). The rows and columns are sorted by marginal
sum in descending order from top to bottom and left to right respectively. Depending on whether
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one starts the ordering process with rows or columns gives a di�erent result. Sorting rows �rst
gives the columns more importance and vice versa. It is also possible to sort only by row (col-
umn) sums to test for species incidence (composition) (Ulrich et al., 2009). Wright and Reeves
(1992) were the �rst to propose order free analysis, but this method has been criticized by Ulrich
and Almeida-Neto (2012) as nestedness is the result of di�erent ecological gradients of species
and sites and ordering by incidence ignores this fact. Sorting with respect to a special gradient
might lead to a conclusion as to what caused the nested pattern in the given network. Ecologi-
cal gradients might in�uence each other and therefore the degree of nestedness. The sorting of
rows and columns allows to test for whether or not the according gradient contributes to any
nestedness detected. This was suggested by Lomolino (1996). Sorting according to area might
give conclusion on the ordered extinction and ordering by isolation on the in�uence of colonisa-
tion (Lomolino, 1996). Therefore it is essential to pay close attention to the sorting of rows and
columns as they might determine the degree of nestedness profoundly. As matrix order is an
important part of the detection of the cause of nestedness it only seems logical that the metric
used for the analysis must be sensitive to matrix order. Some software has a last ordering pro-
cess, which depends on the metric used to quantify the nestedness (Ulrich, 2006b). Depending
on the desired results, one can order the matrix along di�erent gradients such as environmental
in�uence or taxon speci�es. Ulrich et al. (2009) suggested that ordering along gradients should
be further explored.
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1.8. Z-score

To see whether the measured degree of nestedness in the original matrix is in fact signi�cant,
the metric distribution of the null matrices is calculated. The distance of the original value from
the mean of the distribution provides information on whether or not the degree of nestedness in
the original matrix is signi�cant. This distance is called z-score, which is measured in standard
deviations. A z-score greater than two indicates signi�cant nestedness if the metric scores a
high degree of nestedness with a high value. Conversely, if the metric uses low values for a high
degree of nestedness, then a z-score lower than two indicates signi�cant nestedness. If the z-score
is equal to zero, the original metric is the mean of the distribution. Inappropriate null models will
generate distributions that always detect nestedness where there is none (type 1 error), or never
detect it if there is (type 2 error). Thus, detected signi�cance can either be correctly caused by
signi�cant nestedness in the original matrix or falsely because the null model is not constrained
clearly enough.
The z-score is calculated as follows:

Z =
E

obs

� E
exp

�
exp

(1.1)

where E
obs

is the original metric value, E
exp

is the mean of the sums of the null model metric
values and �

exp

is the standard deviation of the null model distribution. (Ulrich et al., 2009).

1.9. So�ware

“A nestedness beginner would probably have a hard time in discriminating among
the 78 potential di�erent combinations of settings (and the respective Z values) ob-
tainable with nestedness.” (Strona et al., 2014, page 6)

Nestedness is a commonly investigated pattern. However, acquiring a deep understanding of
all metric-null model combinations is timeconsuming if not impossible. These are the reasons
that a variety of software exists, that calculates nestedness. The software packages are limited
in metric and null model options and only o�er the most commonly used types. This limits the
possibility of choosing a metric-null model combination more suited for the speci�c needs, but
it o�ers a comfortable way of conducting a fast analysis of the data. Table 1.6 summarises the
most commonly used software and the metric and null model options they provide.
The program “NODF” additionally o�ers four sorting options (Almeida-Neto and Ulrich, 2011).

The software “Pairs” additional includesmetrics for other network properties(Ulrich, 2008). There
is software that solely calculates nestedness (SDRSimplex) (Podani, 2001) and needs to be com-
bined with other software meant for the generation of null models (ecosim, matrix) (Ulrich,
2006a), NestRand (Podani and Schmera, 2012), NestTest (Podani and Schmera, 2012)). The SDR-
Simplex also includes a version for abundance data (?). WINE positions the matrix value between
the perfectly random and the maximally nested matrix, both generated from the original matrix.
0 indicating randomness, 1 perfect nestedness(Almeida-Neto and Ulrich, 2011).
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1.10. Moduled compartments in networks

Lewinsohn et al. (2006) suggested that networks should not be tested for only one nested pattern.
They proposed patterns that occur along a gradient or compartmented pattern. The latter is
represented by subsets that have a high interaction density within themselves but rare or no
interactions between each other. In an interaction matrix these compartments are easily visible
as clusters of �lled cells that are clearly distinct from other such clusters. These clusters appear
along the main diagonal of the matrix.
Compartmentalisation was thought of to be very unlikely to occur in food webs. This was

recently falsi�ed after reanalysis and by applying a new detection method (Kondoh et al., 2010).
Generally spoken, one would expect a higher chance of detecting a compartmentalised pattern
in networks with low diversity but high speci�city interactions. This might be the case in co-
evolved mutualistic networks, where systems highly depend on one another but not so much
on others. These compartments can evolve into their own evolutionary cell in which further
co-evolution or even further compartmentalisation can occur. This co-evolution might be the
reason why one would observe more turnover in a nested pattern than expected between two
di�erent compartments (Lewinsohn et al., 2006). Conversely, we expect one nested compartment
for high diversity but low speci�city in a mutualistic network (Bascompte et al., 2003).
Given a high degree of nestedness, compartmentalisation only occurs in matrices with low

connectance. With increasing connectance and simultaneous high degree of nestedness, com-
partmentalisation decreased (Fortuna et al., 2010). There is evidence that antagonistic systems
show compartments although they also show high connectance. Such a pattern was found in
antagonistic networks by Kondoh et al. (2010) in multi tropic networks. These clusters do not
forbid nestedness as each cluster can show its own nested structure within the cluster. There-
fore, a further test for nestedness within each compartment should be done. Is was suggested
that a network should �rst be analysed for which pattern occurs and not solely whether a net-
work shows one distinct pattern. Fortuna et al. (2010) also found it to be important to test for
di�erent patterns to better understand the complexity underling the architecture of networks.
This implies that only communities with low connectances are likely to simultaneously present
nested and modular patterns. They also proposed that a clustered structure increases the per-
sistence of a network, as they retain perturbation within themselves and prevent in�uences on
other compartments. This would suggest that one could analyse each cluster as an isolated net-
work. However, this is not possible because rare interactions between clusters are often even
very important for the entire network (Lewinsohn et al., 2006).

1.11. Possible conclusions

Inferences can be drawn from nestedness in a network. It allows for example to predict the or-
der of extinction or colonisation. Moreover, even the in�uence of the extinction of one species
on the whole system. Patterson and Atmar (2000) see missing species at the presence site as
ideal candidates of reintroduction, whereas presences on the absence site struggle to keep their
existence. They also conclude that a population lifetime is predictable by their position in the
matrix. In metacommunities species are increasingly more likely to survive if they are closer
to the most hospitable site, meaning that species that lie on the boundary line between absence
site and presence site are endangered. Specialist species living on hospitable sites and generalist
species living in hostile sites are most prone to extinction. Nestedness can also be used to pre-
dict occurrence of species. That is, if most rare species D is present at a site, it is likely that the
more common species A,B and C are also present (Cutler, 1994). It is no longer only used as a
way to describe colonization or extrication order but might provide insight into the evolutionary
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process that led to today’s assemblage. It can also give information about species distribution or
serve as a tool to infer species preservation. (Patterson and Atmar, 2000).

There is an ongoing debate called SLOSS (single-large-or-several-small) about conservation
of biodiversity: is it better to protect one large island, that should include all species, or several
small islands that together form the equivalent species assemblage to the large island? If one
assumes that networks are nested and the species richest island contains all species of any subset
of a smaller island, it would be logical that the conservation of this single large island would be
su�cient to maintain the biodiversity. However, perfect nestedness is very rare and the only
case in which the protection of the large island is truly useful. In any case that deviates from
perfect nestedness, as most natural networks do, several smaller islands contain an overall larger
number of di�erent species. Therefore it would be desirable to protect areas according to their
speci�c circumstances and not as predicted by an algorithm (Ulrich et al., 2009; Patterson and
Atmar, 2000).
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2. Methods

As a �rst step, the considerable variety of approaches to the topic with di�erent null models and
metric was reviewed to gain an overview of the task at hand. The metrics for further analysis
were selected on the basis of their performance and frequency of usage according to the literature.

For the analysis, two R packages were used bipartite version 2.05 (Dormann, 2008) and vegan
version 2.2-0 (Oksanen et al., 2014). The bipartite package was slightly altered before the analysis
and changed to include two null models from the vegan package. The altered code can be found
in Appendix A. Other programming done in R is attached to this study as a CD. The analysis
included ten di�erent metrics and seven di�erent null models (see section 2.1).
Di�erent kinds of original matrices for the analysis were produced. The 23 empirical matrices

of the bipartite package as well as 150 matrices with three di�erent sizes (small, medium, large)
and 50 moduled matrices (density 2, log normal) were chosen for the analysis. Each moduled
matrix showed three di�erent compartments of which each was generated nested. The genweb
function of the bipartite package, which uses a log normal distribution, was used to generate
marginal totals. 50 small matrices were producedwith the r2d null model of the bipartite package.
All matrices used abundance data. All matrices except the 23 for the empirical networks were
generated nested. An example of a small a medium and a big matrix are shown in �gure 2.1, 2.2,
2.3. An example of a moduled and an observed matrix are shown in Figure 2.4 and 2.5.
As a �rst step of the analysis, all seven metrics for each of the 273 original matrices were

calculated. Then, all ten null models on these original matrices to generate 25 null matrices for
each original matrix. Again all seven metrics were calculated for each new null matrix. From
each null model-metric combination a z-score was obtained using the metric value of the original
matrix and those of the null matrices calculated with the same metric. All 273 z-scores of the
same metric-null model combination were used to obtain a z-score distribution for this particular
combination. This was done for all 70 possible null model-metric combinations. It was accounted
for the di�erent scaling of the metrics. The seven metrics applied on the 273 matrices returned
1911 original metric values (2.1). The overall number of metric values for all matrices-metric-null
model combination was 477 750 (2.2). 19110 z-scores were calculated using the z-score produced
by each metric null model combination for each matrix(2.3).

273 ⇤ 7 = 1911 (2.1)

273 original matrices. Seven metrics.

273 ⇤ 10 ⇤ 25 ⇤ 7 = 477750 (2.2)

273 original matrices. Ten null models. 25 null matrices. Seven metrics.

273 ⇤ 10 ⇤ 7 = 19110 (2.3)

273 z-scores of the metric null model combinations. Ten null models. Seven metrics.

27



Figure 2.1.: Examle of a small matrix used in this analysis

Figure 2.2.: Examle of a medium matrix used in this analysis

Figure 2.3.: Examle of a big matrix used in this analysis

Figure 2.4.: Examle of a moduled matrix used in this analysis

Figure 2.5.: Examle of an observed matrix used in this analysis
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Table 2.1.: Metrics used and their equivalent in literature
R name name
binmatnest T
binmatnest2 T
discrepancy BR
discrepancy2 BR
C.score C.score
checker C.score
NODF NODF
NODF2 NODF
weighted NODF weighted NODF
wine WIN

Table 2.2.: Null models used in this analysis. Showing constraints and freedom
Name Constraint Free type
swap.web connectance,marginal sums,marginal

frequency
NA abu

r2d marginal sums connectance,marginal
frequency

abu

vaznull connectance,margin-probability NA abu
quasiswap �ll,marginal sums marginal frequency abu
mgen di�erent probabilities connectance,marginal

sums
abu

swsh �ll,marginal-frequency,row sums NA abu
shu�e.web dimension,connectance,�ll marginal sums bin/abu

2.1. Measures of nestedness and types of null models

To compare the intrinsic scaling and consistence in the de�nition of nestedness by the metrics,
a scatter plot and the Pearson correlation were used. The same comparison was made both for
the original matrices and after the application of null models. Table 2.1 shows the metrics and
table 2.2 the null models that were used. Figures 3.1 and 3.2 show the results of this analysis.

2.2. Statistical Analysis

The z-scores of all ten null model types for all seven metrics for the 273 original matrices was
calculated. It was accounted for the di�erent scaling of the metrics by calculating the z-score
distribution of the three NODF metrics like

Z =
[100� E

obs

]� [100� E
exp

]

�
exp

(2.4)

A similar correction was made for the wine metric.

Z =
[1� E

obs

]� [1� E
exp

]

�
exp

(2.5)

This is necessary to compare the outcome. Mean values below -2 indicate signi�cant nest-
edness for all metrics after correction, mean values above 2 indicate signi�cant non-nestedness
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for all metrics. An ANOVA analysis was conducted for all matrix types to �nd the main reason
of variance. The di�erent null model-metric combinations were compared to �nd di�erences
in their performance. Boxplots were used to visualise the results. A scatter plot was used to
investigate correlation between di�erent metrics before and after applying a null model.
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3. Results

3.1. Statistical Analysis

It was found that some null models’ in�uence was extremely severe regardless of the metric,
while others’ performance was in�uenced by the size of the matrices. The analysis showed that
for moduled matrices, no satisfying null model-metric combination exists. The correlation of the
di�erent metrics showed only very little intrinsic consistency of the metrics and was even less
after applying the null models. The ANOVA identi�ed null models or their combination with a
metric to be the main reason of the explained variance.

3.1.1. Metric correlation

The correlation of the di�erentmetrics showed that they are very inconsistent with their intrinsic
de�nition of nestedness. Metrics that use the same calculation method were highly correlated.
These are the two binmatnest metrics, the three NODF metrics and the two discrepancy met-
rics. The NODF and the weighted NODF showed a higher positive correlation than NODF and
NODF2 did. The binmatnest metrics showed least positive correlation with the other metrics.
This is not surprising as other studies already showed that this metric depends on the matrix
size, �ll and dimension (Ulrich et al., 2009). There was no or even negative correlation for the
binmatnest2 metric with all the other metrics except with wine. It was highly negative correlated
with both discrepancy metrics. Binmatnest showed very little positive correlation with NODF
and weighted NODF but 47% correlation with checker. It shows, however, a fairly high posi-
tive correlation with wine. Both discrepancy metrics showed negative correlation with wine,
they were correlated positive with all the others, but showed only little correlation with checker
and medium correlation with all three NODF metrics. They were somewhat correlated with the
C.score. C.score and checker were only moderately correlated. While the C.score showed high
correlation with all three NODF, checker showed no or moderate positive correlation with them.
Cscore showed moderate positive correlation with wine, checker only little. All three NODF
metrics were somewhat positively correlated with wine.
The result of the same analysis after null model application showed even less correlation. Only

C.score and binmatnest were correlated, as well as checker and binmatnest2. Both discrepancy
metrics still showed the highest correlation. There were only 10 negatively correlated metrics
before null model application, but 21 after. NODF and weighted NODF, which had 0.99 correla-
tion before, now only showed a weak correlation of 0.39. The high correlation between C.score
and the NODF metrics almost inverted itself and now was a negative correlation. Figures 3.1 and
3.2 show the detailed results.

3.1.2. Null models

It was assumed that the margin constraining r2d null model would return a set of null models
that were very similar to the original matrix. This should especially be the case for matrices that
were constructed using marginal totals as a way to generate nestedness. This was true for all
the arti�cially generated matrices as a log-normal marginal distribution was used to create the
�ll probability for each row and column. First, 50 matrices were generated using this method,
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and the r2d model was applied on those 50 matrices, generating one null model for each of
the 50 matrices. These 50 new null model generated matrices were used as 50 new original
matrices. Therefore, applying a row and column sum constraining null model (r2d) on row and
column sum constraint generated original matrices should result in a mean z-score distribution
of 0 and a standard deviation of 1 as marginal totals are supposed to have a high in�uence on
all metrics. It was assumed that the metric values returned by the r2d null models would be
normally distributed. The analysis of the 50 original matrices that were generated using the
r2d null model showed the expected distribution when applying the r2d null model. The mean
values for all distributions were almost 0, while 65% of each distribution was between 2 and -2.
The small webs, which were used as the original matrices to produce the r2d generated matrices
showed very similar results and therefore further use of the r2d generatedmatriceswas discarded.
This result shows that the r2d model produces very little distortion and the metric distribution
deviates only little from the original metric. A comparison of the small and the r2d generated
distributions is given in �gure 3.3.
The analysis of the di�erently sized matrices showed that null models and metrics di�ered

very little for di�erent sizes. Only the swsh null model indicated signi�cant nestedness. All
other null models yielded means close to 0. The r2d model showed a slightly wider z-score
distribution for decreasing size, but had always a mean very close to 0 for all metrics. Means
were, however, slightly lower with increasing size. Swap.web gave a somewhat lower mean with
increasing size, yet still did not show high signi�cance with all metrics. Vaznull showed a greater
di�erence between the metrics with increasing size, the weighted NODF reacted strongest and
idicated higher segregation for bigger networks, as did wine. C.score and checker di�ered by
almost half a standard deviation and increased their di�erence with increasing size. The other
metrics did not react strongly. Mgen had very similar returns for the small web, but lost this
similarity with increasing size. C.score and checker di�ered strongest for big webs. Except for
C.score all metrics had a lower z-score distribution with increasing size. Wine had its lowest
mean for medium sized webs. All metrics reacted evenly with quasiswap and had lower means
with increasing size. Of all null models, swsh showed the highest variation over the metrics.
The discrepancy metrics had highest means for small webs, this changed with increasing size
and both binmatnest and C.score, as well as the two unweighted NODF had higher values with
the big networks. This happened with decreasing discrepancy values and increasing values for
the other metrics mentioned. Checker behaved similar to the discrepancy metrics. Weighted
NODF and wine reacted very severely to the di�erent sizes. For small webs, both had the lowest
means observed, wine being the overall lowest. For the weighted NODF, this trend went on
with increasing size and showed signi�cant nestedness for medium and big webs. Wine reacted
contrarily. It had the smallest mean for small webs, but steeply increased with increasing web
size, showing signi�cant segregation for the big webs. I excluded the shu�e.web null model from
my �ndings as it indicated extremely high nestedness independent of web or metric used.

3.1.3. Observed matrices

The observed matrices showed a higher dependency on the null models than the di�erent sized
matrices did. The r2d model reacted very similar to the mgen model. Both returned signi�cant
segregation for all NODF metrics, the wine metric and the C.score, while all other metrics iden-
ti�ed no signi�cance. The swap.web model returned similar results to the vaznull model. Both
identi�ed no signi�cance for all metrics except for the combination of the weighted NODF and
wine with vaznull. This combinations identi�ed signi�cant segregation. The quasiswap model
identi�ed signi�cant nestedness with all metrics. The swsh null model had means very close to
zero, identifying signi�cant nestedness only for the weighted NODF. The results are shown in
�gure 3.5.
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3.1.4. Moduled matrices

The z-score results for the moduled matrices showed a high tendency for all null model-metric
combinations to detect signi�cant segregation. Only the combination of the swsh null model
with the weighted NODF identi�ed a signi�cant nested pattern. All other models either showed
no signi�cance or highly signi�cant segregated patterns. The r2d model as well as the mgen
exclusively returned high segregation. The swshmodel and the quasiswap returned results closer
to zero, but still did not indicate signi�cant nestedness except for the above mentioned case.
Within each null model, there was a high variation between the di�erent metrics. All metrics
appeared to depend strongly on the null model, but the two weighted metrics, weighted NODF
and wine, showed a tendency to identify less segregation than the other metrics, independent
of the null model. The swap.web null model and the quasiswap returned very similar results,
swap.web indicating a little more segregation for each metric. The results are shown in �gure
3.4.

3.1.5. ANOVA

The results of the ANOVA for each matrix type identi�ed the null models as the main reason of
variance for all matrix types except for the empirical, where 66% of variancewas still unexplained.
The null models explained 50% for the moduled and small matrices, and 76% for medium sizes
but only 70% for big matrices. No trend of higher variance by the null model for bigger matrices
was observed. Medium and big matrices di�ered mainly in explained variance by null model-
metric combination, which was only 7% for medium but 17.3% for big webs. All results changed
drastically, when the shu�e.web null model was removed from the analysis. The su�e.web null
model is suspected to create such a high variance between the null models because it was already
known to cause extreme z-score distributions in other analyses. After removing shu�e.web, all
except the moduled matrices had a very high unexplained variance. A trend was visible for the
di�erent sized matrices. Increasing size led to increasing explained variance by the null model-
metric combination, which reached 34.47% for the big matrices. For the moduled matrices, the
null model still explained most variance with 49.7%. The only matrix type that reacted di�erently
to the exclusion of shu�e.web was the observed ones. Explained variance increased to almost
50%, when it had only been one third with shu�e.web included.
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Figure 3.1.: Scatter plot and Pearson correlation for the di�erent metrics. Di�erent scaling is not
accounted for, values within the orange box thus have to be multiplied by �1 to get
the standardised values. The table is “symmetric” around the diagonal. Since the
values above the diagonal are calculated from the corresponding scatter plots, the
plots in the marked lower left part have to be understood “in reverse”.
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Figure 3.2.: Scatter plot and Pearson correlation for the di�erent metrics after null models were
applied. Scaling is accounted for, the values are standardised.
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Figure 3.3.: Results for the small matrices (on the left) and the r2d generated matrices (on the
right) for all metrics with the r2d model.
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Figure 3.4.: Metric-null model combination of the moduled matrices
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Figure 3.5.: Metric-null model combination of the observed matrices
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4. Discussion

4.1. Literature

4.1.1. Metric correlation

There are many metrics available, which combined with a null model leave the ecologist with
a wide amount of possible combinations. Choosing the right metric in combination with the
right null model is as crucial as it is di�cult. Many di�erent metrics have been analysed with
many di�erent null models, yet no conclusion has been reached to what is the best combination.
The ecologist has to decide this for the speci�c network he wants to analyse and depending on
the question that drove him to the analysis in the �rst place. However, there are metrics that
have proven more suitable than others. BR, NODF and checkerboard seem to be the overall best
performing metrics for binary networks. Despite its popularity, the temperature metric T does
not perform well and should not be used in further analysis. Its only reasonable application
seems to be, when comparing results with existing studies that use T . As suggested by Almeida-
Neto et al. (2008), a revaluation of the conclusions drawn of analysis basing on the T metric
seems appropriate. However, Gotelli and Ulrich (2012) found that the samematrix, analysed with
the same null model returned very di�erent results for BR (nested), NODF (anti-nested), and T
(random). This shows how essential further analysis and careful choice of metric are. Among
the metrics used for analysis of abundance matrices, WNODF and WIN seem to be performing
well, but further analysis of their performance is necessary. SR appear to be a very promising
new metric, but has been analysed to little to draw �nal conclusions.

4.1.2. Null models

More analysis of the in�uence of abundance data on nestedness is to be made, as it appears to be
a very interesting new approach that deserved further attention. The di�erent null models di�er
highly in their performance and some do not seam to be justi�ed (Joppa et al., 2010). Null models
should represent only one clearly de�ned ecological factor, so that the results can be interpreted
equally clearly. This is not the case for very liberal null models and it is fruitless to use a null
model, that always returns high signi�cance for any network (Ulrich et al., 2009). Detecting
highly signi�cant nestedness in a network is easy using such a model but the cause of nestedness
remains obscure. Such null models should therefore not be used and instead, closer attention
should be paid to those that allow for a clear statement on processes that cause nestedness (Ulrich
et al., 2009; Ulrich and J Gotelli, 2007).

4.2. Statistical Analysis

4.2.1. Metric correlation

A comparison of di�erent nestedness metrics requires the metrics to return the same relative
degree of nestedness for the same matrix. That is, all metrics should score a more nested matrix
higher than a less nested one, regardless of the metrics’ calculation processes. In other words,
all metrics should be highly correlated in the resulting degree of nestedness if they are applied
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on the same matrices. If a metric is not correlated with the others, it should not be used for
comparison. The question is: are all the metrics consistent in intrinsic scaling of nestedness?
And if so, why does one need the wide variety of di�erent metrics instead of a single one? To
answer these questions, a scatter plot was produced and the Pearson correlation was calculated
for each metric combination for the 23 empirical matrices. The same was done after applying
the di�erent null models.
Suppose that a Pearson correlation of at least 0.75 indicates su�cient correlation 1 and ex-

cluding all metric correlation of metrics using the same calculation process, the only su�cient
correlation was found for C.score with NODF and weighted NODF. The unexpected missing
correlation between C.score and checker suggests that there is an error in one of their calcula-
tion processes in the bipartite package since checker is merely the non-normalised version of
C.score 2. Given the discrepancy between C.score and checker, the correlation between C.score
and NODF and weighted NODF has to be ignored. Thus, no two metrics show su�cient intrinsic
consistency. There is no su�ciently strong correlation between intrinsic scaling to claim that
these metrics measure the same pattern. Clearly, they do not agree on what nestedness is and
therefore a comparison of their results seems impossible. This becomes even more prominent
after application of the null models. Before applying the null models, ten combinations of met-
rics showed a negative correlation. After applying the null models, there were 21 negatively
correlated combinations.
The fact that correlation was even less after applying null models shows that null models dis-

tort webs in such a way that it becomes even more di�cult to produce unambiguous results with
the metrics. Each of the null models restrains di�erent properties of the original matrix. This
distorts the matrix to a di�erent extent. The metrics, in turn, weigh the properties of a matrix
di�erently and react more or less sensitive to the distorted properties. One changed property can
have a strong impact on one metric, leading to a greater distinction in the level of signi�cance
for this metric. Another metric, on the other hand, might be much less sensitive to this property
returning less signi�cance. Whether or not sensitivity to a speci�c property is desirable depends
on the de�nition of nestedness and on to what extent this property contributes to the de�nition
of nestedness.

It is therefore suggested that the de�nition of nestedness and its calculation be clearly de�ned.
Subsequently, all metrics should be revalued. Furthermore it is proposed that all studies using
di�erent metrics to compare results be reanalysed using the same well de�ned metric.

4.2.2. Null models

There are many di�erent metrics to calculate nestedness and many di�erent null models to test
the metrics’ signi�cance. Ten metrics and seven null models were applied on 273 matrices that
di�ered in size, degree of nestedness, and compartmentalisation. The mean of the z-score distri-
bution for the 50 matrices that were generated with the r2d null model, was expected to be close
to zero for all margin constraining null models. This was the case and all original matrices were
identi�ed as not signi�cant. The small webs, that were the basis for the r2d generated matrices
showed almost the same distributions. The only null model that does not constrain margins is
shu�e.web. This model identi�ed all matrices with all metrics as highly signi�cantly nested.
This shows that marginal totals play a major role in the identi�cation of nestedness and that fail-
ing to constrain such an important contributor will always lead to identifying high nestedness,
independent of metric. Using such a null model is not useful and there is no network imaginable
1The author claims that an even higher value is necessary to signify a correlation.
2This calculation error has been corrected during this analysis. The corrected version of the bipartite package is
available on github.
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where all parties interact randomly with each other. This null model was therefore ignored in
further analysis.
Of the three di�erent matrix sizes, that were all designed nested, signi�cant nestedness was

only identi�es by the combination of swsh and the weighted NODF for medium sized and big
webs. All other null model-metric combinations returnedmean values and 65% of the distribution
within the range of 2 standard deviations from zero. This leads to the conclusion that the factor
that generated the nested pattern in the original matrix was mainly conserved by all null models.
As the nestedness arose from a log-normal marginal distribution, it was expected that null

models constraining marginal totals would not identify signi�cant nestedness. This explains the
distributions returned for the marginal constraint null models r2d, quasiswap, swap.web and
partly for the row constraining model swsh. The null models mgen and vaznull showed more
sensitivity to the null models when web size increased, but were still within the non signi�cant
interval. This can be interpreted as the result of them constraining marginal probabilities: they
allow for a little more alteration of the original matrix, while keeping the probabilities of the
original matrix.

4.2.3. Observed matrices

The distributions of the observed networks were very inconsistent for the di�erent null mod-
els. While r2d and mgen tended to identify them as segregated, quasiswap identi�ed signi�cant
nestedness for all of them. The null models swsh, vaznull and swap.web tended to identify no
signi�cance. The null models swap.web and quasiswap were expected to return similar distri-
butions, because they use very similar ways of calculation. This was not the case. They di�ered
strongly in their returns. This leads to the conclusion that the structure of the observed matrices
is highly sensitive even to small di�erences in the generation of the null matrices. The unex-
pected and severe di�erence between these similar null models should be further investigated.
All NODF metrics, the wine metric and the C.score identi�ed signi�cant segregation in com-

bination with the r2d and the mgen null model. They showed no distinct di�erence to the other
metrics in combination with the remaining null models. This suggests that these metrics react
more sensitive to the alterations by these null models then the other metrics do. It also shows that
the alterations by the remaining null models do not in�uence these metrics much di�erent than
the other metrics. The r2d model fully constrains margins, while the mgen only keeps probabili-
ties constant. The similar results of these two models seem to suggest that constraining marginal
sums is not as important a factor as previously thought. This idea is supported by the similarity
between the margin constrainung null model swap.web and the probability constraining null
model vaznull. This might lead to the conclusion that constraining marginal probabilities is suf-
�cient and that there is another property, related to mariginal probability, that is more important
than constraining marginal sums. This should be further analysed.
As both r2d and swap.web constrain margins and therefore decreasing �ll, it must be the

di�erence in paired overlap that causes the di�erent reaction of the unweighted NODF metrics
on these two null models. The identi�cation of signi�cant segregation of NODF with the r2d
model but not with the swap.web suggests, that r2d creates null matrices with a much higher
number of paired overlap than swap.web does. This can not be translated to the probability
constraining null models vaznull and mgen, as they can also have a chance of decreasing �ll.
The return of the row constraining null model swsh is di�erent than expected. This model

created the biggest di�erences between the di�erent metrics for the other types of matrices in
this analysis. Contrary to these �ndings it returned the most moderate results of all null models
for the observed matrices. Means were very close to zero for all metrics but the weighted NODF
and the wine. This might be a reason to over think this model, as it seems to have reasonable
constraints for observed networks, although this was not seen when applying it to arti�cially
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produced matrices.

4.2.4. Moduled matrices

None of the used nullmodel-metric combination identi�ed themoduledmatrices as nested. There
was a tendency of the weighted metrics to identify more nestedness that the others. The row
constraining null model swsh surprisingly returned distributions closest to a mean of zero.
The NODF metrics cannot detect any nestedness within the original matrix, as there is almost
no chance of decreasing �ll. In case there is decreasing �ll (row pair between di�erent compart-
ments), there is no chance of paired overlap. This will always result in no nestedness detected
even though it exists in the matrix. By applying a null model, even those that use constrained
margins, paired overlap can occur in those rows that showed decreasing �ll in the original matrix
and NODF will almost always detect higher nestedness than in the original matrix. Therefore us-
ing NODF on moduled matrices should always result in detecting a highly segregated pattern in
the original matrix. This is not the case for the weighted NODF because di�erence in abundance
allows decreasing �ll and therefore also counts paired overlap within compartments. The less
constrained the null model, the more likely that nestedness can be identi�ed. This explains the
high segregation indicated for NODF by mgen, that does not constrain marginal sums. The high
segregation of the margin constraining null model r2d can only be explained by NODF being
highly sensitive to change in paired overlap. This is supported by a comparison with swap.web.
This null model constrains the positions of zeros additionally and therefore does not allow for
change in paired overlap. Swap.web indicates much less segregation than r2d and therefore
shows the in�uence of paired overlap on NODF. The reason for vaznull identi�ng only a moder-
ate amount of nestedness is unclear because this null model is less constraining than r2d. Since
swap.web and quasiswap are very similar, it was assumed that they return very similar results.
This was con�rmed by the analysis.
A similar conclusion can be drawn about the checkerboard scores. In a compartentalised ma-

trix, a checkerboard pattern only occurs n � 1 times, where n is the number of compartments
(q�1 times when all compartments consist of only one species and q is the smallest of either row
or column number). This will result in a high degree of nestedness. This is because the relation
of the total number of cells to the number of rows or columns will be very high in most cases.
Applying a null model will increase the probability of checkerboard pairs and therefore a lower
degree of nestedness will be detected. A z-score distribution indicating signi�cant nestedness
should be returned. This did not agree with the �ndings as both checkerboard scores indicated
high segregation for each null model.
It is impossible to infer the other metrics’ returns, as they are highly dependent on the place-

ment of the compartments within the matrix. Implying abundance data clearly has an in�uence
on the NODFmetric. Including abundance data allows the detection of nestedness in the original
matrix and therefore moderates the e�ect of the null models. This is supported by the �ndings
that weighted NODF always indicated less segregation than NODF and NODF2. Since a binary
metric using the Manhattan distance for calculation was not included, it is not possible to unam-
biguously trace back the moderating performance of wine to either using abundance data or the
Manhattan distance.
Deviations from the expectations might be explained by the low densitiy of the moduled ma-

trices, allowing for zero entries in the compartments. A reanalysis using completely �lled com-
partments might give deeper insights. It seems that there is no good way to constrain the com-
partmentalisation of these matrices because even the marginal constraint models have no power
in maintaining this structure. A null model that constrains the placement of zeros would keep the
compartmentalisation but result in an unchanged matrix for binary networks and highly similar
matrices for abundance networks. The row constraining null model swsh returned unsigni�-
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cant distributions. In general, a less constraining model tends to cause detectable nestedness.
The behaviour of swsh is therefore counterintuitive because this null model is less constraining
than others, yet does not cause much detectable nestedness. Even with constrained rows, the
entries are allowed to change within the row. This is su�cient to create paired overlap, which
in turn generates detectable nestedness for NODF. One would therefore expect NODF to indi-
cate more nestedness than in the original matrix. However, this is not the case. Thus, the swsh
model prevents the creation of detectable nestedness in combination with most metrics. C.score
and checker are the only metrics that �nd segregation in combination with swsh and thereby
also contradict the logical argument about the checkerboard metrics above. To summarise, swsh
behaves contradictory to the logical arguments constructed for NODF and the checkerboardmet-
rics.
There is a high variance in the results returned by di�erent null model-metric combinations.

All null models tear up the compartmentalisation. This allows for the detection of much higher
nestedness in the null models than in the original matrix, especially for the NODF metrics. This
leads to detection of signi�cant segregation in any case for the NODF, and in many cases for the
other metrics. Therefore, the exclusion of NODF for detecting nestedness in moduled matrices
is suggested. As the other metrics su�er from similar problems, further analysis is required. The
contrary should be the case for the checkerboard scores resulting in the detection of signi�cant
nestedness in most cases. As this theory is not supported by the �ndings, further investigation
on the performance of the checkerboard scores is necessary.

A newmetric should be introduced that �rst searches for compartments within the matrix and
then analyses the nestedness of each compartment. Subsequently, each compartment’s nested-
ness should be used to calculate the nestedness of the entire matrix.

4.2.5. ANOVA

The results of the ANOVAs, that were done for the di�erent matrix types on the variance created
by the null model, metric or the combination of both, show a strong in�uence of the shu�e.web
null model. Including shu�e.web, all matrix types had their main reason for variance explained
by the null models. This changed drastically after shu�e.web was removed. This, once more,
shows that the shu�e.web null model behaves extremly di�erent than the other null models.
After shu�e.web was removed, it was interesting that the null model explained only very little
of the variance. Only for the moduled matrices most variance was still explained by the null
models. This seems to be due to the di�erent degree of conservation of the moduled structure.
All other matrices had their main reason for variance unexplained. For all matrices the metric
explained very little of the variance for all types of matrices. Only the moduled matrices had
more than 10% of variance explained by metrics.
Some of the metrics were found to be highly unsuited for the analysis of moduled matrices,

it was therefore expected that the metrics explain a much higher percentage of the variance,
which was not the case. This might be due to the high variance of the null model and of the
combination of null model and metric, since neither null models nor metrics seem to be suited for
such analysis. Considering that very little consistency was found between the original metrics,
it is strange that almost no variance was explained by the metrics.
Increasing the size of the web led to less unexplained variance, from which is concluded that

null models and metrics in�uence increases with increasing size of the web. The combination of
null model and metric showed the steepest augmentation of explained variance with increasing
size. In combination with the low explained variance by the metrics this seems to be caused by
one group of null models that react stronger to increasing size than the other. The cause of this
is suspected to be the di�erence between null models that only partly constrain margins and null
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models that clearly constrain marginal totals.
Although unexplained variance was still highest for the observed networks, excluding shuf-

�e.web increased the explained variance. Variance explained by null models and the combination
of null models with metrics were higher than with shu�e.web. It seems that observed webs nat-
urally create a very high variance between all types of null models, even those that returned
similar results for the arti�cial matrices. This might be because real webs are much less nested
than those that were arti�cially generated, therefore marginal totals are more evenly distributed
in observed webs. This allows for more possibilities when creating a null matrix resulting in
higher variance between the di�erent null models. For bigger webs, there seems to be a stronger
in�uence of the null models on the metrics, which results in the variance explained by the null
model-metric combination.

4.3. Conclusions

The analysis of the di�erent metrics has shown, that they do not have a consistent intrinsic
de�nition of nestedness. This result was even more evident after applying the null models. The
T metric was found to be least correlated with all other metrics. A reanalysis of all existing
metrics is therefore suggested. They should be tested for their exact de�nition of nestedness and
only metrics with high correlated intrinsic scoring of nestedness should be used. However, high
correlation de�es the purpose of di�erent metrics because all metrics in essence give the same
result.
The null models vary profoundly in their results. Marginal constraint null models produced

much more sensitive results and therefore allow for ecological interpretation. Null models that
do not constrainmargins always indicated extremely signi�cant nestedness in the original matrix
and thus neither use nor justi�cation is seen in them. A network in which all parties interact
with the same probability seems very unlikely in reality. The main purpose of a null model is
to identify the factor that created the nested structure of the original matrix. A null model that
solely constrains species richness is likely not to include that factor. This would only be the case
if species richness was the cause of nestedness, leading to the conclusion “The more species,
the higher the nestedness”. There is no reason to assume that this is the case for real networks,
because they are highly complex. It is therefore suggested that these models no longer be used.
The results for the moduled matrices showed that today’s metrics and null models are not

suited for such an analysis. It is therefore proposed that a special position in nestedness analysis
is allocated to these matrix types. Metrics that are unable to detect any nestedness in a moduled
matrix, such as the NODF metrics, should never be used for the analysis of moduled matrices.
The checkerboard metrics instead would appear to be better suited, as they should detect high
nestedness in the original matrix and decreasing nestedness in the null models. Yet this was not
found to be the case and further investigation is recommended before their use. All null models
failed to preserve the moduled structure of the matrices. Therefore they are not usable, as the
moduled structure is the object of the analysis. A new metric that �rst detects compartments
and then analyses the nestedness of each compartment to calculate overall nestedness of the
network is needed. Finding an appropriate null model is challenging as it must constrain the
moduled structure but at the same time allow for enough variation.
Real webs react very di�erent to the null models than arti�cially nested created networks do.

They seem to be structured in a way to which the null models react very di�erent. There are
null models that produce null matrices to which some metrics react very sensitive, while others
react moderate to the same null matrices. The swsh null model seems to create null matrices
that are very similar to the original webs, although this was contrary for all arti�cially generated
matrix types. All metric-null model combinations return very similar results. The same 23 ma-
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trices were identi�ed as signi�cantly nested, insigni�cant or signi�cantly segregated, depending
on the metric-null model combination to analyse them. This again shows how severe the choice
of metric and null model can in�uence the analysis and how crucial it is to pay close attention
when selecting them.

Metrics, null models and networks are all highly di�erent within themselves. Finding a general
method to analyse all types of matrices is impossible. A variety of null models is necessary to
represent di�erent ecological factors. Special cases of nestedness, such as moduled matrices,
call for di�erent metrics to evaluate them. However, di�erent metrics for the same matrix type
seem to have no advantages but only promote confusion and it is suggested to agree on only
one uni�ed metric, that clearly de�nes nestedness and calculates it strictly according to that
de�nition. Although there are methods that seem overall better suited for nestedness analysis,
it remains the challenge of the ecologist to �nd the best way for his speci�c case.
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nested <- function (web, method = "binmatnest2", rescale = FALSE, normalised = FALSE) 
{
if (!any(method %in% c("binmatnest", "discrepancy", "binmatnest2", 
"discrepancy2", "NODF", "NODF2", "weighted NODF", "wine", 
"C.score", "checker", "ALL"))) 
stop("Typo? Unknown method!")
if ("ALL" %in% method) 
index <- c("binmatnest", "discrepancy", "binmatnest2", 
"discrepancy2", "NODF", "NODF2", "weighted NODF", 
"wine", "C.score", "checker")
else index <- method
out <- NULL
if ("binmatnest2" %in% index){ 
nessy <- try(nestedtemp(web)$statistic, silent=TRUE)
nessy.value <- if (inherits(nessy, "try-error")) NA else nessy
out <- c(out, binmatnest2 = nessy.value)
}    
if ("binmatnest" %in% index){ # NA occur if web is full (i.e. no 0s)
nessy <- try(nestedness(web, null.models = FALSE)$temperature, silent=TRUE)
nessy.value <- if (inherits(nessy, "try-error")) NA else nessy
out <- c(out, binmatnest = nessy.value)
}
if ("discrepancy2" %in% index) {
out <- c(out, discrepancy2 = nesteddisc(web)$statistic)
}
if ("discrepancy" %in% index) 
out <- c(out, discrepancy = unname(discrepancy(web)))
if ("C.score" %in% index) 
out <- c(out, C.score = C.score(web, normalised = normalised))
if ("checker" %in% index) 
out <- c(out, checker = nestedchecker(web)$C.score)
if ("NODF2" %in% index) 
out <- c(out, NODF2 = unname(nestednodf(web, order = TRUE)$statistic[3]))
if ("NODF" %in% index) 
out <- c(out, NODF = unname(nestednodf(web, order = FALSE)$statistic[3]))
if ("weighted NODF" %in% index) 
out <- c(out, `weighted NODF` = unname(nestednodf(web, 
order = FALSE, weighted = TRUE)$statistic[3]))
if ("wine" %in% index) 
out <- c(out, wine = wine(web)$wine)
if (rescale & !"ALL" %in% method) 
warning("You requested rescaling, but you won't get it (unless you use method='ALL')!")
if (rescale & "ALL" %in% method) 
out <- abs(c(100, 100, 0, 0, 0, 0, 0, 0, 0, 0) - out)
out
}

nullmodel <- function (web, N = 1000, method = "r2d", ...) 
{
methods <- c("r2dtable", "swap.web", "vaznull", "shuffle.web", 
"mgen", "quasiswap", "swsh", "abuswap")
if (is.numeric(method)) {
m <- method
}  else {
m <- pmatch(method, methods)
}
if (is.na(m)) 
stop("Abbreviated name does not uniquely identify method.")
if (m == 1) {
if (all(web < 2)) 
warning("This seems to be a binary web. Only methods shuffle.web and mgen should be used!\n  I
proceeded nonetheless. Read the note in the help file!")



rs <- rowSums(web)
cs <- colSums(web)
out <- r2dtable(N, r = rs, c = cs)
}
if (m == 2) {
if (all(web < 2)) 
warning("This seems to be a binary web. Only methods shuffle.web and mgen should be used!\n  I
proceeded nonetheless. Read the note in the help file!")
out <- swap.web(N, web, ...)
}
if (m == 3) {
if (all(web < 2)) 
warning("This seems to be a binary web. Only methods shuffle.web and mgen should be used!\n  I
proceeded nonetheless. Read the note in the help file!")
out <- vaznull(N, web)
}
if (m == 4) {
if (any(web > 1)) 
out <- shuffle.web(web, N, ...)
if (all(web < 2)) 
out <- replicate(n = N, expr = unname(commsimulator(web, 
method = "quasiswap", ...)), simplify = FALSE)
}
if (m == 5) {
out <- replicate(n = N, mgen(web, autotransform="equiprobable"), 
simplify = FALSE)
}

if (m ==6){
null <- vegan::nullmodel(web, method = "quasiswap_count")
res <- simulate(null, nsim=N)
out <- alply(res, 3)
}

if (m == 7){
out <- permatswap(web, method = "swsh", times=N, fixedmar="rows")[[3]]
}

if (m == 8){
out <- replicate(n = N, expr = unname(permatswap(web, method = "abuswap", times=1,
fixedmar="rows", seed=runif(1))[[3]]), simplify = FALSE)  
}

if (!(m %in% 1:8)) stop("Please choose a valid method.")
return(out)
}

mgen <- function(web, n=sum(web), keep.species=TRUE, rep.cell=TRUE, autotransform="sum",
trials=100){
# function to generate a quantitative network based on a probability matrix
# by Diego Vázquez (brushed up for a more bipartite-consistent use of names by CFD) 
# web   a matrix with observation probabilities, emerging from some null model considerations
external to this function; if an original network is used, this will be automatically converted to a
probability matrix by dividing it by the number of interactions (CFD); ORIGINAL: a probability
matrix
# n     number of interactions to allocate into the new matrix
# autotransform:    determines how a non-probability web is converted into probabilities; 
#         option 1: "sum": simply divide each entry by the sum of interactions in the web
#           option 2: "equiprobable": product of marginal probabilities (col/rowSums divided by
sum(web) (in a sense this is the basis of the r2dtable null model, just without the 'turn into integers'
bit)



# keep.species: Random assignment of interactions may lead to empty columns or rows and hence
reduce 
#the dimensions of the simulated web. By default, this is prevented from happening, i.e. each
row/column will receive at least one interaction. Setting keep.species to FALSE may (but need not)
cause a loss of species.# trials: allocating interactions (when rep.cell=TRUE) can be difficult or
even impossible. When the number of attempts to allocate them exceeds trials * n it will be stopped
and an error message will be returned. Default is 100. Setting 'trials' to a very large value may
make this function run for hours and hours. Your choice!  

if (sum(web) != 1) { # added by CFD
message(paste("This is not a probability matrix! I will proceed after transforming the entries
according to option 'autotransform':", autotransform, "!"))
if (autotransform == "sum") {
m <- web/sum(web)
} else {# equiprobable, or anything else   
m <- (rowSums(web)/sum(web)) %*% t(colSums(web)/sum(web))
}
} else m <- web

if (rep.cell == FALSE & n > (nrow(m)*ncol(m))){
message("Argument n should be smaller than the number of cells in matrix!")
}
else{
mac <- matrix(cumsum(m),nrow(m),ncol(m)) #Cumulative probability matrix
mint <- matrix(0,nrow(m),ncol(m)) #Interaction matrix
if (keep.species){
for (i in 1:nrow(m)){
c1 <- sample(ncol(m), replace=TRUE, prob=colSums(m))
c1 <- c1[1]
mint[i, c1] <- 1
}
for (i in 1:ncol(m)){
if(sum(mint[,i]) == 0){
r1 <- sample(nrow(m), replace=TRUE, prob=rowSums(m))
r1 <- r1[1] 
mint[r1, i] <- 1
}
}
}
while.counter <- 0
while (sum(mint) < n){
rand <- runif(1, 0, 1)
ri <- min(which(mac >= rand))
if (rep.cell == TRUE) mint[ri] <- mint[ri] + 1
if (rep.cell == FALSE) mint[ri] <- 1
while.counter <- while.counter + 1
if (while.counter >= trials*n) stop("Cannot allocate the requested interactions in a reasonable
amount of time! \n Either increase 'trials' or decrease 'n'.")
}
mint
}
}



Selbstständigkeitserklärung

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstständig verfasst
und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach
aus anderenWerken entnommene Stellen habe ich unter Angabe der Quellen kenntlich gemacht.

(I hereby declare that I have composed this document unassistedly and that I only used the
sources and devices I declared. Passages taken verbatim or in meaning from other sources are
identi�ed as such and the sources are acknowledged and cited.)

Freiburg, Jan 2015

55


