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Abstract1

Ecological interactions link species in networks. Loss of species from, or introduction of2

new species into, an existing network may have substantial e�ects for interaction pa�erns.3

Predicting changes in interaction frequency while allowing for rewiring of existing inter-4

actions, and hence estimating the consequences of community compositional changes is5

thus a central challenge for network ecology.6

Interactions between species groups, such as pollinators and �owers or parasitoids and7

hosts, are moderated by matching morphological traits or sensory clues, most of which are8

unknown to us. If these traits are phylogenetically conserved, however, we can use phylo-9

genetic distances to construct latent, surrogate traits and try to match those across groups,10

in addition to observed traits. Understanding how important traits and trait-matching are,11

relative to abundances and chance, is crucial to estimate the fundamental predictability of12

network interactions.13

Here we present a statistically sound approach (“tapnet”) to ��ing abundances, traits14

and phylogeny to observed network data in order to predict interaction frequencies. We15

thereby expand existing approaches to quantitative bipartite networks, which so far failed16

to correctly represent the non-independence of network interactions. Furthermore, we use17

simulations and cross-validation on independent data to evaluate the predictive power of18

the �t. Our results show that tapnet is on a par with abundance-only, matching-centrality19

and machine learning approaches. �is approach also allows us to evaluate how well cur-20

rent concepts of trait matching work. Based on our results, we expect that interactions in21

well-sampled networks can be well predicted if traits and abundances are the main driver22

of interaction frequency.23

1

carsten.dormann@biom.uni-freiburg.de


Keywords: community, morphological trait, mutualist network, phylogeny, pollination24

2



Introduction25

Network ecology has vastly increased our knowledge of ecosystems, delivered fascinating in-26

sights into their organization (e.g. the slow-and-fast-energy channels in Rooney et al. 2006),27

and fostered speculation about co-evolution (e.g. Guimarães Jr et al., 2011). While arguably the28

litmus test of any ecological understanding is a test of its predictive power (Houlahan et al.,29

2017), only recently have predictive models of network interactions started to emerge (e.g. Ives30

and Godfray, 2006; Petchey et al., 2008; Crea et al., 2016; Rohr et al., 2016; Brousseau et al., 2018;31

Pichler et al., 2020). A�er several decades of research on ecological networks we have learned32

a lot about their pa�erns (e.g. along latitudinal or elevational gradients, across di�erent types33

of interactions) and their stability (see, e.g. Bascompte and Jordano, 2014; Moore et al., 2017),34

yet so far we have had limited success in predicting interaction intensities or even aggregate35

network structure (as pointed out by Vázquez et al. 2009; Olito and Fox 2015; Poisot et al. 2016;36

Valdovinos et al. 2018, but see Pomeranz et al. 2019; Vizentin-Bugoni et al. 2020).37

Some of the most successful a�empts at predicting network structure were made in studies38

of food webs, where body size ratios were found to be a good predictor of presence or absence39

of predator-prey interactions (e.g. Allesina, 2011; Gravel et al., 2013; Pomeranz et al., 2019), and40

allometric scaling of parameters allowed to �t a mechanistic model of optimal foraging theory41

(the contingency model: Stephens and Krebs, 1986) to large networks (Beckerman et al., 2006;42

Petchey et al., 2008). However, body size is not a suitable predictor for most other interaction43

types, for example host–parasitoid interactions or interactions involving plants (Bascompte44

and Jordano, 2014; Dormann and Blüthgen, 2017). Moreover, while network predictions should45

ideally be based on theory, existing theoretical models such as the contingency model make46

strongly simplifying assumptions (e.g. sequential encounter of resources, maximising of av-47

erage resource intake, ideal knowledge of resource availability, no within-guild interference:48

Pyke, 1984; Stephens and Krebs, 1986), but still require large numbers of parameter values as49

input, which are di�cult to provide without a shortcut such as allometric scaling. �us, we still50

lack a general approach to predict various types of ecological networks. In addition, whereas51

most existing models of ecological networks only predict binary network structure, models52
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that allow to estimate the intensity of interspeci�c interactions can glean more information53

from the data.54

While a theoretical model encompassing all types of interaction networks does not yet55

exist, there are obvious candidate factors for predicting interaction intensities, some at the level56

of the individual species (such as their abundance), some at the interplay of species, such as the57

match of interaction-relevant traits (Junker et al., 2010, 2013; Dehling et al., 2016). Since some58

of the relevant traits are di�cult to measure, but show a phylogenetic signal, phylogeny can59

be used as a proxy for such unmeasured traits (Ives and Godfray, 2006; Pearse and Alterma�,60

2013; Morales-Castilla et al., 2015; Peralta, 2016).61

�ere are several previous approaches to include traits, abundance and phylogeny into a62

statistical method to analyze and possibly predict interactions. �ey di�er in their scope (bi-63

nary vs quantitative networks), the type of network (bipartite vs. unipartite) and the statistical64

method. For example, Ives and Godfray (2006), Pearse and Alterma� (2013), Rohr et al. (2016)65

and Crea et al. (2016) all used regression models to predict binary networks based on phy-66

logeny and measured traits. Brousseau et al. (2018) improved on the model of Rohr et al. (2016)67

by adding a larger number of traits as predictors and using a more �exible Generalized Addi-68

tive Model (GAM). Vázquez et al. (2009) and Olito and Fox (2015) chose a di�erent statistical69

approach in which they constructed matrices of interaction probabilites based on traits and70

abundances and assumed that the observed interaction intensities are drawn from a multino-71

mial distribution with these probabilities. Most recently, Desjardins-Proulx et al. (2017) and72

Pichler et al. (2020) modelled interaction networks using machine-learning algorithms, which73

are highly �exible, but provide li�le information on the underlying mechanisms of the inter-74

actions.75

While the above-mentioned approaches have had some success in describing ecological76

networks, they are faced with two issues, one statistical, the other ecological. First, most meth-77

ods treat the interactions in a network as statistically independent (except Vázquez et al., 2009;78

Olito and Fox, 2015; Crea et al., 2016), although this assumption is likely to be violated. Any79

interaction with one species precludes the interaction with other species at the same time;80

thus, one more observation here inevitably means one less there. Furthermore, depending on81
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the type of interaction and method of data collection, the same individual may be observed82

multiple times, again violating the independence assumption. Finally, interactions of di�er-83

ent consumer species may be non-independent due to intraguild competition for resources,84

which can cause shi�s in species’ preferences (e.g. Loeuille and Loreau, 2005; Spiesman and85

Gra�on, 2016). Such non-independence must be accounted for in order not to yield biased and86

overcon�dent model estimates.87

An ecological issue is how to represent the role of species traits and their matching. Models88

based on linear regression assume that all traits and trait combinations have linear e�ects on89

interaction probabilities, while machine-learning algorithms do not provide any information90

on the mechanisms connecting traits to interactions. In reality, interaction intensities may91

depend on the matching of quantitative trait values in nonlinear and possibly asymmetric92

ways. For instance, large billed birds can feed on small seeds, but small billed ones not on93

large seeds (e.g. Muñoz et al., 2017). Ideally, models of ecological networks should allow to94

explicitly incorporate such trait-matching mechanisms, to correctly represent the ecological95

mechanisms and provide accurate predictions (but see Sebastián-González et al., 2016, for an96

implicit approach).97

In this paper we present a statistical approach to analyzing and predicting interaction in-98

tensity, based on observed and phylogeny-based latent traits and their matching, alongside99

abundances of each species. Unlike previous analyses, which were mostly explorative, we-100

assess our model’s performance on independent network data that were not used for ��ing.101

For more ecological realism, and in extension to previous approaches, we provide symmetric102

and asymmetric trait-matching functions. In contrast to all previous approaches for traits and103

phylogeny, we account for the non-independence of observations in the network, using the104

multinomial probability approach of Vázquez et al. (2009) and Olito and Fox (2015). Finally, we105

assess the quality of our approach at the level of the individual link, not only at the level of106

network pa�erns, as the aim is to predict a speci�c interaction.107

Our approach can be used for prediction of, say, introduction or loss of species from a108

community, which may lead to a “rewiring” of interactions, or for predicting the e�ects of109

changes in abundances. Moreover, it can be used to quantify the importance of observed trait110
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pairs for such predictions, such as the morphological compatibility of a plant’s �ower corolla111

and a pollinator’s proboscis, or the beak size of a frugivorous bird and the size of a fruit (see112

also Pichler et al., 2020).113

We �rst outline the idea and details behind our approach, then demonstrate its validity114

with simulated data, and �nally use three hummingbird-�ower networks to make predictions115

across habitats. In that case study, we also use alternative published approaches to gauge their116

performances on real-world validation data.117

Methods118

We call our approach “tapnet”, as it uses traits, abundance-activity and phylogeny to predict119

network interactions. Our background in pollination ecology makes it natural for us to think120

of bipartite interaction networks, where one group’s members (e.g. pollinators) interact with121

members of another group (e.g. plants), but not within each group. However, the approach can122

be similarly applied to functional group- or individual-based networks and probably extended123

to one-mode networks, but that is beyond the scope of our study. In the case of analysing124

individuals, species’ average traits would be replaced by individual trait values. Abundances125

could either be removed completely or replaced by some measure of individual activity.126

Before explaining our approach in detail, here is an outline (Fig. 1): We developed a model127

that outputs expected interaction probabilities based on traits, abundances and phylogenies.128

We can now compare the output with an observed network and optimize model parameters so129

as to maximize �t. In this way we estimate several (largely) ecologically interpretable param-130

eters. For prediction, we can use the ��ed model together with new abundances (including131

previously unobserved species) and yield expected interaction probabilities. While the role of132

traits is probably clear, phylogenies are used to construct so-called latent traits to be matched133

across groups. As a side e�ect, new species entering a community can be positioned in the134

phylogeny and this position then feeds through to the actual predictions, in addition to the135

(optional) observed traits.136

Traits refer to species-speci�c characteristics that have a counterpart in a trait of the other137
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Figure 1: Conceptual overview of the tapnet approach. Tapnet combines information on trait
matching (T), abundances (A) and phylogeny-derived matching latent traits (L) (top row) into
a single matrix I of predicted interaction probabilities. �e observed interaction network O is
assumed to be drawn from a multinomial distribution with probabilities given by I and total
number of interactions ntotal equaling the observed number of interactions. Traits have to be
provided in pairs across the two levels, which are then compared using a possibly asymmetric
trait-matching function. Each input yields an independent matrix of interaction probabilities,
which are then multiplied and re-scaled to yield the �nal interaction matrix I. Matrix cells are
�lled in di�erent shades of gray to indicate interaction probabilities from zero (white) to one
(black). Some values which are close to zero appear white.
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group, and the analyst must provide these traits in matching format (i.e. corolla and proboscis138

length, or phenologies during a season, quanti�ed in such a way that the same value for both139

would imply a perfect match). �e model can be employed without trait information.140

Abundance-activity (henceforth abundances) can be any measure proportional to the prob-141

ability of encountering a species in the �eld. For instance, a plant with an a�ractive scent would142

be more conspicuous to a pollinator than a non-odorant one. And an abundant bee would be143

encountered more o�en than a rare one, if they move at the same rate (hence abundance-144

activity). If the trait-pairs responsible for interaction activity are known and provided to tap-145

net, the role of actual abundances can be quanti�ed, otherwise the two will remain confounded146

(as in any other analysis).147

Phylogenies for each group are used as building blocks for unobserved (latent) traits mod-148

erating species interactions. �ey add complementary information to the observed traits (Pearse149

et al., 2013), and may be able to suggest possible additional traits that underlie the observed150

interactions.151

We present the approach starting with the statistical goal and then going into ever more152

detail. We provide R-code for simulating “tapnet” data, for ��ing observed networks, for as-153

sessing model �t and for predicting to new abundances and traits in the package tapnet.1154

Likelihood155

Our approach is to �t a (non-standard) statistical model to observed data on interaction net-156

works. While we can use several networks simultaneously to �t the model, we restrict our157

outline here to the simplest case of only one observed network. Let us call the observed inter-158

action matrix O of dimension m×n (m rows by n columns).159

We compare O with our model predictions P by means of a multinomial distribution160

(eqn 1), as entries in that interaction matrix are non-independent. (Entries in O are integers,161

typically number of observed interactions per standardized observation e�ort. For continuously-162

valued observations, a Dirichlet distribution could probably be employed: Crea et al. 2016.) To163

do so, we represent O as a vector of length mn, rather than a matrix. Formally, we predict the164

1https://github.com/biometry/tapnet
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entries in O, oi, based on the total number of observed interactions, ntotal = ∑
mn
i=1 oi, and the165

vector of predicted interaction probabilities, p̂i, which are the output of our model:166

f (o1, . . .omn;ntotal, p̂1, . . . , p̂mn) =
ntotal!
∏i oi!

mn

∏
i=1

p̂oi
i (1)

Model components167

Our model yields a matrix of predicted interactions, P=(p̂i, j)∈Rm×n, as (re-scaled) Hadamard168

(= element-wise) product of three prediction components: abundance-based expected proba-169

bilities A, trait-matching based expected probabilities T, and latent-trait-based expected prob-170

abilities L, each scaled to sum to 1:171

P = A◦ (T◦L)δ

∑(T◦L)δ
. (2)

A is the matrix of abundance-based interaction probabilities based on the cross-product of172

normalized species abundances vectors for the lower ol
A and higher oh

A trophic level (note that173

we reserve capital le�ers for matrices): A =
ol

A
∑ol

A
× oh

A
∑oh

A
. �us, A represents the probability174

of an interaction for each cell based only on the relative abundances of the di�erent species:175

we would expect more interactions among common species than among rare species. ol,h
A is176

based on independently measured abundances, not simply the marginal totals of the observed177

matrix O. �e free exponent, δ ∈ (0,1), allows the optimization to give more or less weight to178

traits relative to abundance, and thereby also serves as a quanti�cation of the importance of179

abundance within the �t. As a side-e�ect, the abundance-only predictions are a limiting case180

of tapnet, for δ = 0. �e denominator summing over (T◦L)δ is necessary to re-normalize this181

term to sum to 1, on a par with A.182

T is the matrix of expected interaction probabilities based on the degree to which observed183

traits match between species of the di�erent groups. If, say, the proboscis of a pollinator is a184

bit too short or too long compared to the depth of the corolla of a plant species, then inter-185

actions become less likely than perfectly matching lengths. We de�ne a (single parameter)186

trait-matching function for a pair (i, j) of trait values ft(t l
i , t

h
j ) by the Gaussian function:187
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ft(t l
i , t

h
j ,σ) =

1
σ
√

2π
e−

(thj−tli )
2

2σ2 . (3)

Alternatively, we can de�ne an asymmetric matching function (a log-normal with its mode188

shi�ed to 0), as too long a proboscis is no obstacle to an interaction, while one too short is:189

ft(t l
i , t

h
j ,µ) =

1
(th

j − t l
i + eµ−1)

√
2π

e−
1
2 (ln(t

h
j−t l

i+eµ−1)−µ)2
, (4)

where eµ−1 is a parameter determining the shape of the function, in a similar way to σ in eqn 3.190

It is �t during the model optimization (see further below). Other functions could of course191

be used, especially when the relationship between trait values and interaction probability is192

known. �e trait-matching functions is computed for all species, i.e. the inputs are in fact193

vectors of trait values for the lower (tl) and higher level (th). �e elements of T,(τi j), are the194

ft-values computed using eqns. 3 or 4: (τi j) = ft(t l
i , t

h
j ).195

Latent-trait-based interaction probability matrix L, �nally, is the most complex matrix of196

expected interaction probabilities. Its function is primarily to improve predictions, as abun-197

dances and observed traits are unlikely to be su�cient to capture the information present in198

the observed interaction matrix. Just like T, also L is found by matching traits of one level199

to those of the other by optimizing the σ -parameter of its Gaussian trait-matching function200

(eqn 3). In this case, however, these traits are unobserved (latent) and are constructed as part201

of the optimization process from phylogenetic eigenvectors, as explained in the next section.202

Constructing matching latent trait values203

�e reasons why a species from one group interacts with one from another may be extremely204

complex. Bees, for example, may rely on visual and olfactorial signals, as well as innate pref-205

erences and learned behavior, for selecting a �ower to visit (Chi�ka and Raine, 2006). On the206

other hand, plants may increase nectar production in response to sensing pollinator’s wing-207

beats (Veits et al., 2019). If these traits can be measured, they can be used in tapnet as observed208

traits. In many cases, however, we may have li�le chance to identify, let alone measure, the209
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traits involved. In such cases, one can “invent” trait values with the sole aim of improving the210

�t of the model.211

Computationally it is more e�cient, and ecologically more satisfactory, if there is a basis212

for computing such latent trait values (similar to geographic distances in spatial models used213

in joint species distribution models: Warton et al., 2015). In our case, we assume latent traits214

to summarize traits correlated with phylogeny. �ese latent traits typically exhibit no phy-215

logenetic signal anymore, and the phylogenies are only used as an e�cient way to generate216

orthogonal vectors. �is approach has several bene�ts. Firstly, it allows us to introduce new217

species when predicting from the ��ed tapnet model, as we can compute their phylogenetic218

position relative to the other species in the group, and hence also the value of their latent219

trait. Secondly, the resulting latent trait may, upon mapping it to the phylogeny, suggest a220

hypothesis about an actual trait behind it.221

Technically, constructing a latent trait within a group is straightforward if a phylogeny222

is available. Alternatively, a taxonomy can be used (Clarke and Warwick, 1999). From such a223

phylogeny one can compute phylogenetic eigenvectors (Guénard et al., 2013), i.e. for k species224

k−1 vectors that are orthogonal to each other and represent the information of the phylogeny225

(similar to the way a Principal Component Analysis summarizes the information in a data set):226

the �rst phylogenetic eigenvector accounts for the largest genetic di�erences in the tree, the227

second for the largest in the remaining variation, and so forth. Mathematically, a phylogenetic228

tree can be represented as a (cophenetic) distance matrix, and an eigenvalue decomposition of229

said distance matrix yields the phylogenetic eigenvectors.230

For each group, we can now de�ne a latent trait vector l as a linear combination of the231

phylogenetic eigenvectors pi, . . . ,pk−1, one for each trophic level:232

ll = a1pl
1 +a2pl

2 +a3pl
3 + . . .+am−1pl

m−1

lh = b0 +b1ph
1 +b2ph

2 +b3ph
3 + . . .+bn−1ph

n−1 (5)

For computational reasons, we will only use the �rst few (3-5) phylogenetic eigenvectors.233

When ll and lh match, the probability of an interaction is high, just like for observed traits234
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tl and th above. �e values of ai and bi have to be found by optimisation. Since the values of235

l are void of meaning, one cannot assume that the latent vectors align optimally. �erefore,236

a shi� parameter is ��ed for the higher trophic level (b0). Analogous to T, the elements of237

L,(`i j), are the ft-values computed using eqn 3 based on the latent traits: (`i j) = ft(ll
i , l

h
j ).238

Fitting the model239

�e tapnet model outlined above can now be ��ed to the observed interaction network by ad-240

justing several parameters. As input the model requires the paired observed traits (0 to many);241

the phylogeny of each group; the abundance vector for each group, and for computation of242

the likelihood, the observed interaction matrix. �e model parameters are243

1. the width of the trait matching function (σ in eqn 3) for each pair of traits;244

2. the width of the trait matching function for the latent traits; and,245

3. two vectors of parameters for the construction of the latent trait (eqn 5).246

In the optimization using the standard Nelder-Mead algorithm, we used a few tricks to247

increase the reliability of the model. To ensure identi�ability, we constrained a1 to be positive248

(i.e. de�ned it as ea1). Otherwise the exact same values with inverted signs would yield the249

same �t. Furthermore, any multiple of al,ah would yield the same prediction. �erefore we250

standardized both ll and lh before entering them into the trait-matching function (eqn 3).251

When ��ing multiple networks simultaneously or when using di�erent networks for op-252

timization and prediction, we run into the problem of having di�erent species present in each253

network. In such cases we �rst calculate the eigenvectors of the phylogenetic tree containing254

all species from all networks. In a second step, we select from these eigenvectors those that255

are most relevant for the respective network, i.e. the eigenvectors most closely correlated with256

each of the eigenvectors of the tree containing only the species of this particular network. We257

then �t parameters only for the selected relevant eigenvectors.258
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Assessing model quality259

Optimizing the model parameters immediately yields the model’s likelihood. Additionally, we260

may be interested in the latent variables, as they code the (combination of) trait(s) missing261

in our observed data. For simulated data, we can compare the reconstructed latent traits with262

those actually simulated. Predicted and observed interactions were additionally compared us-263

ing other distance measures, such as the Pearson correlation or Bray-Curtis distance, or by264

summarizing the network structure by indices (such as nestedness or specialization). For net-265

work indices, we drew 1000 realizations from the ��ed multinomial distribution of each sim-266

ulated network (see below) and computed network indices for these. �en, we computed on267

which quantile of these 1000 realization the observed network’s index lay (sometimes called268

the ‘posterior p-value’: Gelman, 2005). Ideally, this value should be 0.5, indicating no bias in269

indices in the ��ed network.270

Simulations271

To assess how performance of the tapnet model varies with the characteristics of the data272

used for ��ing, we performed two simulation experiments. �e �rst aimed to evaluate the273

model’s goodness of �t to the interaction network used for estimating parameters, while the274

second was designed to test the model’s accuracy of prediction to a new network. In both275

experiments we varied six parameters (Table 1) using Latin hypercube sampling (McKay et al.,276

1979). Ranges of numerical parameters were divided into 500 equally spaced intervals, and a277

single random value was drawn from each interval. For parameters with integer values (e.g.278

number of observed traits), drawn values were rounded to the nearest integer. In the case279

of categorical parameters, we randomly sampled 500 times with replacement from the set of280

possible values. (A pre-run with only 100 samples yielded virtually identical results, indicating281

that 500 runs are su�cient.) Since the number of observed traits varied between zero and282

four, we drew four sets of 500 values for the width parameter of the trait matching function.283

Depending on the number of observed traits of the respective parameter combination, we used284

only a subset of the four values to calculate matrix T (or none at all with zero traits).285
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Table 1: Parameters varied in the simulation experiments used to assess the model’s goodness
of �t. �e “width” parameter de�nes the sensitivity of the probability of an interaction to
mismatches between traits; small values demand very neat matching for an interaction to be
likely.

Parameter Type Range or possible values
Total number of observed interactions ntotal integer 50 - 1000
Number of observed traits integer 0 - 4
Type of trait-matching function for observed
traits

categorical normal or shi�ed log-normal

Shape of abundance distribution categorical uniform or log-normal
Width parameter of trait matching function for
observed traits

continuous 0.05 - 1

Width parameter of trait matching function for
latent traits

continuous 0.05 - 2

For each of the 500 parameter combinations, we simulated a data set consisting of relative286

abundances, phylogenetic trees and pairs of matching traits. Species abundances were either287

all set to the same value (1/m or 1/n, respectively) or drawn from a log-normal distribution288

with parameters µ = 0 and σ2 = 1 and standardized to a sum of one. Trait values were likewise289

drawn from a log-normal distribution with µ = 0 and σ2 = 1. We simulated phylogenetic trees290

using the function “pbtree” from R package “phytools” (Revell, 2012) with a speciation rate of291

1 and extinction rate of 0.292

For both experiments, we simulated phylogenies and traits of 30 and 60 lower- and higher-293

trophic level species, respectively, for each parameter combination. �ese data were used to294

construct a matrix of interaction probabilities P according to the “tapnet” model as described295

above. While the width parameters of the trait matching functions for observed and latent296

traits were systematically varied between simulations, the latent trait linear combination pa-297

rameters ai were set to a value of 1 in all simulations. From the interaction probabilities we298

constructed a network of simulated interactions with total number of interactions ntotal by299

drawing from a multinomial distribution with probabilities p̂i, j.300

For the �rst experiment, we then randomly selected 15 (lower trophic level) and 30 (higher301

trophic level) species. To these data, we �t tapnet and assess goodness of �t.302

For the second experiment, we randomly drew twice a random set of 15 × 30 species.303

Again, tapnet was �t to the �rst, but then predicted to the second set. On average, these two304
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sets share half of their species and 25% of their interactions. It thus represents a strong test of305

predicting to new data. As measures of goodness of �t, we calculated the Bray-Curtis similarity306

and Spearman rank-correlation between the entries of simulated and predicted networks.307

Independently observed vs network-derived abundances308

�e majority of published interactions networks does not provide independent estimates of309

the abundances of each species (ol
A and oh

A for lower and higher trophic level, respectively;310

see eqn 2). In current network analyses, it is thus customary to use network-derived, marginal311

totals of the network matrix (Oi· and O· j, respectively) as plugin instead (e.g. to formulate null312

model expectations: Vázquez and Aizen, 2003; Barber, 2007; Blüthgen et al., 2007; Dormann313

et al., 2009). However, these marginal totals carry the imprint of network structure. In one ex-314

treme, pollinators in the region may simply not be a�racted by the �owers in the patch under315

consideration and hence are not present in the network. Or, in the case of antagonistic net-316

works, a parasite may reduce the population size of its host to such a degree that interactions317

are hardly observed, although their intensity is very high (e.g. Barbosa et al., 2017).318

We investigated the consequences of using independent vs network-derived abundances319

on prediction quality with the simulated data. For the same simulated data, we once �t tapnet320

with the simulated independent abundances and once with the marginal totals of the simulated321

interaction network. We then predict to either the independent abundances of the second sim-322

ulated network vs its marginal totals. We expect that network-derived abundances will lead323

to a be�er model prediction, simply because they contain information on the structure of the324

test network.325

Case study326

As a demonstration, we use the case study of Tinoco et al. (2017), who compiled data on327

hummingbird-pollination networks in three di�erent habitats (forest, shrubland and a cat-328

tle farm) in the southern Ecuadorian Andes. �e data published alongside the paper2 include329

traits for both plants and hummingbirds, as well as external abundance data. �ese networks330

2http://dx.doi.org/10.5061/dryad.j860
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are unusually intensively sampled, with 1288, 3979 and 2405 interactions in each of the three331

habitats, respectively, across 32 plant and 14 hummingbird species, some occurring only in one332

habitat.333

In the case study, we additionally compare the predictive performance of tapnet with334

three di�erent alternative approaches: abundance-only, trait-matching-and-phylogeny GAM335

following the ideas of Brousseau et al. (2018), and a similar model using random forest (see336

supplementary material for R-code and detailed results).337

�e abundance-only model can be seen as a baseline: it uses only the information on the338

activity/abundance of the m lower level and n higher level species in the validation data v,339

specifying the estimated probability of interactions: P̂v =
ol

v
∑

m
i=1 ol

v,i
× oh

v
∑

n
j=1 oh

v, j
. Multiplying this340

with the number of observed interactions, Ntotal = ∑ol = ∑oh, yields the predicted interaction341

intensity. Only improving on this model demonstrates explanatory power of traits and their342

matching.343

Following the approach of Brousseau et al. (2018), we ��ed a negative-binomial GAM us-344

ing 2-D-splines on the �rst phylogenetic eigenvectors of each group, the same for the second345

eigenvectors, the observed trait values per species of each group and the squared di�erence346

between traits (representing trait matching). While the original approach used traits and phy-347

logenies to predict binary networks, here we predicted quantitative interaction matrices and348

additionally used the abundances as predictors. Spline complexity was set to k = 3 for uni-349

variate and k = 20 for 2D-splines, and an additional shrinkage was imposed by se�ing gamma350

to 1.4, both following Brousseau et al. (2018). Note that this approach, as well as the next,351

implicitly assumes entries of the interaction matrix to be (conditionally) independent (see dis-352

cussion).353

�e random forest approach was run using default se�ing (i.e. 500 trees, trying the rounded354

down square root of number of predictors at each split). It was provided with the same infor-355

mation as the previous GAM but using all phylogenetic eigenvectors; it serves as a comparison356

of the algorithm’s �exibility, as it allows for interactions among the predictors.357

While tapnet can �t several networks simultaneously (see supplementary material), we358

employed it akin to the other approaches in a cross-validation se�ing: the models were ��ed359
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Figure 2: Pearson correlation between ��ed model prediction and the simulated interaction
network. Sca�er plots show the correlation coe�cient ρ as a function of six model param-
eters whose values were varied simultaneously using Latin Hypercube sampling. Data were
simulated for 500 parameter combinations. Networks were of size 15 × 30 species. Lines rep-
resent local weighted smoothers and their 95% con�dence interval to indicate trends in the
simulations.

to one network, and then predicted to the two others in turn. Results were compared using360

the correlation between predicted and observed interactions.361

Models were �t in R using packages mgcv (Wood, 2006) and ranger (Wright and Ziegler,362

2017); see supplement for R-code of simulations and case study.363

Results364

Simulations365

In the �rst simulation experiment, the correlation between observed and �t networks was366

overall only moderate (mean value r = 0.76 across all 500 parameter combinations). A strong367

e�ect of the number of observations was detectable, yielding high correlations between ob-368
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Figure 3: Pearson correlation between model predictions and a new interaction network sim-
ulated with identical parameter values. Sca�erplots show the correlation coe�cient ρ as a
function of six model parameters whose values were varied simultaneously using Latin Hy-
percube sampling. Data were simulated for 500 parameter combinations. Lines represent local
weighted smoothers and their 95% con�dence interval to indicate trends in the simulations.

served and �t networks (r̄ > 0.83) for networks with more than 0.5 (i.e. 250 interactions in a369

network with 15 ·30 = 450 cells) observations per number of cells (Fig. 2, top le�). Correlation370

coe�cients were lower for networks with equal than for log-normal abundances of all species,371

and higher for the ‘normal’ trait-matching functions than shi�ed log-normal. With increasing372

number of observed traits, correlation coe�cients also increased, indicating the usefulness373

of observed traits for thinly sampled networks. �e two trait-matching function parameters374

(trait matching width of latent and of observed traits) did not seem to have a clear e�ect on375

the correlation between observed and predicted networks. Pa�erns of variation in Bray-Curtis376

similarity of observed and predicted networks were similar to those for Pearson’s r (results not377

shown).378

In the second simulation experiment, with prediction to a new network, pa�erns were379

very similar to those in the ��ing-evaluation, with overall lower correlations (r̄ = 0.42, and380
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Figure 4: Top row: Example of network indices for 1000 realizations of one ��ed network, com-
pared with the simulated true value (vertical line; number gives quantile of true value within
this frequency distribution). Bo�om row: �antiles of true network index values across the 500
simulations of experiment 1. Black background indicates ideal, uniform distribution. Despite
a good overall match, spikes indicate a consistent underestimation of specialisation and hence
lower connectance, lower nestedness and higher specialisation in the observed network.

for densely sampled networks r̄ = 0.49). Correlation coe�cients depended strongly on the381

number of observations, abundance distribution and type of trait-matching function employed382

(Fig. 3). All other parameters had much less e�ect, and the di�erence between the two trait-383

matching functions can thus be seen as two almost separate sets of points in all plots apart384

from the categorical abundances.385

Network indices for random realizations of the ��ed network were very similar to those of386

the observed, usually falling within the 95% con�dence interval of the null model (Fig. 4). To387

assess the coverage of the �ts and their potential bias, we computed posterior p-values for each388

index as mean quantile (see methods: Assessing model quality). Across the 500 simulations of389

the �rst experiment, mean posterior p-values were: connectance 0.42; NODF 0.44; weighted390

NODF 0.40; and H′2 0.68, all indicating a slightly too generalist estimation of network structure391

(Fig. 4, bo�om row).392
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Table 2: Pearson correlation coe�cients between ��ed and observed hummingbird-�ower net-
work (Tinoco et al., 2017) for the four approaches, and their mean across the three habitats.
Approaches are sorted by ranking in their cross-validation performance (Table 3).

Approach Forest Shrub Farm Mean
abundance-only 0.25 0.09 0.49 0.28
random forest 0.93 0.93 0.91 0.92
tapnet 0.57 0.60 0.65 0.61
GAM 0.56 0.29 0.40 0.42

Di�erence between independent and network-derived abundances393

�e �t of tapnet to the simulated data was slightly improved by using the marginal totals,394

rather than the independently “observed” abundances (r̄ = 0.76±0.22 (1 sd) for independent395

abundances compared to r̄ = 0.83± 0.15 with marginal totals). Also the prediction to the396

second simulated network, where half of the species were previously unobserved, improved397

markedly from r̄ = 0.41±0.30 for independent abundances to r̄ = 0.62±0.25 with marginal398

totals of the new network. Note that using only the marginal totals of the test network (with-399

out traits or phylogeny) to predict interactions already ��ed and predicted well, with a high400

correlation between marginals and the new network interactions (r̄ = 0.66±0.17).401

Case study402

�e tapnet model ��ed the three hummingbird-�ower networks be�er than the abundance-403

only model and the GAM, but worse than the random forest approach (Table 2). On cross-404

validation, when ��ing to one and predicting to the other two networks in turn, the tapnet405

approach was no be�er or worse than the abundance-only and the random forest approach,406

but substantially be�er than the GAM (Table 3). Interestingly, all approaches except the trait-407

neutral, abundance-only lost dramatically in performance from train to test data. �e GAM,408

for example, ��ed the data moderately, but held no predictive power for the test data. Ran-409

dom forest, although reporting an extremely good �t, decreased to the level of tapnet and410

abundance-only on the test data. �is drop in performance from ��ing to predicting suggests411

that all statistical approaches over��ed, sometimes heavily.412
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Table 3: Pearson correlation of cross-validating by predicting with a model ��ed to one habi-
tat on the other habitats (indicated by→). F, S and C are for forest, shrubland and ca�le farm,
respectively. For cross-validation log-likelihoods, which show the same result, see supplemen-
tary material.

Approach F→S F→C S→F S→C C→F C→S Mean
abundance-only 0.09 0.49 0.25 0.49 0.25 0.09 0.28
random forest 0.23 0.36 0.33 0.14 0.40 0.17 0.27
tapnet 0.21 0.46 0.12 0.53 0.15 0.11 0.26
GAM −0.01 0.33 0.26 0.13 −0.01 −0.02 0.11

Discussion413

Over the last years, two main, not mutually exclusive lines of modeling approaches to predict414

network structure have emerged (as reviewed in Valdovinos, 2019). Neutral models assume all415

species to be similar and generalist, and hence describe an expectation for network structure416

primarily based on sampling intensity and abundance distributions. Indeed, such approaches417

are o�en used as null model against which to gauge the e�ect of interaction preferences (e.g.418

Vázquez and Aizen, 2003; Blüthgen et al., 2006; Dormann et al., 2009). In contrast, interaction419

constraint models focus on why some links are not present, typically using species traits and420

their match across the groups as explanatory features (Santamarı́a and Rodrı́guez-Gironés,421

2007; Bartomeus et al., 2016). In the approach presented here, we combine both by allowing422

abundances to contribute or even entirely dominate the prediction, but use matching between423

observed traits and between latent traits as constraints.424

�e results so far are both promising and sobering. On the one hand we demonstrated that425

we can �t the observed data well with the tapnet approach, and predict reasonably in sim-426

ulated data. We can also predict with moderate accuracy networks from other habitats, and427

that the tapnet approach did that be�er than some previous a�empts to combine observed428

and latent traits (Brousseau et al., 2018). On the other hand, by far the most important pre-429

dictor for our case study was species abundance, which makes it easy for any approach and430

prevents the trait-matching strength of tapnet to play out. �us, a neutral model, using only431

abundances, was as good in prediction (but not �t), and at the same time much simpler, than432

tapnet or random forest. We think that at least two factors contribute to this �nding: (1) the433

hummingbird-�ower-network is not very specialized, despite featuring the most spectacular434
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sword-billed hummingbird (Ensifera ensifera), whose pollination-adapted bill is longer than its435

body, and (2) when abundance is very important, the log-likelihood becomes very shallow and436

di�cult to improve upon. Also, abundance may be correlated with a trait relevant for inter-437

actions, although in this case there was no correlation between bill/seed size and abundances438

(r = 0.019 and −0.15, respectively; see supplement).439

In simulations with many (> 500) observations, tapnet predictions were very reasonable,440

while in the case study all approaches fared relatively poorly. Our simulations included pro-441

cesses deemed to be most important for determining network structure (compared to the list442

in Valdovinos, 2019). �is suggests that either mutualist networks may simply be extremely443

noisy and under low evolutionary pressure, or that the current trait-matching concepts are444

not good enough for describing, across networks, the processes that drive interactions. �is445

suggests a strong context-dependence of interactions, depending probably substantially on in-446

traspeci�c trait variation (Laughlin et al., 2012), behavioral complexity (Kaiser-Bunbury et al.,447

2010; Morán-López et al., 2020), competition within guilds (Vandermeer, 2004; Saavedra et al.,448

2013), non-linear frequency-dependence (Benadi and Pauw, 2018) and environmental condi-449

tions more generally (see Valdovinos, 2019, for review). Future research across many di�erent450

networks has to show whether abundance is consistently such an important predictor for in-451

teraction frequencies.452

�e chicken-and-egg problem of abundances and network structure453

Not all studies record independent abundances, e.g. by estimating �oral cover, sweep-ne�ing454

insects or alike, and this is more common for birds than for insects. Without such independent455

abundance data, its role for determining interaction frequencies cannot be determined. One456

frequent “solution” is to use the observed interactions of each species (the marginal totals of457

the interactions matrix) as surrogate for its abundance. �is approach has been rightly criti-458

cized as confounding the e�ect of abundances on network interactions with the e�ect of net-459

work structure on abundances, i.e. the chicken-and-egg problem of network interactions (Fort460

et al., 2016; Dormann et al., 2017). �is con�ict was also detectable in our simulations, where461

the tapnet-prediction to the test data was substantially improved by using the test network’s462

22



marginal total as predictor. Clearly, these surrogate abundances carry some information, be-463

yond abundance, on network structure and hence interaction intensity.464

Flower-visitation networks are, in general, only moderately “ecologically specialized” (sensu465

Armbruster, 2017) (see, e.g., Blüthgen et al., 2007; Schleuning et al., 2012; Zanata et al., 2017),466

suggesting that neither plants nor pollinators depend crucially on a speci�c (set of) species to467

interact with. As a consequence, network structure and species abundances are strongly linked.468

In these cases, marginal totals may arguably be used in lieu of independent abundances. Our469

case study on a plant-pollinator system shows that this is not the correct approach. Indeed,470

when predicting the ��ed model once with the external and once with the marginal abun-471

dances, we �nd a dramatically be�er performance for the marginal abundances (across the472

three habitats, predictive correlation is r̄ = 0.75, compared to a meager r̄ = 0.26 with inde-473

pendent abundances: see supplementary material). Clearly, marginal abundances contain an a474

priori unknown amount of information, representing the outcome of within-guild interactions,475

variable activity of individuals, selection cues (scent, visual signals) and so forth.476

How independent are observed interactions?477

We believe that treating observed interactions as independent data is statistically incorrect478

(see introduction), thus questioning the likelihood used by Rohr et al. (2016) and Brousseau479

et al. (2018), as well as the implicit independence assumption in Pichler et al. (2020).480

�erefore, we here used a (network-wide) multinomial distribution, as had been suggested481

by Vázquez et al. (2009), accommodating the compositional nature of the data. While it rec-482

ognizes the non-independence of observations, it does not thereby automatically capture the483

processes behind it. �at means, while the inference based on this distribution is probably484

correct, our multinomial approach may not result in be�er predictions until the drivers of485

non-independence are represented in the model (e.g. intra-guild competition). Additionally486

this approach has two statistically relevant implications. First, we only get a single likelihood487

value for a network, rather than nm. As a consequence, secondly, we assess the �t of the entire488

model, without any chance of adapting only the �ts of some speci�c species or interaction,489

as is the case for the GAM and random forest approaches used here for comparison. While490
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we regard it as a more correct representation of the data, it also severely limits the type of491

statistical approaches that can be used for predicting network interactions.492

Olito and Fox (2015) focus on a comparison of network indices produced by their predictive493

approach with those of the observed network. �ey conclude that even similar networks may494

have rather di�erent index values, and di�erent networks similar indices, making such indices495

a poor target for optimization. In our simulated networks, we were able to �t networks so that496

their index values centered on the observed value. �is illustrates that tapnet did manage to497

�t network indices in line with the observations as a by-product of the multinomial likelihood498

in principle.499

Traits, observed and latent500

Following the lead of previous studies (in particular Rohr et al., 2016), tapnet uses phylogenetic501

information to construct (not necessarily phylogentically conserved) latent traits to improve502

�t to data. Clearly these are only a statistical placeholder for actual but unobserved ecologi-503

cal traits. Beyond the obvious but di�cult to measure sensory interaction cues (Junker et al.,504

2013), also traits related to optimal foraging should be considered here – from both groups505

of interacting species. As Pyke (2016) exempli�es, the �tness bene�t of pollination for plants506

depends on pollen-transfer e�ciency of pollinators, and too high nectar rewards may give an507

incentive to ine�cient visitors. Latent traits may thus re�ect a complex and �ne-tuned pair of508

matching sets of traits, without obvious interpretation.509

A corollary of the possibility of ��ing trait-pairs is also risk of identifying spurious char-510

acteristics of species (Mlambo, 2014). At present, interaction traits are almost exclusively mor-511

phological (see Junker et al., 2013, for an exception), but phenology can be incorporated simi-512

larly. In the future, both ecophysiological and genetic sampling may become sensitive enough513

to extend research into interaction traits for example related to vision in the ultraviolet (e.g.514

Rae and Vamosi, 2013), scent (e.g. Wright and Schiestl, 2009), or ultrasonic sound (e.g. Simon515

et al., 2019). Until such devices become available, latent traits are a statistical stand-in for what516

really makes species interact.517
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Conclusion518

�e approach we presented here predicts network interactions for new networks, conditional519

on trait, abundance/activity and phylogenetic data for the new network. It is �exible enough520

to include any type of function translating trait-matches into interaction probabilities. As a521

side-e�ect, it quanti�es the importance of abundance relative to traits for network interac-522

tions. Future applications will have to assess the importance of traits across di�erent types of523

networks, testing the assumption of many network studies that traits are the driving force of524

network interactions.525
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Junker, R., N. Blüthgen, T. Brehm, J. Binkenstein, J. Paulus, H. M. Schaefer, and M. Stang. 2013.598

Specialization on traits as basis for the niche-breadth of �ower visitors and as structuring599

mechanism of ecological networks. Functional Ecology 27:329–341.600
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dersson, S. Bazarian, K. Böhning-Gaese, R. Bommarco, and et al. 2012. Specialization of665

mutualistic interaction networks decreases toward tropical latitudes. Current Biology 22:1–666

7.667
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