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This study examined bark thickness variability of Silver fir (Abies alba Mill.) in southwest Germany over time
and space by comparing a dataset of bark measurements from the 1970s with more recent assessments.
Within-tree variability of bark thickness was analysed to estimate the required number of sampling locations
per tree for defined accuracy levels. A range of models from the literature that predict bark thickness were
compared for their predictive performance and Monte-Carlo simulations were used to estimate the effect of
the number of sample trees and plots on the precision of the predictions. In addition, net log volume after
bark subtraction was compared for logs of varying lengths to assess the influence of log assortments on cal-
culated sales volume. Results show that several sampling locations are needed per tree and that at least five
trees from at least 35 plots should be selected for measurements in the study region. For practical applica-
tions, diameter outside bark and breast height diameter are suggested as explanatory variables for models
that predict double bark thickness. Additionally, relative tree height and age – and therefore growth rate – sig-
nificantly improved predictions; however, environmental factors could not explain the variation between
stands. Log lengths from 5 to 21m only slightly influenced bark thickness equations that were fit on measure-
ments at log midpoints. The findings highlight the need to consider bark thickness variability at different levels
when developing bark thickness equations. In general, bark thickness was found to be smaller in more recent
assessments and this indicates the need to regularly review existing bark equations for their validity.

Introduction
The diameter inside bark is a crucial measure in forestry that is
used to calculate wood volume of logs and trees and to opti-
mize bucking for defined inside-bark diameters. However, tree
and log diameters are usually measured outside bark and bark
thickness has to be estimated. Incorrect bark thickness or bark
volume estimates could lead to inaccurate wood volume esti-
mates in forest inventories, in increment studies or in the log
trade (Marshall et al., 2006). Furthermore, the interest in accur-
ate bark thickness estimates is driven by the need to obtain not
only accurate inside-bark diameters and volumes, but also
accurate estimates of bark volume. The importance of accurate
bark thickness estimates has increased with the shift in the
commercial relevance of bark from an unwanted residue to a
valuable fuel and feedstock for high-value biomaterial (Doruska
et al., 2009), such as bark tannin based foams (e.g. Pizzi, 2016).
The estimation of available bark biomass is important to assess
the potential of such technologies for generating possible add-
itional income for the forestry sector. Additionally, bark volume
estimates are needed for biomass estimates, which are becom-
ing more important for quantifying carbon stocks (Temesgen
et al., 2015).

In this study, we use a common definition of bark that
includes all tissues outside the vascular cambium, and com-
prises the secondary phloem up to the last formed periderm
and the rhytidome, which comprises all layers of dead tissue
outside the currently active periderm (Martin and Crist, 1970).

For many coniferous species, it has been shown that bark
thickness can be described well by diameter outside bark at the
sampling location and additional variables, as it often correlates
with diameter at breast height, total tree height and height of
the sampling location within the tree (e.g. Li and Weiskittel,
2011). Several external factors that correlate with the relative
bark thickness of trees, i.e. the proportion of the outside-bark
diameter that constitutes bark, have been reported. Most of
these can be interpreted as a consequence of slower tree
growth, which leads to a larger relative bark thickness. A correl-
ation between a low site index or yield class of stands with a
larger relative bark thickness was shown for Norway spruce
(Picea abies (L.) Karst) (Hoffmann, 1958; Dimitrov, 1976;
Schmidt-Vogt, 1986) and Silver fir (Abies alba Mill.) (Božić et al.,
2007). For Norway spruce (Laasasenaho et al., 2005, Stängle
et al., 2017) and Silver fir (Božić et al., 2007), tree age was
shown to have an influence on the diameter-to-bark ratio.
Sonmez et al. (2007) also reported a positive effect of tree age
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on bark thickness for Picea orientalis (L. Link). Contrasting results
were reported for the broadleaved Nothofagus pumilio (Poepp. &
Endl.) Krasser by Cellini et al. (2012), where relative bark thick-
ness was lower on low productivity sites. For Pinus sylvesteris
(L.), the latitude of forest stands – which mainly determines dif-
ferences in temperature and length of the growing season –
could help to explain variation in bark thickness (Wilhelmsson
et al., 2002). For Pinus taeda (L.) in the United States, there were
no observed effects of silvicultural treatments, such as initial
planting density and thinning, on whole-tree bark percentage.
Only very intense treatments including fertilization and early-
age weed control affected bark volume (Antony et al., 2015).
Besides growth conditions, genetics can also determine bark
thickness. Provenance has been shown to influence the pheno-
typic development of bark thickness of Pinus contorta var. latifo-
lia Engelm. (Persson and Downie, 1992) and Pseudotsuga
menziesii (Mirb.) Franco (Kohnle et al., 2012).

To develop accurate equations for predicting regional bark
thickness, the intraspecific within-tree and between-tree vari-
ability of bark thickness have to be considered. Bark thickness
variation within trees occurs at two levels. First, variation at the
disc level around the circumference of the tree can be caused
by a non-uniform bark thickness that is correlated with elliptical
stem growth (e.g. Niklas, 1999) or a bark surface pattern with
fissures, cracks or scales. The second level of within-tree vari-
ation occurs between sampling locations along the stem axis.
To capture both sources of within-tree variability, several bark
thickness measurements are usually taken at each of several
sampling locations along the stem. For Norway spruce, variabil-
ity within and between trees and between sites indicates the
importance of multiple sampling points within each tree of a
range of selected trees covering a range of sampling sites
throughout the study region (Stängle et al., 2016b).

Roundwood volume calculation in Germany is performed
according to the Huber formula, which is based on a cylinder
volume calculation using log length and the rounded diameter
inside bark at log midpoint, which is located at exactly halfway
along the log’s length (Fonseca, 2005). In the study region, long
logs (6–21m) are mostly measured manually, whereas shorter
logs from cut-to-length operations are usually measured at the
mill site using electronic scanning devices. Measurement
instructions for manual log measurement in Germany require
the operator to take two diameter measurements at log mid-
point (approximately perpendicularly) and round them to the
lower full centimetre. The mean of these rounded values is also
rounded down and species-specific fixed integer bark deduction
values are subtracted to estimate the inside-bark diameter
(Anonymous, 2015). Geospatial patterns of bark thickness
within a study region could lead to skewed wood volume esti-
mations if only one bark thickness equation and one set of fixed
deduction values is used for the whole region. Additionally, rela-
tive bark thickness can vary along the stem and if the applied
bark thickness function does not consider the position in the
stem, volume calculations could be biased for different assort-
ments. If long logs of up to 21m length are produced, for
example, most log midpoints would be positioned in the lower
half of the stem, whereas midpoints of 5-m segments can
basically be positioned all along the stem. The integer bark
deduction values that are currently in use have been extracted
from bark thickness equations that report double bark

thickness as a function of mid-diameters of logs of up to 26m
in length (Altherr et al., 1978). However, different bark thick-
ness equations could be useful for different assortments.
Furthermore, bark thickness equations should be up-to-date as
allometric relationships can change with changes in growth
conditions. For Silver fir, growth conditions in the study area
have changed in the last century with the average growth rate
having increased since the 1990s (Kohnle et al., 2014).
Currently, bark thickness equations applied in Germany are
based on measurements from the 1970s and probably over-
estimate bark volume as has already been shown for Norway
spruce in southwest Germany (Stängle et al., 2016a).

Using Silver fir also from southwest Germany, the objectives
of this study were to:

(1) estimate sample sizes required to capture bark thickness
variation within trees and to examine the effect of number
of sample plots and trees per plot on the precision of bark
thickness equations;

(2) compare and evaluate established model forms for estimat-
ing bark thickness and test how geospatial variation could
be explained by environmental factors; and

(3) estimate how log length and different datasets (measure-
ments from the 1970s and 2010s) affect bark thickness
equation coefficients for roundwood volume calculation.

Materials and methods
Data
Bark thickness data were obtained from two sources. Dataset 1, an
extensive dataset with 3008 Silver fir trees, was collected by Altherr
et al. (1978) in 82 clusters. Several clusters were sampled in the same
stands, resulting in 50 sampled stands. Each stand was treated as one
plot in the analysis. Dataset 2 consisted of newly acquired measure-
ments on 217 trees in 27 plots. Measurements of dataset 2 were taken
in the years 2015 and 2016. Dimensional details of all trees are listed in
Table 1. Trees of both datasets were sampled throughout the 35 752
km2 state of Baden-Württemberg in temperate forests with a broad
range of site and stand conditions. Elevation of the plots from dataset 2
varied between 306 and 974m above sea level (Figure 1). Mean annual
air temperature varied between 5.8°C and 9.4°C and the annual precipi-
tation was between 868 and 1944mm. All stands were mixed-species
stands with a range of ~20–80 per cent fir trees. Trees from a large
range of merchantable diameter classes were selected from regularly
harvested trees in selection cuts.

The sampling for both datasets was performed as described by
Altherr et al. (1974; 1978): trees were felled with chainsaws, delimbed,
and measured in the forest before any further log manipulation was per-
formed. Measurement locations were at breast height (1.3m above
ground) and along the tree bole in 2m increments up to a top diameter
of ~10–15 cm. Both diameter and bark thickness were measured twice
(approximately perpendicularly) at each location using a calliper and a
Swedish bark gauge, respectively. Double bark thickness was calculated
as the sum of the two gauge measurements. Additional measurements
for the new data were tree age, and total tree height, which was mea-
sured on the felled tree. Tree height for dataset 1 and for trees with bro-
ken tips in dataset 2 was modelled with mixed B-spline regression
describing tree taper using the package TapeR (Kublin and Breidenbach,
2015) in R (R Core Team, 2015). Two predefined bucking patterns were
applied to produce virtual logs of different length from both datasets.
The first bucking rule aimed at long logs. From each tree one virtual log
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between 6 and 21m was generated. According to the second rule, sev-
eral segments of 5m length were generated from each tree. Due to
convergence problems of the taper functions, only trees with a diameter
at breast height (dbh) larger than 18 cm could be used for this analysis.
For each log, diameter and bark thickness at midpoint and at the small
end was calculated using taper equations based on inside-bark and
outside-bark diameter.

To evaluate the effect of log length on equation coefficients and
roundwood volume, the harvesting statistics of the State Forest
Enterprise of Baden-Württemberg (ForstBW) were used. These data,
hereafter referred to as dataset 3, included all manually measured logs
of length longer than 6m that were produced in the state forest of
Baden-Württemberg in the period 2011–2015.

Bark thickness variability at different hierarchical levels
Bark thickness measurements within trees and within plots can be
expected to be similar (e.g. Li and Weiskittel, 2011). The variance within
trees determines the sampling design with the number of required sam-
pling locations per tree and the number of measurements per location. If
the variance between groups (such as trees and plots in our case) is large,
additional information on group-level predictors could help explain this

variance when modelling bark thickness (Schielzeth and Nakagawa, 2013).
To quantify the degree of variation that can be accounted for by different
grouping levels, we fitted the established bark thickness prediction equa-
tion (1), which does not consider any predictor variables at the tree or plot
level, but only the diameter outside bark at the measurement location.

β β ε= + + ( )dDBT 1ob0 1

where DBT is the double bark thickness at any location along the stem
(mm), dob is the diameter outside bark at that location (mm), ε is the
residual of the model, β0, and β1, are the regression coefficients.

Thereafter, we calculated the intraclass correlation coefficient (ICC)
as the ratio of between-group variances to total residual variance apply-
ing equation (2).

σ
σ( ) = ˆ
ˆ ⁎ ( )ICC % 100 2
2
group
2
total

where ICC is the intraclass correlation coefficient, σ̂2total is the total
residual variance, and σ̂2group is the variance within groups (trees or plots
in our case).

Equation (1) was introduced by Loetsch et al. (1973) and used by
Zacco (1974) in Sweden. Li and Weiskittel (2011, equation (7)) suggested

Figure 1 Distribution of sample plots in the study region and number of sampled trees per plot for dataset 2. The distribution map of Silver fir origi-
nates from (EUFORGEN, 2009).

Table 1 Characteristics of the measured trees from dataset 1 and 2. Dataset 1 originates from Altherr et al. (1978).

Dataset 1 (1970s) Dataset 2 (2010s)

Mean SD Minimum Maximum Mean SD Minimum Maximum

Age (years) 126.8 37.5 54 225
Tree height (m) 29.5 5.3 13.0 40.0
dbh (cm) 36.3 14.9 13.0 99.9 48.3 17.3 18.5 97.2
DBT1.3 (mm) 21.3 7.7 7.0 52.0 25.3 7.8 10.0 49.0

Note: dbh = diameter at breast height; DBT1.3 = double bark thickness at breast height; SD = standard deviation.
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that it is useful when applied to spruce species. For model validation,
10-fold block cross-validation was performed. In order to do this, the
plots were randomly assigned to one of 10 subsamples with each of
them containing the same number of plots. In each of 10 runs, all mea-
surements of one subsample were used as validation data and the
measurements in the remaining nine subsamples were used as training
data. Fit statistics include mean absolute error (MAE), root mean square
error (RMSE) and mean percentage bias (PB). Results from all runs were
averaged.

Calculating the required number of sampling locations per
tree
For Norway spruce, Stängle et al. (2016b) suggested taking five and
three measurements per sampling location for an allowable error of 15
and 20 per cent, respectively. The bark surface pattern of Silver fir is simi-
lar to that of Norway spruce, being smooth in earlier years and becom-
ing scaly with flaking scales with increasing tree age (Freund and Grehn,
1951). Hence, the two species may be expected to have similar variabil-
ity of bark thickness per cross-section, and the same number of mea-
surements per sampling location seems to be adequate to reach similar
accuracy.

The bark thickness variability along each tree bole was expressed by
the variation of relative bark thickness within each tree. For each tree of
dataset 1 (1970s) the number of required sampling locations per tree
was calculated iteratively at predefined allowable errors of 15 and 20
per cent at a 95% confidence level using equation (3):

= ⋅
( ) ( )n tCV

allowable error %
3

2⎛
⎝⎜

⎞
⎠⎟

where n is the required sample size, = ( ) ¯x xCV SD / (SD, standard devi-
ation) and t refers to the 95 per cent-quantile of the two-tailed t distri-
bution with n−1 degrees of freedom.

Monte-Carlo simulations to estimate the required number
of sample trees and plots
To assess the influence of different sample sizes at the plot and regional
levels on the predictive accuracy of equation (1), a Monte-Carlo simula-
tion was performed on dataset 1 according to the method suggested in
Stängle et al. (2016b): in each of 1000 runs, data were split in 35 plots
for model fitting and 15 plots for model validation and equation (1) was
fitted to the full training dataset and to thinned datasets representing
different sample sizes at the tree and plot level. The tested sample sizes
were 35, 20, 10 and 5 plots each combined with 20, 10, 5 and 1 trees.
The plots and trees were drawn randomly with replacement from the
training data as some plots contained fewer than 20 trees. The predic-
tions from equations that were fit to the largest possible dataset, i.e. the
full training data, were assumed to best capture the variability and were
therefore considered the most optimal predictions. We used equivalence
testing to determine the sample size required to have a high probability
of fitting an equivalent equation as achieved with the full-data. To do so,
in each of 1000 runs the most optimal predictions were compared with
predictions from model fits achieved with thinned datasets using a
robust two one-sided t-test (TOST) for equivalence (Robinson, 2016)
with a region of equivalence of one millimetre (P < 0.05).

Evaluation of different bark thickness models
Six different models from the literature, which had different numbers of
predictor variables at the disc and tree level, were compared for their fit
quality and their predictive capacity on both datasets (1970s and

2010s). To account for the hierarchical data structure, mixed-effects
modelling with random deviation of the intercept on the tree and plot
level was applied, leading to equations (4–9):

β β ε= + + + + ( )d b bDBT 4ob i ij ijk0 1

β β β ε= + + + + + ( )d b bDBT dbh 5i ij ijk0 1 ob 2 ob

β β β
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where inddbh is an indicator for breast height (if the measurement was
taken at breast height = 1, else = 0), h is the height of the sampling loca-
tion above ground, H is the total tree height (m), bi is the random effect
for the ith plot, bij is the random effect for the jth tree in plot i, εijk is the
residual error for the kth measurement in the jth tree in plot i, β −0 6 are
the regression coefficients, and other variables are defined as above.

Equation (4) basically corresponds to equation (1) with the additional
random effect terms. Equation (5) was introduced by Hannrup (2004)
and is implemented in the harvester protocol Standard for Forest Data
and Communication StanForD (Skogforsk, 2012). Equation (6) was found
to be suitable for spruce by Wilhelmsson et al. (2002 equation (S5b))
and equation (7) was introduced by Cao and Pepper (1986 equation (4))
and recommended by Li and Weiskittel (2011 equation (4)). Model forms
of equations (8) and (9) were described by Gordon (1983, equations (9
and 3)). The dependent variable of equations (6), (7) and (8) in the ori-
ginal publications was the diameter inside bark but was changed for this
study so that the equations describe double bark thickness.

To account for positional autocorrelation within each tree, which was
not eliminated by introducing the tree-level random effect, a first-order
continuous autoregressive correlation structure (CAR1) was applied
(Pinheiro and Bates, 2000), which has been used widely in forestry
(Weiskittel et al., 2011). This accounts for the similarity of bark thickness
values within the tree along the stem, with closer positions being more
similar to each other. A power variance function with dob as covariate was
introduced to account for an observed larger residual spread for increasing
diameters. The Bayesian information criterion (BIC) was computed to quan-
tify an improvement of the model fit by introducing the above-described
within-group correlation and heteroscedasticity structures.

Fit statistics include MAE, RMSE and PB. Predictions of the models (6)
and (9) were corrected after logarithmic back-transformation using the
correction factor CF = exp(SEE2/2), where SEE is the standard error of
the estimate (Baskerville, 1972; Sprugel, 1983). For the evaluation of the
predictive capacity of the models (4)–(9), 10-fold block cross-validation
was performed as described above for the validation of model (1). To
obtain population-level predictions for the validation data, predictions
were calculated without considering the nesting levels introduced in
model fitting. Fit quality from the validation process was reported using
the average of the MAE, the RMSE, and PB from the 10 runs. Mixed mod-
el fitting was performed using the lme function of the R package nlme
(Pinheiro et al., 2016).

To check if the two datasets from the 1970s and the 2010s led to
significantly different parameter estimates, the model determined to
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best describe both datasets was fitted to each dataset separately.
Prediction bias was calculated in each case and residuals from both fits
were compared with equivalence testing to see whether the model form
could describe both datasets with similar accuracy. Subsequently, both
fitted equations were applied to calculate double bark thickness predic-
tions for both datasets and results were compared with equivalence
testing.

Geospatial variation of bark thickness
To interpret the variation in bark thickness between stands or regions,
we included spatial and environmental predictor variables in the model-
ling process. As exact stand location and tree age were only known for
the newly collected data, this step could only be performed for dataset
2. We selected the predictors dob, dbhob, and h/H from equations (4–9),
as they showed to significantly explain bark thickness variation. The pre-
dictor inddbh was ignored as it strongly correlates to h/H. To account for
climatic effects, we included annual precipitation (mm) and mean
annual air temperature (°C). Elevation of the sample plots (metres above
sea level) and geographic coordinates (Gauss–Krueger projection, in m)
were included to evaluate spatial effects that could be explained by cli-
matic as well as by biotic or abiotic factors such as site index and soil
materials, respectively. Additionally, we included tree age to account for
the growth rate, which can be influenced by site quality and tree-
individual factors, such as suppression by larger trees in a tree’s early
growth phase. Generalized additive mixed models (GAMMs) were chosen
for this analysis and predictor variables were introduced as thin-plate-
regression-splines using the gamm function of the R package mgcv
(Wood, 2011). Geographic coordinates were introduced as tensor prod-
uct splines to model a two-dimensional surface as suggested in Wood
(2006). Thus, the applied equation (10) is similar to equation (4) plus
relative height, age, the geographic surface and climatic variables:

( )β

ε

= + ( ) + ( ) + + ( )

+ ( ) + ( ) + ( )
+ ( ) + + + ( )

f f bh f f

f Y f f
f b b

DBT d d Age

XCoord, Coord Elev. Prec.
Temp.

10

s s s
h
H s

s s

s i ij ijk

ob ob

te

where fs stands for spline smooth functions, Elev. is the elevation, Prec.
is the annual precipitation, Temp. is the mean annual temperature,
fte(XCoord, YCoord) is a tensor product spline of geographic coordinates,
bi is the random effect for the ith plot, bij is the random effect for the jth
tree in plot i, εijk is the residual error for the kth measurement in the jth
tree in plot i, and other variables are defined as above.

Fit statistics of sub-models of equation (10) were compared after
dropping single explanatory variables to test for the significance of each
model parameter using the dredge function of the R package MuMIn
(Barton, 2016). BIC was used to rank the fits achieved by this procedure.

Bark thickness equations for roundwood volume
determination
To test the effect of different log lengths on the accuracy of bark thick-
ness equations, taper curves of trees from dataset 2 were used to create
a set of virtual logs of different length according to the above-described
bucking rules (long logs and 5-m segments). From those logs, rounded
mid-diameters and small end diameter were extracted as sets of refer-
ence diameters, on which bark thickness equations were fit. Additionally,
the diameter and bark measurements from all sampling locations (every
2m in each tree) were used as a control set of reference diameters.
Equations (1) and (11) were fit on the different sets of reference dia-
meters and the better fit for each set was selected using BIC. Both

models only have dob as the predictor variable; however equation (11)
also includes it as a quadratic term:

β β β ε= + + + ( )d dDBT 11ob ob0 1 2
2

Depending on the species, one of equations (1) and (11) is currently
used to estimate bark thickness at log midpoints of manually measured
logs in Germany. For Silver fir, the currently used equation corresponds
to equation (11) with a negative coefficient for the quadratic term lead-
ing to a flattening of the equation curve at larger diameters (Altherr
et al., 1978).

After evaluating the effect of log length, the effect of different fitting
datasets on the developed bark thickness equations was assessed.
Therefore, equations (1) and (11) were fitted on mid diameters of virtual
long logs from each dataset, and again, the better fit was chosen using
BIC. From the developed bark thickness equations, integer bark deduc-
tion values of 1–4 cm were assigned to corresponding diameter classes.
At the class midpoints 15, 25 and 35mm double bark thickness, the
class boundaries were set for deduction values of 2, 3 and 4 cm.

The economic implication of updated bark deduction values was
evaluated by comparing the already established bark deduction values,
which correspond to the calculated values from dataset 1 (Anonymous,
2015), and the newly calculated values from dataset 2. In order to do
so, net log volume after bark subtraction was calculated using outside-
bark diameter measurements of the logs from dataset 3.

Results
Sampling design and sample size
With increasing total tree height, more sampling locations
within each tree were required to describe the variance of rela-
tive bark thickness (Figure 2). The calculated average number of
sampling locations that was required for an allowable error of
15 per cent was 6.5 ± 3.3 (mean ± SD). A 20 per cent allowable
error resulted in an average of 4.2 ± 2.3 measurements.

Figure 2 Density distribution of required number of measurement loca-
tions per tree grouped by tree height classes. The number of trees per
class is shown at the top. The mean per group is indicated by bold hori-
zontal lines.
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Fit statistics of the linear model (1) revealed larger errors and
higher variances for the smaller dataset 2 (Table 2). A strong
autocorrelation of bark thickness within plots and within trees
could be shown with the between-tree (σ̂tree2 ) and within-tree (σ̂ε

2)
variation each making up about one-third of total variation
(σ̂total2 ). The fewer trees were used for model fitting of equation (1),
the less runs resulted in equation fits leading to equivalent predic-
tions as the equation fit on the full data (Figure 3). In each sample
size simulation with the same number of plots, the number of
trees hardly affected the precision of the equation coefficients as
long as five or more trees were sampled per plot. Predictions were
equivalent to predictions of the full model in more than 94 per

cent of the iterations, as long as five trees were sampled in
each of 35 plots.

Model evaluation
Testing the different model forms from the literature showed that
equation (6) could best describe both datasets in terms of MAE,
RMSE and PB (Table 3). Blocked cross-validation revealed that
equations (5) and (9) were best for predictions for datasets 1 and
2, respectively. Large errors in the validation process showed that
equation (7) was not useful for predicting double bark thickness of
Silver fir. Parameter estimates of all tested models can be found in
Table 4. The prediction bias (expressed by the residuals) of equa-
tion (5) was equivalent for the two datasets (P < 0.05, region of
equivalence: 0.5mm), showing that the model could describe both
datasets equally well. However, bark thickness was larger in data-
set 1. Predictions for the newly assessed data (dataset 2) were sig-
nificantly higher (P < 0.05, region of equivalence: 0.5mm) when
the model had been fit on dataset 1 compared with predictions
made with a model fit from dataset 2.

Geospatial effects
The GAMM fitting of equation (10) and its sub-models obtained
the best fit (BIC = 12,109.4) when only the tree-inherent vari-
ables dob, dbhob, h/H and Age were included as predictors, which
is why only these predictors were kept for further analysis.
Removing h/H as well only slightly reduced fit quality (BIC =
12,119.1). Total tree height, geographic coordinates, elevation
and the climatic factors of temperature and precipitation could
not significantly contribute to explaining the variation of bark
thickness. The estimated partial effects of the remaining predic-
tors on double bark thickness are shown with their smooth
curves in Figure 4. Double bark thickness showed an increasing
trend with increasing dob (Figure 4a) and with dbhob (Figure 4b).
The effect of h/H was small, but obvious at the lowest measure-
ment point at breast height (Figure 4c). A significant increase of
DBT with increasing age was observed (Figure 4d).

Bark thickness equations for roundwood volume
determination
Relative bark thickness was quite constant in the lower three
quarters of tree height and increased slightly further up in the
tree. Depending on the bucking pattern with varying log length,
midpoints of logs are positioned at different relative tree
heights. Nevertheless, results show that bark thickness
equations referring to mid-diameters of long logs and of 5-m
segments differ only slightly from each other (Table 5, Figure 5).
When the equation coefficients for long logs were used as
opposed to coefficients for 5-m segments, the calculated log
volume was 0.8 and 0.7 per cent higher for long logs (n = 192)
and 5-m segments (n = 807), respectively. The volumes of the
individual logs were equivalent (paired TOST, P < 0.05, region of
equivalence 0.01m3) using the two sets of coefficients for the
5-m segments, but not equivalent for the long logs. Predicted
bark thickness for small ends of 5-m segments with a diameter
of up to 40 cm was higher than for the other tested reference
diameters (Figure 5).

Table 2 Parameter estimates with their standard error in parentheses,
summary of fit statistics, and correlation structure of both datasets
using equation (1)

Parameter Dataset 1 (1970s) Dataset 2 (2010s)

Fitting β0 4.06 (0.055) 5.39 (0.222)
β1 0.05 (0.0002) 0.05 (0.0006)
MAE (mm) 2.85 3.30
RMSE (mm) 3.72 4.25
PB (%) 15.42 16.01

Validation
(10-fold CV)

MAE (mm) 2.79 3.37
RMSE (mm) 3.54 4.24
PB (%) 15.72 16.36
σ̂2total 12.88 17.93
σ σˆ ˆ/2
plot

2
total (%) 33.01 31.40

σ σˆ ˆ/2
tree

2
total (%) 27.43 33.31

σ σˆ ˆε/2 2
total (%) 39.56 35.29

Note: MAE is the mean absolute error, RMSE is the root mean square
error, PB is the percentage bias, σ̂2total is the total residual variance,
σ̂2plot is the variance between plots, σ̂2tree is the variance between trees,
and σ̂ ε2 is the variance within trees.

Figure 3 Results from the equivalence test of equation (1) for the 16 dif-
ferent sample size combinations. Those shown are proportion of runs
(out of 1000) that resulted in equivalent (P < 0.05, region of equivalence =
1mm) predictions from the full training dataset (larger values are better).
Labels on the x-axis refer to the number of plots and the number of trees
per plot, respectively.

Forestry

288
Downloaded from https://academic.oup.com/forestry/article-abstract/91/3/283/4568457
by Albert-Ludwigs-Universitaet Freiburg user
on 13 June 2018



Bark thickness at midpoints of long logs was smaller for vir-
tual logs of dataset 2 than those of dataset 1 (Table 5,
Figure 6). In Germany, the currently suggested boundaries for
the diameter classes referring to bark deduction values of 2, 3
and 4 cm have been developed using dataset 1 and are 23, 39
and 56 cm, respectively (Anonymous, 2015). The developed bark
thickness equation from dataset 2 would lead to new class
boundaries at 25, 43 and 61 cm. Assuming that harvesting
intensity and assortments are similar to those of the last 5
years, the application of the new class boundaries would mean
a 0.8 per cent annual increase in sales volume of manually
measured Silver fir logs.

Discussion
The development of accurate bark thickness equations depends
on how well within-tree and between-tree variability is captured
by an appropriate sampling design, adequate sample sizes, and
the predictor variables in the chosen model.

This study showed that the sampling design with 2-m incre-
ments between the sampling locations starting from 1.3m
above ground was adequate to assess the variability within a
stem in most cases. Thus, this design is recommended for fur-
ther studies of species with similar bark morphology. The sam-
pling design with regularly spaced sampling locations (every 2m
along the tree bole) will lead to more measurements with
increasing tree height. In contrast, a fixed number of relative
positions along the tree bole, as is suggested in other studies
(e.g. Korell, 1972; Feduccia and Mann, 1976; Kozak and Yang,
1981; Gordon, 1983; Laasasenaho et al., 2005), could reduce the
support for each data point and would require additional effort in
the field to recompute relative positions for each single tree. As
shown by Stängle et al. (2016b), the type of bark gauge used in
this study overestimated bark thickness by 0.52mm (SD =
1.59mm) when compared with CT-derived measurements on

Norway spruce logs. This could potentially lead to biased bark
thickness predictions for Silver fir as well. If a more accurate
measurement device was used, a smaller number of measure-
ments per location would be sufficient to reach the same level
of accuracy.

The observed high intraclass correlation within the residual
variance of equation (1) shows that the relationship between
diameter and bark thickness varies strongly between individual
trees and plots. This was also supported by the Monte-Carlo
simulations representing different sample sizes. The number of
sampled plots strongly determined the number of iterations
with predicted bark thickness values that were equivalent to
predictions from the full-data model (Figure 3). Model choice is
an important factor influencing the response in predictive cap-
acity of bark thickness equations on sample size. For Norway
spruce it was shown that a more complex model with a higher
fit quality required fewer sampled plots and trees per plot
(Stängle et al., 2016b). The chosen method of drawing plots and
trees with replacement from the training data was necessary to
account for differing numbers of trees per sampled plot and dif-
fering diameter distributions between plots. The variation
observed cannot, therefore, be attributed only to sample size
but also to the data-derived uncertainty. For that reason, the
suggested sample sizes might slightly overestimate those actu-
ally required to achieve the intended precision of predictions.

Results showed that a rather complex nonlinear model
(equation (9)) and quite a simple model (equation (5)) were
most suited for predicting bark thickness of Silver fir. Model (6)
described both datasets best, but it failed to predict bark thick-
ness as precisely as models (5) and (9). The same results were
reported for Norway spruce in the same region (Stängle et al.,
2017). Depending on the purpose of application, different
explanatory variables are available and different degrees of
computational complexity are preferable. If bark thickness is to
be modelled for inventory data, for example, a complex model
with many explanatory variables, such as model (9) is suggested

Table 3 Summary of fit statistics for mixed-effects models (4)–(9) and the respective prediction bias using only the fixed terms

Dataset Equation (4) Equation (5) Equation (6) Equation (7) Equation (8) Equation (9)
LME LME LME LME LME NLME

1 (1970 s) Fitting MAE (mm) 1.90 1.90 1.29 1.77 1.89 1.48
RMSE (mm) 2.64 2.62 1.77 2.48 2.61 2.01
PB (%) 9.98 9.93 6.92 9.27 9.95 7.90

Validation (10-fold CV) MAE (mm) 3.00 2.51 3.47 4.74 3.00 2.60
RMSE (mm) 3.77 3.23 4.49 5.63 3.76 3.38
PB (%) 16.88 13.90 19.78 35.88 16.79 14.64

2 (2010 s) Fitting MAE (mm) 2.12 2.29 1.50 2.08 1.98 1.83
RMSE (mm) 2.87 3.06 1.98 2.80 2.64 2.36
PB (%) 10.05 10.94 7.42 9.85 9.36 9.04

Validation (10-fold CV) MAE (mm) 3.58 3.03 3.86 7.38 3.62 3.01
RMSE (mm) 4.38 3.83 4.74 8.15 4.44 3.77
PB (%) 17.48 14.76 18.99 60.21 17.51 14.91

Best values per dataset are printed in bold.
Note: LME = linear mixed-effects model; NLME = nonlinear mixed-effects model; MAE = mean absolute error; RMSE = root mean square error; PB,
percentage bias.
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Table 4 Parameter estimates with their standard error in parentheses of equations (4–9) for both datasets

Dataset Parameter Equation (4) Equation (5) Equation (6) Equation (7) Equation (8) Equation (9)
LME LME LME LME LME NLME

1 (1970s) β0 7.198 (0.3779) 4.317 (0.2939) −0.419 (0.0470) 7.199 (0.3977) −3.980 (0.0415)
β1 0.040 (2.5E−04) 0.009 (3.6E−04) −4.69E−04 (3.1E−05) 0.055 (0.0012) 0.037 (0.0016) 0.674 (0.0127)
β2 0.038 (2.5E−04) 0.606 (0.0084) −0.010 (8.41E−04) 2.4E−05 (5.03E−06) 5.057 (0.0936)
β3 0.060 (0.0015) 0.034 (0.0012) −3.8E−08 (4.68E−09) 1.423 (0.0224)
β4 −2.55E−04 (3.4E−05) 0.016 (3.3E−04)
β5 9.2E−04 (3.3E−04)
β6 0.254 (0.0195)
δ 0.692 0.698 −0.098 0.713 0.671 −0.091
CAR 1 0.914 0.910 0.857 0.903 0.913 0.865
σ 0.053 0.050 0.183 0.044 0.059 0.192

2 (2010s) β0 8.641 (0.4824) 2.403 (0.5834) −0.390 (0.1343) 8.410 (0.6684) −5.261 (0.1841)
β1 0.035 (7.1E−04) 0.013 (0.0010) −3.7E−04 (8.4E−05) 0.032 (0.0045) 0.034 (0.0047) 1.280 (0.0832)
β2 0.034 (7.1E−04) 0.606 (0.0274) −0.003 (0.0030) 1.9E−05 (1.3E−05) 3.021 (0.1699)
β3 0.039 (0.0063) 0.013 (0.0042) −2.8E−08 (9.6E−09) 2.270 (0.1070)
β4 1.6E−04 (1.3E−04) 0.016 (9.1E−04)
β5 0.007 (0.0011)
β6 0.511 (0.1260)
δ 0.520 0.538 −0.277 0.526 0.478 −0.308
CAR 1 0.898 0.897 0.824 0.891 0.886 0.839
σ 0.148 0.132 0.548 0.140 0.178 0.751

Note: LME = linear mixed-effects model; NLME = nonlinear mixed-effects model; δ = random effect variance; CAR1 = first-order continuous autoregressive term; σ = residual standard
error.
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because taper curves outside bark are often available. If, in con-
trast, total and relative tree height are not known, as in the situ-
ation when a harvester measures a tree, the best possible
model without these covariates should be selected (equation
(5)). Effects of total tree height were generally absent and rela-
tive tree height only marginally explained variation in bark thick-
ness. Equation (7), which is mainly based on relative and total
tree height as predictors, cannot be recommended for Silver fir,
although it was proposed for different Pinus species (Cao and

Pepper, 1986). The high influence of absolute and relative tree
height on bark thickness variation for pines was also confirmed
by Murphy and Cown (2015), who reported bark volume vari-
ation within trees, between trees, and between sites for Pinus
radiata (D. Don). For Norway spruce, effects of tree height and
relative tree height on bark thickness variation were shown as
well (Stängle et al., 2017). As Norway spruce and most Pinus
species are less shade tolerant than Silver fir, a higher correl-
ation between total tree height and age can be expected for

Figure 4 Estimated smooth functions describing the partial effect of the four covariates on double bark thickness (DBT): (a) the smooth of diameter
outside bark, (b) the smooth of dbh outside bark, (c) the smooth of relative tree height, and (d) the smooth of age. Shaded areas are 95%-
confidence intervals.

Table 5 Best fit model coefficients with their standard error in parentheses and coefficient of determination of the functions (1) or (11) predicting
double bark thickness with different reference diameters for datasets 1 and 2. All sampling locations means every 2m in each tree.

Dataset Reference diameter Equation β0 β1 β2 R2

1 long logs: midpoint (11) −0.836 (0.5118) 0.756 (0.0341) −0.002 (0.0005) 0.79
2 all sampling locations (1) 5.322 (0.2330) 0.451 (0.0064) – 0.68
2 long logs: midpoint (1) 0.946 (0.8830) 0.563 (0.0241) – 0.74
2 5-m segments midpoint (1) 3.848 (0.4656) 0.498 (0.0123) – 0.67
2 5-m segments small end (1) 5.691 (0.3365) 0.463 (0.0104) – 0.71
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those species. Therefore, the effect of total tree height for those
species could, at least partially, be caused by collinearity.

The variation observed between the sample plots could not
be linked to large-scale spatial patterns, such as climatic zones
and effects of geographic coordinates were generally absent.
Moreover, the climatic factors of temperature and precipitation
as well as elevation could not explain differences between plots.
Tree age, however, was found to have a significant positive

effect on bark thickness. These findings are in accordance to
those of Laasasenaho et al. (2005), Sonmez et al. (2007) and
Stängle et al. (2017) for Norway spruce. This leads to the conclu-
sion that higher growth rates result in smaller relative bark
thickness for those species. Other studies also show that
increased site quality, which can usually be linked to faster
growth of individual trees, reduced bark thickness of Silver fir
(Božić et al., 2007). It seems that no single environmental pre-
dictor can explain differences in bark thickness. Rather, the com-
bination of many factors influencing the productivity of a stand
and the growth of individual trees is required. For future studies
of bark thickness, the assessment of tree age or site index is,
therefore, strongly recommended. The observation that faster
growing trees have thinner bark might explain the observed
thinner bark in the more recent measurements of dataset 2.
Since growth of Silver fir in southwestern Germany has slightly
accelerated in the twentieth century (Kohnle et al., 2014), it can
be expected that the trees of the new dataset have grown fas-
ter than those trees measured 40 years earlier.

The small difference in relative bark thickness along the stem
was apparent when bark thickness equations were fitted on
mid-diameters of long logs and of 5-m segments. As there were
hardly any differences in volume calculation, the same
equation coefficients could be used for different log assort-
ments. However, the small ends of 5-m segments showed larger
relative bark thickness as they are positioned further up in the
tree. This difference, especially for small diameters, suggests
that different equation coefficients should be used for bucking
optimization that is based on minimum small end diameters.
Alternatively, a model, which includes information on the rela-
tive height of the sampling location, could be chosen.

Thinner bark in the more recent measurements resulted in
different diameter classes for integer bark deduction for the two
datasets. The values that are currently in use in Germany
(Anonymous, 2015) are based on the older measurements.
Therefore, they tend to overestimate bark thickness and lead to
biased inside-bark volume estimations.

Conclusion
To parameterize bark thickness equations, within-tree and
between-tree variation in Silver fir bark thickness requires sev-
eral sampling locations per tree and a minimum of five sampled
trees in at least 35 plots in the study region. Bark thickness of
Silver fir can be described well using tree diameter at the sam-
pling location and the breast height diameter as predictor vari-
ables. Faster growing trees were shown to have relatively
thinner bark. From the demonstrated influence of tree age –
and therefore growth rate – on bark thickness, it can be inferred
that changing growth conditions can alter bark allometry, which
is why bark thickness equations should be regularly reviewed for
their validity.

For measuring roundwood, the same bark deduction values
can be suggested for long logs (6–21m) and 5-m segments. For
bucking optimization based on minimum small end diameters,
different equation coefficients that reflect higher relative bark
thickness at larger relative tree height are recommended.
The findings show the need to update the current bark deduc-
tion values for manual log measurement in the state of

Figure 5 Regression lines describing double bark thickness against the
rounded diameter using different reference diameters, which were
gained from different bucking variants of virtual logs produced from
dataset 2. For comparison, also all sampled locations (every 2m along
the tree bole) are used as reference diameters.

Figure 6 Double bark thickness plotted against the rounded mid-
diameter with 95% confidence intervals of the regression lines. Vertical
lines indicate the class boundaries of integer bark deduction values
(horizontal lines: class midpoints 10–20, 30–40 and 40–50mm dbt).
Shifts are resulting from more shallow-barked Silver firs in the more
recent data (1970s vs 2010s).
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Baden-Württemberg in order to estimate log volume more
accurately. As the same values are currently used in large parts
of Central Europe, further validation measurements in other fed-
eral states in Germany and in neighbouring countries are
suggested.
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