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Abstract. Nestedness and modularity have been recurrently observed in species interaction
networks. Some studies argue that those topologies result from selection against unstable net-
works, and others propose that they likely emerge from processes driving the interactions
between pairs of species. Here we present a model that simulates the evolution of consumer
species using resource species following simple rules derived from the integrative hypothesis of
specialization (IHS). Without any selection on stability, our model reproduced all commonly
observed network topologies. Our simulations demonstrate that resource heterogeneity drives
network topology. On the one hand, systems containing only homogeneous resources form
generalized nested networks, in which generalist consumers have higher performance on each
resource than specialists. On the other hand, heterogeneous systems tend to have a compound
topology: modular with internally nested modules, in which generalists that divide their inter-
actions between modules have low performance. Our results demonstrate that all real-world
topologies likely emerge through processes driving interactions between pairs of species. Addi-
tionally, our simulations suggest that networks containing similar species differ from heteroge-
neous networks and that modules may not present the topology of entire networks.

Key words: assembly rules; compound topology; consumer-resource networks; interaction networks;
modularity; nestedness; network topology; specialization; species interactions; trade-offs.

INTRODUCTION

Network science, focusing on entire systems rather
than species, can be an outstanding tool for the study of
species interactions (Delmas et al. 2018). This approach
led to important discoveries, including the existence of
widespread topologies, among which nestedness and
modularity stand out (Fortuna et al. 2010). Some stud-
ies claim that the prevalence of such topologies results
from a selection against unstable networks, and, thus,
patterns that increase network stability are more often
observed (Thebault and Fontaine 2010, Borrelli 2015).
Other authors, however, argue that network patterns
likely emerge from processes that drive interactions
between pairs of species, and, thus, selection on network
stability is not necessary to explain them (Maynard et al.
2018, Valverde et al. 2018). However, knowledge about
node linkage rules is still incipient, and we know little
about whether these rules can scale up and shape entire

networks (Ings et al. 2009), a critical issue to advance
the debate.
Nestedness has been observed in a variety of networks

(Bascompte et al. 2003). In a perfectly nested network,
the links made by species with fewer interaction partners
are a subset of the links made by species with more inter-
action partners (Bascompte and Jordano 2007). Other
studies reported modularity in similar networks (Olesen
et al. 2007, Guimer�a et al. 2010, Krasnov et al. 2012). A
modular network is characterized by each species inter-
acting preferentially within a cohesive subgroup of spe-
cies. Modules are often composed of phylogenetically
related species (Krasnov et al. 2012) or species with simi-
lar traits (Mello et al. 2011).
Despite nestedness and modularity being logically dif-

ferent topologies (Ulrich et al. 2017) and negatively cor-
related with one another in real-world networks
(Thebault and Fontaine 2010, Pires and Guimaraes
2012, Trøjelsgaard and Olesen 2013), several networks
show combinations of them (Olesen et al. 2007, Flores
et al. 2013). A potential explanation is that networks
may present a compound topology: modular, but with
internally nested modules (Lewinsohn et al. 2006). Com-
pound topologies have been detected in empirical
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(Flores et al. 2013, Felix et al. 2017, Genrich et al. 2017,
Mello et al. 2018) and simulated (Beckett and Williams
2013, Leung and Weitz 2016) interaction networks.
Traditionally, interaction network patterns and their

underlying causes have been studied through phe-
nomenological approaches (reviewed by Ings et al.
2009). Recently, though, this focus shifted, boosting the
development of models that mimic ecological and evolu-
tionary processes (e.g., Zhang et al. 2011, Guimar~aes
et al. 2017, Maynard et al. 2018, Valverde et al. 2018).
Despite several patterns being recovered by those mod-
els, the question of why networks present different
topologies was seldom addressed (but see Leung and
Weitz 2016). Here, we use recent theoretical develop-
ments on consumer-resource interactions to build a
model focused on topology emergence.
The abstraction of consumer species exploiting

resource species can be applied to different kinds of spe-
cies interactions, such as parasite–host, pollinator–plant,
and predator–prey interactions (Holland and DeAngelis
2010). An intuitive expectation is that generalist con-
sumers should be outperformed by specialist consumers
in the consumption of each resource (Futuyma and
Moreno 1988). In other words, the higher the diversity
of resources consumed (i.e., generalism), the lower
should be the fitness obtained by the consumer on each
resource (i.e., performance). The underlying assumption
of this expectation is the existence of adaptive trade-offs:
Different traits are necessary for a consumer to consume
different resources optimally, and, thus, increased per-
formance on one resource comes at the cost of decreased
performance on the other resources (Joshi and Thomp-
son 1995). The importance of adaptive trade-offs in con-
sumer–resource interactions, however, remains unclear,
as studies of different systems found different results
(Poulin 1998, Krasnov et al. 2004, Muchhala 2007,
Garc�ıa-Robledo and Horvitz 2012).
The integrative hypothesis of specialization (IHS), ini-

tially called the integrative hypothesis of parasite special-
ization (Pinheiro et al. 2016), predicts that the intensity
of trade-offs on a consumer-resource network, mostly
depends on the heterogeneity of resources. When
resources are similar to one another, they require similar
traits for efficient consumption from a consumer. How-
ever, if resources are too dissimilar, consumers likely face
adaptive trade-offs. Diverse communities can also com-
prise clusters of similar resource species, each cluster
being highly different from the other (Pinheiro et al.
2016). In this case, the IHS predicts that strong trade-
offs may exist on the performance of consumers on
resources from different clusters, but not within clusters.
Beyond the relationship between performance and

generalism of consumers, the IHS predictions may be
extended to network topology (Felix et al. 2017, Mello
et al. 2018). In networks that contain narrow phyloge-
netic or functional subsets of species, nestedness should
prevail. In diverse networks with clustered resources, on
the other hand, modularity may emerge because of the

trade-offs in the performance of consumers on dissimilar
clusters. However, within each cluster, as trade-offs are
absent, nestedness may still emerge and produce a com-
pound topology. These explanations do not assume
selection on network stability, but assume that resource
dissimilarities drive the formation of links and shape
network topology.
Here, we propose a new model for interaction net-

works based on the IHS. Our new model simulates the
evolution of consumer species using resource species,
under three assumptions: (1) each resource species has a
set of traits that affect its consumption by each con-
sumer species, and thus resource species can be more or
less similar to one another from the consumers’ perspec-
tive. (2) Any characteristic that enhances a consumer’s
ability to use a given resource tends to improve the con-
sumption of similar resources, but diminish the con-
sumption of dissimilar resources. (3) The capacity of a
consumer to use each resource on a given moment is
contingent on its cumulative previous adaptations and
maladaptations.
Following these simple assumptions, and adjusting a

set of five parameters, the IHS model was able to (1)
reproduce the diverse relationships between performance
and generalism of consumers observed in natural sys-
tems, (2) reproduce the main topologies observed in
interaction networks, (3) explain the general conditions
that affect the emergence of those patterns, and (4) gen-
erate predictions that are consistent with ecological and
evolutionary theories and coherent with real-world
observations.

THE IHS MODEL

Core structure

Our model produces species-based networks. For
increased text fluency, hereafter, we call consumer spe-
cies “consumers” and resource species “resources.” The
core of our model consists of two evolving matrices: the
match matrix and the performance matrix. In addition,
there are two static inputs: a matrix with pairwise dis-
similarities between resources, and a vector of resource
availabilities (Fig. 1).
The match between a consumer and a resource sum-

marizes how all characteristics of the consumer (e.g.,
morphology, physiology, and behavior) affect its ability
to consume the resource. In our approach, match values
are not bounded and may be even negative. When a con-
sumer has a negative match with a resource, it is unable
to consume it. The more negative the value, the greater
the mismatch with the resource, and more adaptations
would be necessary for consumption.
The dissimilarity between two resources is a measure

of how different they are from one another from the con-
sumer’s perspective. Similar resources require from the
consumer the same adaptations for efficient consump-
tion (i.e., there are no trade-offs). For instance, two plant
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species whose fruits have similar shape, size, and consis-
tency require the same type of beak from frugivorous
birds. Thus, a bird with the appropriate beak may

efficiently consume fruits from both plants. Resources
are distant from one another when they require opposite
adaptations of the consumers, and therefore, improving
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FIG. 1. The IHS model. Assumptions: Our model is based on three assumptions: (i) each resource species (squares) has a set of
traits that affect its consumption by each consumer species (circles). Consumption efficiency is represented by the match between the
yellow shapes of consumers and resources. (ii) A mutation that enhances consumer’s ability to use a given resource tends to improve
the consumption of similar resources, but diminish its consumption of dissimilar resources. The figure illustrates the effect a hypothet-
ical mutation on the capacity of a consumer to use each resource: “+” means increased consumption and “�” means decreased con-
sumption. (iii) The capacity of a consumer to use each resource is a result of its previous adaptations and maladaptations. In our
model consumers evolve through gradual mutations, which may modify their interactions with resources. However, our model does
not simulate resource evolution (resource dissimilarity structure is kept static). Mechanism: An iteration starts with the assignment of
a random consumer that will evolve (A). This consumer suffers alternative mutations, each generating a mutant with its own match
with each resource. Each mutation is focused on a given resource (focal resource) but affects the consumer’s matches with all
resources. The consequence of each mutation for the consumer’s match with a given resource depends on the dissimilarity between
this resource and the focal resource, which is given by the resource dissimilarity matrix (B). Then the performance of each mutant is
calculated taking into account resource availabilities (C). The mutant with the highest total performance is selected and replaces the
original consumer in the match matrix to be used in the next iteration of the model (unless all mutations result in decreased total per-
formance, in which case the original consumer is maintained) (D). For a detailed example of one iteration of the IHS model, see
Appendix S1. Elements in blue are static inputs; they do not change during the simulation. Elements in red are evolving matrices. Sr =
resource richness; Sc = consumer richness. Parameters: We adjusted five parameters in our simulations: (1) the resource species rich-
ness, (2) the consumer species richness, (3) the method to generate the initial match matrix (initial matrix), (4) the maximum dissimi-
larity between resources, and (5) the number of clusters in the structure of dissimilarities between resources.
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the consumption of one comes at the cost of lower effi-
ciency in consuming another (i.e., there are trade-offs).
For instance, two plant species whose fruits are more
easily consumed by, respectively, small-beaked and
large-beaked birds. In this case, a bird may be very effi-
cient in consuming fruits from one plant species, but not
both. The availability of each resource is the limit for the
overall performance of its consumers.
The performance matrix represents the strength of

interactions taking place in a consumer-resource system.
Consumers that have negative match with a given
resource, have zero performance on it. For consumers
that have positive match with a given resource, the per-
formances are the resource’s availability divided between
these consumers proportionally to their matches.

Mutation phase

At the beginning of each iteration, a consumer is ran-
domly assigned to evolve. This consumer is submitted to
alternative mutations, one focused on each resource (fo-
cal resource), therefore generating Sr (resource richness)
mutants of the consumer.
Each mutation changes the match of the assigned con-

sumer with the focal resource by summing a value ran-
domly drawn from a normal distribution with mean 1
(standard deviation: 0.3). The mutation effect on the
other resources is also drawn from normal distributions
whose means are defined by their dissimilarity to the
focal resource. The higher this dissimilarity, the lower
the mean of the normal distribution (mean = 1 – dissim-
ilarity). When the dissimilarity of a resource from the
focal resource is more than 1, this mean is negative, and
the mutation tends to decrease the match of the mutat-
ing consumer with the resource.

Selection phase

In the selection phase, the total performance of each
mutant consumer is compared with the total perfor-
mance of the original consumer (before mutations). If at
least one mutant increased its total performance, the
mutant with the largest total performance is selected,
replacing the original consumer (i.e., evolutionary
changes occurred). However, if all mutations result in
decreased total performance, the original consumer is
retained, and the simulation goes to the next iteration
without evolutionary changes.
Our model has a strong optimization focus. First,

because resource traits are summarized as dissimilarities,
consumer mutations must be focused on the resources.
That way, the model easily allows, beyond modification
on the identity of resources consumed, increases and
decreases in consumer generalism. The drawback of this
approach is that mutations are not fully random: they
always increase the match with at least one resource.
This is, however, unlikely to bias the model, as fully neg-
ative mutations should not be selected anyway. Second,

in every iteration, the evolving consumer has available a
wide range of mutations, which decreases the chance of
it getting stuck in local minima and accelerates network
evolution.

End of the simulation

The simulation ends after a pre-defined number of
iterations, and the final performance matrix is used as
the simulated consumer-resource network (hereafter
referred to as “simulated network”). It contains the
information about the consumer and resource species in
the network (nodes), the consumer–resource interactions
(links), and the performance of consumers on each
resource (weights). The simulated network is bipartite
(two-mode). For a complete example of an iteration of
the IHS model, see Appendix S1.

SIMULATIONS

Inputs and parameters of the simulations

List of parameters.—In our simulations, we adjusted five
parameters: consumer richness, resource richness,
method used to generate the initial match matrix (initial
matrix), maximum dissimilarity between two resources
(maximum dissimilarity), and number of resource clus-
ters (number of clusters).

Initial match matrix.—To start each simulation, we need
to provide an initial match matrix. We built matrices
with different consumer richness and resource richness.
To fill the matrix we used three different methods: all0:
all consumers score 0 in the match with all resources;
rnorm: the match between each consumer and each
resource is randomly drawn from a normal distribution
with mean = 1 and standard deviation = 1; and all1: all
consumers score 1 in the match with all resources.

Resource availability vector.—The availability of each
resource was defined by randomly drawing a value from
a normal distribution with mean = 200 and standard
deviation = 50.

Matrix of resource dissimilarities.—The IHS predicts
that network topology emerges as a function of the dis-
similarity between resources and the degree of clustering
of those dissimilarities. To test this prediction, we gener-
ated dissimilarity matrices with a range of values for the
maximum dissimilarity between two resources and the
number of clusters it contains. Those parameters define
the heterogeneity of resources.
To produce the dissimilarities, we randomly assigned

values for each resource in simulated dimensions and
calculated the pairwise Euclidian distance, then we
rescaled all distances based on the defined maximum. In
simulations with clusters, each resource was first
assigned to a cluster. Then, when defining values in the
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dimensions, a different range of possible values was used
for each cluster, forcing dissimilarities within clusters to
be lower than between clusters.

Running simulations

The IHS model was coded in R version 3.4.0 (R Core
Team 2017). Commented codes and details of the model
are available in GitHub (https://doi.org/10.5281/zenodo.
1486121).

Preliminary simulations.—First, we performed 40 pre-
liminary simulations with varied parameter values, to
visualize the evolution of network topology during the
procedure. In these tests we analyzed the network in
intermediary steps of the simulations, to check visually:
(1) if its evolution follows a unique trend in all simula-
tions or if it depends upon the parameter values, (2)
whether it tends to stabilization, and (3) if so, how many
iterations are necessary to achieve it. Details and com-
plete results of these simulations are presented in
Appendix S2: Section S1.

Simulated networks.—The next step was to generate a
pool of simulated networks. The parameter values used
were consumer richness: 5, 10, 50, 100, and 200; resource
richness: 50, 100, and 200; initial matrix: all0, rnorm,
and all1; maximum dissimilarity: 1, 1.5, 2, 2.5, 3, 3.5,
and 4; and number of clusters: 1, 2, and 4. We ran one
simulation for each combination of those values, totaliz-
ing 945 setups. The number of iterations for each simula-
tion was defined as consumer richness times 50 (see
Appendix S2: Section S1 for justification).
As in each iteration of the model it is possible that no

evolutionary changes occur; it is also possible that the
entire simulation goes on without or with few modifica-
tions from the initial matrix (Appendix S2: Section S2).
In these cases, the simulated networks did not reflect the
mechanism of the model, but rather mirrored the initial
matrices. Therefore, we removed from our pool the simu-
lations in which evolutionary changes occurred in <80%
of iterations. After this filtering, 672 simulated networks
were retained for analysis.

ANALYSIS OF SIMULATED NETWORKS

Here, we used several indices and performed several
analyses to describe the topology and specialization of
simulated networks. Then we fitted generalized linear
and additive models to understand how these features
were driven by model parameters. A complete report of
all the analysis performed in this study is presented in
Appendix S2.

Network specialization

First, for each simulated network, we calculated bin-
ary and weighted network specialization metrics:

connectance and H2’, respectively (Bl€uthgen et al.
2008). Connectance is the proportion of potential links
that are actually observed in the network, and H2’
measures the degree of mutual specialization between
nodes in the network, accounting for the quantitative
information.

Network topology

Modularity and nestedness.—We measured modularity
and determined module composition of each simulated
network using the DIRTLPAwb+ algorithm for weighted
bipartite networks (Beckett 2016), available at the bipar-
tite package for R (Dormann et al. 2008).
To compute nestedness we used a new metric, which

we named WNODA (weighted nestedness based on
overlap and decreasing abundance). WNODA is a modi-
fication of WNODF index (weighted nestedness based
on overlap and decreasing fill; Almeida-Neto and Ulrich
2011). Contrary to WNODF, WNODA does not
demand binary decreasing fill to account for weighted
nestedness, but rather decreasing marginal totals. It is,
thus, less affected by weak links, and can be used to
compare completely filled matrices (in which case
WNODF is always 0). Detailed information about
WNODA and comparisons between metrics are pre-
sented in Appendix S3.
Considering the possibility of a compound topology

in our simulated networks, we used the approach pro-
posed by Flores et al. (2013) and adapted by Felix
et al. (2017), in which we separately computed the nest-
edness between species belonging to the same module
and the nestedness between species belonging to differ-
ent modules. In a network with a compound topology
we expect the WNODA between species of the same
module (WNODASM) to be much higher than the
WNODA between species of different modules (WNO-
DADM). An R function (nest.smdm) to compute these
components of nestedness is now available at the bipar-
tite package for R.

Null model analysis.—We used null model analysis to
define which topology—modular, nested, or compound
—described each simulated network best. First, we
tested for nested and modular topologies with the use of
free null models—null models that do not conserve the
modular structure of the matrix (Felix et al. 2017). We
applied a modified version of the algorithm proposed by
V�azquez et al. (2007), in which randomized matrices
rigidly conserve the original connectance and the total
sum of weights, and probabilistically conserve the mar-
ginal sums. The original algorithm was modified to deal
with continuous link weights instead of counts better
(details in Appendix S2: Section S9).
A network has a compound topology when it is signif-

icantly modular and presents a significant WNODASM

(i.e., modular with internally nested modules). To test
for the significance of WNODASM in each modular
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network we used a restricted null model: a null model
that conserves the modular structure of the matrix in the
randomization. As, by definition, nodes in the same
modules overlap more than nodes in different modules,
not conserving the modular structure on the randomized
matrix would result in an inflated type I error ratio for
WNODASM (Felix et al. 2017).
To avoid excessively low consumer richness in each

module, we excluded the networks with 10 or fewer con-
sumer species and kept 415 simulated networks for these
and subsequent analysis. Each null model was composed
by 500 randomized matrices, and metric values were
compared through Z tests. Null model analysis was per-
formed in the Sagarana High-Performance Computing
cluster from the High-Performance Processing Center,
Institute of Biological Sciences, Federal University of
Minas Gerais, Brazil.

Relationship between performance and generalism of
consumers

Performance vs. generalism.—For each consumer in the
simulated networks, we calculated the mean perfor-
mance: its average performance on all resources it con-
sumes. We also calculated two generalism indices: (1)
basic resource generalism, the richness of resources con-
sumed; and (2) structural resource generalism, the diver-
sity of resources consumed measured with the Shannon
index (Poisot et al. 2012). Then, we calculated Spearman
correlations between the mean performance and the gen-
eralism indices for each simulated network.

Performance vs. between-module generalism.—To mea-
sure the between-module generalism of consumers in
each modular simulated network, we calculated its par-
ticipation coefficient (P; Guimer�a and Nunes Amaral
2005). The P measures how much the consumer’s links
are divided between different modules. We also used a
weighted version of P (Appendix S2: Section S11). Then,
for each network, we calculated Spearman correlations
between the mean performance and the between-module
generalism of consumers (binary and weighted).

Statistical analysis

To test the effect of model parameter in each of the
descriptors of simulated networks, we fitted generalized
and additive linear models. After building each complete
model, we performed analysis of variance to reduce it to
a minimum model and used the deviance explained by
each variable as a measure of effect size (Dobson and
Barnett 2008). See Appendix S2 for the setup, reduction,
and results of each model.

RESULTS

The evolution of networks in the preliminary simula-
tions followed no unique trend. For instance,

connectance may increase, decrease, or remain constant
in the course of the iterations, depending on model
parameter values. Network topology and specialization
tend to stabilize, and the number of iterations used to
generate our pool of simulated networks was enough, in
most of the preliminary simulations, to reach a very
stable state (Appendix S2: Section S1).
The IHS model was able to generate a diverse set of

simulated networks for every metric calculated in this
study: from highly generalized to highly specialized (con-
nectance: 0.12–1; H2’: <0.01–0.79), and from highly
modular to highly nested (modularity: <0.01–0.80;
WNODA: 0.07–0.95). Also, correlation between perfor-
mance and generalism varied from positive to negative
(basic generalism: �1 to 0.87; structural generalism: �1
to 1). Of the 415 networks tested for topologies, 268
(65%) were modular, 198 (48%) were nested, and 51
(12%) were both modular and nested. Of the 268 modu-
lar networks, 142 (53%) presented a compound topol-
ogy: modules that are internally nested.
Out of the five parameters adjusted, maximum dissim-

ilarity and number of clusters, which are related to
resource heterogeneity, disproportionately drove simu-
lated network specialization and topology (Fig. 2). The
initial matrix had weak effects in most of the analysis
showing that network evolution has overcome initial
patterns. Consumer richness had a moderate effect in
the detection of significative nestedness, likely resulting
from an increased statistical power in the analysis
(Appendix S2: Section S9). But, overall, consumer and
resource richness did not strongly influence the simula-
tion outputs. For the effect of each parameter in each
model see Appendix S2.
Consequently, two main different patterns have

emerged in our simulations. On the one hand, simula-
tions with homogeneous resource mostly resulted in
highly generalized, highly connected, nested, and non-
modular networks (Fig. 3). In these simulations, there is
a positive correlation between performance and general-
ism of consumers.
On the other hand, simulations with heterogeneous

resources mostly resulted in highly specialized, sparsely
connected, nonnested, and modular networks with inter-
nally nested modules (compound topology; Fig. 4). In
most of the modular networks, the performance of con-
sumers has a negative relationship with between-module
generalism (P): 75% of the networks for the binary met-
ric and 84% for the weighted metric.

DISCUSSION

Topology emergence

The IHS model produced a highly diverse set of simu-
lated consumer-resource networks. In these simulations,
specialization varied widely, and we detected the three
main topologies observed in real-world interaction net-
works: nested, modular, and compound. We also found
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positive and negative relationships between performance
and generalism of consumers. Those patterns did not
emerge through selection on network stability, but rather

from rules on the evolution of consumers that use differ-
ent sets of resources. As far as we know, our model is the
first to implement a single mechanism able to generate
all those patterns under different circumstances.
The IHS predicts that modularity in interaction net-

works mirrors discontinuities in dissimilarities between
species (Pinheiro et al. 2016). Clusters are, thus, imposed
on the model and drive link formation, which produces
modules in the network. Our model does not address the
origin of clustering on biological communities (but see
Allen 2006, Scheffer and van Nes 2006). However, it is
remarkable that even in simulations without clusters,
modular networks emerged (see Appendix S4 for an
example). This is an intriguing result, that strengthens
the evidence of topology emerging from upscaling of
node linkage rules.
In our model, resource heterogeneity defines the inten-

sity of trade-offs in the performances of each consumer
on different resources. When trade-offs are strong,
highly generalistic consumers are very inefficient on each
resource or cannot even exist and the network is highly
specialized, modular, and nonnested. However, when
trade-offs are weak, a consumer can consume a wide
range of resources, and the network is generalized and
nested.

Limitations of the model

The main limitation of the IHS model is that it only
simulates the evolution of consumer species. In nature,
consumption is likely to be a selective force that also
drives resource species evolution (Thompson 1994,
Guimar~aes et al. 2017). We must admit that this simpli-
fication strongly reduces the realism of our model, espe-
cially when consumption has a strong effect on resource
species fitness. We decided to follow this approach, how-
ever, because the inclusion of resource evolution would
result in a much more complex and intricate model.
A related limitation is that our model does not include

the effect of consumer abundances on performances. In
obligate interactions (e.g., endoparasitism), the abun-
dance of the consumer species is itself a measure of
interaction weight, as a consumer only survives by inter-
acting with resources. However, when consumer abun-
dance is less dependent on the interaction, it may be
important to consider the separate effect of consumer
abundances in link formation.
In our model, we explicitly favored generalism and

simplicity over realism: we aimed at producing a wide
range of patterns through a simple mechanism. And,
despite somewhat simplistic assumptions, it was indeed
able to recover the most common topological patterns
observed in interaction networks.

Compound topology

On the one hand, several simulated networks presented
both significant nestedness and modularity. On the other

Resource heterogeneity

H2'

Modularity

Nestedness

Ratio of nestedness SM / DM

Performance vs. generalism
Positive Negative

Connectance

FIG. 2. Effects of resource heterogeneity in network special-
ization and topology. Parameters’ maximum dissimilarity and
number of clusters that define resource heterogeneity have
mostly driven simulation outputs. Specialization increases
(lower connectance and higher H2’), nestedness decreases, and
modularity increases with increased resource heterogeneity. The
ratio between nestedness of species in the same module (nested-
ness SM) and nestedness of species in different modules (nested-
ness DM) is higher in simulated networks with more
heterogeneous resources, boosting the emergence of compound
topologies. Finally, the relationship between performance and
generalism of consumers shifts from highly positive to highly
negative, depending on resource heterogeneity. Blue and red
arrows: metric values, respectively, increase and decrease with
increased maximum dissimilarity and number of clusters. Com-
plete results in Appendix S2.

Network with homogeneous resources:

Modularity: 0.01 Nestedness: 0.93
H2': 0.001 Connectance: 1

FIG. 3. Predictions of our model for networks with homoge-
neous resources. Here we illustrate the main pattern that
emerged in simulations with highly homogeneous resources,
using as example one of the simulated networks. The maximum
dissimilarity between two resources in this simulation is 1; thus
consumers do not face trade-offs on its performances on differ-
ent resources. The simulated network is generalized, nonmodu-
lar, fully connected, and nested. Rows in the matrix are
consumers, columns are resources, and the gray tones represent
the weight of each interaction. Nestedness is evidenced by the
general trend of decreasing weights from top-left to bottom-
right corners.
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hand, nestedness and modularity are driven in opposite
directions by the same main parameters and are strongly
negatively correlated (Spearman rho: �0.94, Appendix S2:
Section S7), as usually found in empirical ecological net-
works (Thebault and Fontaine 2010, Pires and Guimaraes
2012, Trøjelsgaard and Olesen 2013). This scenario does
not support the perspective of entire networks having a
mixed nested and modular topology (Fortuna et al. 2010),
but supports the perspective that, in modular networks,
nestedness may predominate within modules (Lewinsohn
et al. 2006, Felix et al. 2017). Indeed, in nested-modular
simulated networks, nestedness between species of the
same module was always much higher than nestedness
between species of different modules.
Our study reinforces the prediction that highly diverse

networks tend to present a compound topology (Lewin-
sohn et al. 2006, Flores et al. 2011, Felix et al. 2017). In
these networks, consumers specialize in a group of homo-
geneous resource species instead of a single species and
multimodule generalists have decreased efficiency, which
corroborates that network modules may be the real unity
of specialization and coevolution (Olesen et al. 2007).

Additionally, our results show that the taxonomic,
phylogenetic, and functional diversity of species
included in a network may have a strong influence on
the patterns observed. Interaction networks containing
only similar species show patterns that are not
observed in heterogeneous networks (Bezerra et al.
2009), as well as a module does not present the topol-
ogy of the entire network (Flores et al. 2013). Studies
are often focused on modules of the network or on
taxonomically defined assemblage subsets (Olesen
et al. 2007, Jordano 2016), and only a few studies
investigated diverse systems (Donatti et al. 2011).
Thus, the literature is probably biased toward low-
diversity patterns (as suggested by Mello et al. 2011).
This may explain the paradigm of mutualisms being
nested (Bascompte and Jordano 2007) and the domi-
nance of positive relationships between the perfor-
mance and host range of parasites (Krasnov et al.
2004, Hellgren et al. 2009). We should expect that sev-
eral of the published nested interaction networks are
in fact modules of more diverse networks with com-
pound topologies.

NestednessSM: 0.74

Network with heterogeneous resources:

Connectance: 0.33H2': 0.32
Modularity: 0.65

NestednessDM: 0.05

Between-modules

Within-modules

Nestedness: 0.23

Low nestedness

High nestedness

a

Similar resources

Dissimilar resources

Absent or weak trade-offs

Strong trade-offs

b

c

Entire network

FIG. 4. Predictions of our model for networks with heterogeneous resources. Here we illustrate the main pattern that emerged
in simulations with highly heterogeneous resources, using as example one of the simulated networks. The maximum dissimilarity
between two resources in this simulation is 2.5 and the structure of dissimilarities is composed of 4 clusters. The simulated network
is sparse, specialized, nonnested, and presents a compound topology: modular with internally nested modules (a). Within modules
(b) there is high nestedness, resources are homogeneous, and consumers are submitted to weak or absent trade-offs, resembling the
patterns in Fig. 3. However, between modules (c) nestedness is very low, resources are dissimilar, and multimodule generalists face
strong trade-offs, which results in decreased performance. Rows in (a) are consumers, columns are resources, colors represent mod-
ules, and the tones represent the weight of each interaction. Nestedness SM: nestedness between species in the same module; nested-
ness DM: nestedness between species in different modules.
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Other models of compound topologies

Beckett and Williams (2013) predicted a compound
topology for phage–bacteria networks, using a relaxed
lock-and-key model. Despite their model including a lar-
ger number of parameters and having a more complex
and less general mechanism than ours, the assumptions
of the IHS model are at least partially met by it. We
believe that our model is not contradictory to the
relaxed lock-and-key model, but rather more compre-
hensive.
Leung and Weitz (2016) proposed a bipartite network

growth model that generates modular, nested, and com-
pound networks. In their model, the network grows by
duplication of nodes, and links, once formed, are kept
constant. In our model the contrary is true, species rich-
ness is constant, and links submitted to evolution. Addi-
tionally, their model produces only binary networks.
These differences make it difficult to compare both mod-
els. However, Leung and Weitz (2016) found that, when
there are trade-offs, modularity emerges in networks;
otherwise, hosts and parasites enter an arms race that
results in nestedness. These results are highly consonant
with our main predictions using the IHS model.

CONCLUSION

The proposed model based on the integrative hypothe-
sis of specialization (IHS) reproduced the main network
topologies, and its predictions are coherent to real-world
observations and consonant with current evolutionary
and ecological theories. Our results show that the IHS
model is useful to generate weighted, bipartite, con-
sumer-resource networks and supports the IHS as a the-
oretical framework to study interaction specialization
and network topology.
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