
Appendix S9: Code for case study 1: Model averaging of
GLMS, with a comparison of approaches for computing

model weights
Dormann et al.

06 December, 2017

Contents
1 Introduction 2

2 Data simulation 2

3 The general form of model weights 4

4 Equal weights: 1/M 4

5 Median of predictions 4

6 Reversible-jump MCMC 4

7 Bayes Factor-based weights 8

8 AIC-based model weights 10

9 BIC-based model weights 10

10 Mallows’ Cp weights 11

11 Widely applicable information criterion (WAIC) 11

12 Leave-one-out cross-validation (LOOCV) 12

13 Bayesian Model Averaging using Expectation Maximisation (BMA-EM) 13

14 Naive bootstrap 13

15 Stacking 14

16 Jackknife 15

17 Bates-Granger 16

18 Cos-squared weights 17

19 Model-based model combinations 18

20 Repeated evaluation and summary 19

1

1 Introduction

In the following sections we shall briefly present different approaches for averaging predictions from likelihood-
based models (here simple linear models). We demonstrate their application using simulated data that aims
to mimic real-life situations, where predictors exhibit collinearity, and the response is not a simple and clean
function of predictors (details below). This is meant as an illustration of how the different model-weight-
deriving approaches can be implemented, but not a how-to guide advising what to do. Typically some data
dredging may lead to the set of models to be averaged, which may be much larger than our set of 16 in this
example.

2 Data simulation

We start by simulating a data set:

1. We generate two orthogonal (uncorrelated) and uniformly distributed predictors; we call these two
predictors “SET1”.

2. We generate a second pair of predictors (SET2), so that they have strong (but not perfect) collinearity
with SET1. To do so, we first rotate the predictors in SET1 to obtain a new pair of orthogonal
predictors, and then add noise.

3. We generate the response y; to do so, we first create a response ‘y1’ based on SET1, and a response ‘y2’
by using SET2 and the original regression coefficients rotated (this way, ‘y1’ and ‘y2’ would have been
identical if we had not added noise to SET2). We assign ‘y1’ to half of the sites and ‘y2’ to the other
half. The idea behind this is that the response in some sites will be better predicted by SET1, and
in other sites by SET2. By putting all predictors together in the model,we can expect a number of
competing models to have similar explanatory power.

The final response includes some additional noise for more realism.
N <- 70 #total number of data points (70 each for training and testing)

simdata <- function(N){
PREDICTORS
P <- 2 # number of predictors, if want more will need a larger rotation matrix
preds1 <- matrix(runif(2*N*P),nrow=2*N,ncol=P) # three predictors (SET1)
#rot1 <- c(0.36, 0.48, -0.8, -0.80, 0.60, 0.0, 0.48, 0.64, 0.6)
rot1 <- c(0.96, -0.26, 0.26, 0.96)
rot1m <- matrix(rot1, nrow=P, ncol=P) # rotation matrix; t(rot1m) = solve(rot1m)
preds2 <- preds1 %*% rot1m # rotated predictors (SET2)
preds2 <- preds2 + matrix(runif(2*N*P, min=0, max=0.2), nrow=2*N, ncol=P) # with a bit of noise
preds <- cbind(preds1, preds2)

RESPONSE
b0 <- 1; b1 <- 4; b2 <- 2; #regression coefficients
y1 <- b0 + b1 * preds[,1] + b2 * preds[,2] # response as determined by preds1
bs <- c(b1, b2) %*% rot1m; b3 <- bs[1]; b4 <- bs[2]; #rotated coefficients
y2 <- b0 + b3*preds[,3] + b4*preds[,4] # response as determined by preds2
tmp <- sample(1:(2*N), size=N) #some sites get y1 and some y2
y <- y1; y[tmp] <- y2[tmp]
y <- y + rnorm(2*N, sd=1) # some noise, for more realism

COMPILE ALL DATA
mydf<-data.frame(y=y, p=preds) #dataframe with response and all predictors

}

2

set.seed(5)
dats <- simdata(N)
train <- dats[1:N,]
test <- dats[(N+1) : (2*N),]

This data set will be fitted using 16 different linear models, differing in the number of predictors (1 to 5,
including the intercept, in all possible combinations). The row numbers (1 - 16) refer to the models in the
main text (there called “m1” - “m16”; m1 is the intercept-only model).
m.all <- lm(y~., data=train) # fit linear terms only; use only first half of the data
library(MuMIn)
options(na.action = "na.fail")
mytab <- dredge(m.all, rank=AIC)
mytab

Global model call: lm(formula = y ~ ., data = train)

Model selection table

(Intrc) p.1 p.2 p.3 p.4 df logLik AIC delta weight
10 0.8004 3.723 2.135 4 -103.288 214.6 0.00 0.284
4 1.0170 4.285 2.0420 4 -103.393 214.8 0.21 0.256
12 0.8724 3.941 0.8243 1.300 5 -103.208 216.4 1.84 0.113
14 0.8534 4.186 -0.4514 2.015 5 -103.266 216.5 1.96 0.107
8 1.0660 4.804 1.9040 -0.5436 5 -103.360 216.7 2.14 0.097
13 0.4328 3.4710 3.120 4 -104.987 218.0 3.40 0.052
16 0.9108 4.296 0.7844 -0.3570 1.246 6 -103.194 218.4 3.81 0.042
7 0.7227 3.1470 4.2840 4 -105.954 219.9 5.33 0.020
15 0.4488 0.2721 3.5400 2.863 5 -104.979 220.0 5.38 0.019
6 1.8560 8.964 -4.8380 4 -106.759 221.5 6.94 0.009
2 2.0220 4.435 3 -111.874 229.7 15.17 0.000
11 0.4682 -8.0800 10.940 4 -116.230 240.5 25.88 0.000
5 2.5950 3.8470 3 -122.303 250.6 36.03 0.000
9 1.6760 3.596 3 -127.476 261.0 46.37 0.000
3 3.0760 2.4330 3 -135.504 277.0 62.43 0.000
1 4.3680 2 -140.595 285.2 70.61 0.000
Models ranked by AIC(x)
model.list <- get.models(mytab, subset=NA)
sort the model list from 1 : M (to make all outputs follow the same sequence,
from simplest to full model):
model.list <- model.list[order(as.numeric(rownames(mytab)))]
M <- length(model.list)

truth <- test[,1] # we use test as stand-in
preds <- sapply(model.list, predict, newdata=test)

For each of the 16 models, we now compute their RMSE:
singleRMSEs <- apply(preds, 2, function(x) (sqrt(mean((x - truth)^2))))

Additionally, mimicking optimal model selection, we store the best model for this data set. This model, the
“best possible model of a run”, is included as a reference only, to see whether model averaging can exceed
model selection. Together with the full model (m16), run’s best is serving as a yardstick for model averaging.
RMSEsinglebest <- min(singleRMSEs, na.rm=T)
singleRMSEs

3

1 2 3 4 5 6 7 8 9 10
1.736192 1.302883 1.575529 1.104876 1.497730 1.195540 1.115050 1.107267 1.475688 1.120529

11 12 13 14 15 16
1.339535 1.112717 1.135443 1.121223 1.132715 1.113752

3 The general form of model weights

Model weights for all performance-related indices κ have the same form: wm = eκm−κmin∑
k∈M

eκk−κmin
. For a given

method, we need to replace κ with the appropriate measure of model performance. For likelihood-based
approaches, this could be, for example, κ = `m.

4 Equal weights: 1/M

The simplest of model averages gives each model the same weight. κ1 = . . . = κm = 1/M = 1/16 in this case.
weighted1overM <- preds %*% rep(1/M, M)
(RMSE1overM <- sqrt(mean((weighted1overM - truth)^2)))

[1] 1.126825

This may serve as a reference for all other methods.

5 Median of predictions

Similarly simple is to compute the median of predictions at each point. One could keep a tally of how often a
model was used to compute the median, but we did not do that here.
medians <- apply(preds, 1, median)
(RMSEmedian <- sqrt(mean((medians - truth)^2)))

[1] 1.10716

6 Reversible-jump MCMC

The rjMCMC has to be tailored to the problem at hand. Specifically, we have to define two steps as functions:
updating the parameters (updateparam) and updating the model (updatemodel). Both functions are a bit
too long to be presented here and are given in a separate file, which we load before further analysis.
source("RJMCMCfunctions.R")
X <- as.matrix(cbind(1, train[,-1])) # include 1 for the intercept
y <- train$y

We initialise the rjMCMC with a randomly choosen model and random values for the model parameters
(e.g. from the prior):
starting values for coefficients
beta_vec <- runif(ncol(X), -1, 1)
starting value for residual noise estimate sigma
sigma <- rgamma(1, 1, 1)

The likelihood-value is needed as input when we start the actual Markov chain:

4

llikhood <- sum(dnorm(y, X%*%beta_vec, sigma, log = T))

niter <- 1e5
burnin <- niter/2
thin <- 20

(niter-burnin)/thin

[1] 2500
store values
beta_mat <- matrix(0, nrow = (niter-burnin)/thin, ncol = length(beta_vec))
sigma_vec <- c()

#choose prior parameters for coefficients
prior_sigma_beta <- 3
prior_pars <- c(0, prior_sigma_beta)

#choose parameters of proposal distributions for updates
prop_sigma_beta <- 3
prop_pars <- c(0, prop_sigma_beta)
now run rjMCMC:
system.time({
for (iter in 1:niter){

temp1 <- updateparam(beta_vec, sigma, llikhood, prior_beta = "norm", prior_beta_par =
prior_pars, prop_beta = "norm", prop_beta_par = prop_pars[2])

beta_vec <- temp1$beta_vec
sigma <- temp1$sigma
llikhood <- temp1$llikhood
between models update
temp2 <- updatemodel(beta_vec, sigma, llikhood, prior_beta = "norm", prior_beta_par =

prior_pars, prop_beta = "norm", prop_beta_par = prop_pars)
read current values for beta, current model and log-likelihood value
beta_vec <- temp2$beta_vec
llikhood <- temp2$llikhood
Store output
if (iter>burnin & (iter-burnin) %% thin == 0){

ind_st <- ceiling((iter-burnin)/thin)
beta_mat[ind_st,] <- beta_vec
sigma_vec[ind_st] <- sigma

}
#there are 16 possible models, count the number of times each model appears
model_mat <- matrix(0, nrow = nrow(beta_mat), ncol = 1)
for(sim in 1:nrow(beta_mat)){

model_mat[sim,] <- paste(c((1:length(beta_vec))[beta_mat[sim,1:length(beta_vec)]!=0]),
sep="", collapse = "+")

}
}
})

user system elapsed
1458.404 6.715 1482.714

That took a while (approximately 30 minutes)! At this point it seems imperial to check the run diagnostics,
which is far beyond the scope of our excercise. Instead, we carry on regardless, emphasising that this is not

5

what we would normally do before having checked the rjMCMC diagnostics! (Note that the final results
suggest that the rjMCMC did perform very well indeed, suggesting that we did choose sufficient chain
lengths.)

The next lines of code summarise the results, compute model weights and sort the labels so that the models
are in the same sequence as for all other runs.
model_weights <- sort(round(table(model_mat)/nrow(model_mat), 5), TRUE)
allmodelnames <- c("1", paste0("1+", unlist(sapply(1:4, function(n)

apply(combn(2:5, n), 2, paste0, collapse="+")))))
weightsrjMCMC <- rep(0, M)
names(weightsrjMCMC) <- allmodelnames
put values into vector of M models:
for (i in 1:length(model_weights)){# loop through weights of rjMCMC

ind <- which(allmodelnames == names(model_weights[i]))
weightsrjMCMC[ind] <- model_weights[i]

}
library(colorspace)
image(y=1:5, x=1:nrow(beta_mat), z=beta_mat, ylab="beta", xlab="sample",

col=diverge_hcl(50, h=c(180, 300), c=100, l=c(40,100)), las=1)

500 1000 1500 2000 2500

1

2

3

4

5

sample

be
ta

MANUALLY CHECK sequence of models to be the same as after dredge!!
rightSequence <- c(1,2,3,6,4,7,9,12,5,8,10,13,11,14,15,16)
this is the order in which rjMCMC-models should occur:
#allmodelnames[rightSequence] # check this against varIndMatrix below
(weightsrjMCMC <- weightsrjMCMC[rightSequence])

1 1+2 1+3 1+2+3 1+4 1+2+4 1+3+4 1+2+3+4 1+5
0.0000 0.0000 0.0000 0.1808 0.0000 0.0000 0.0108 0.0844 0.0000
1+2+5 1+3+5 1+2+3+5 1+4+5 1+2+4+5 1+3+4+5 1+2+3+4+5

0.3336 0.0000 0.1840 0.0104 0.1180 0.0112 0.0668

The figure indicates estimates (positive in green, negative in red) of model parameters (betas). Parameters
are intercept and number 1 to 4 (from bottom to top). Which of the 16 models is fitted is hard to see, as
they differ in the combination of parameters, but the intercept is always fitted (top row). Note the trade-off
between row “5” and “3”: either one is fitted, or the other, but rarely both. Similarly, there seems to be a
positive correlation between row “4” and “2”, with sign switches.

First we use rjMCMC only to derive model weights and compute the RMSE based on the fitted linear models.
weightedPredsrjMCMC <- preds %*% weightsrjMCMC
(RMSErjMCMC <- sqrt(mean((weightedPredsrjMCMC - truth)^2)))

[1] 1.112931

More consistent with the Bayesian setup, and for completeness, here is how one could use the rjMCMC directly.
Since the samples are stored, we can use them to make the prediction, yielding 2500 (or so) predictions, from

6

which we shall use the median (assuming that this would be a good summary of the predictions). Note that
we do not use the information on the weights, because they are implicit in the beta_mat-values.
testpredsrjMCMC <- as.matrix(cbind(1, test[,-1])) %*% t(beta_mat)
par(mfrow=c(1,2), mar=c(5,5,1,1))
example for prediction to first data point 1 of test data:
plot(density(testpredsrjMCMC[1,]), main="")
plot(truth, apply(testpredsrjMCMC, 1, median), ylab="median predictions rjMCMC",

xlab="test data", las=1, pch=16)
abline(0,1, col="grey")

5.5 6.0 6.5 7.0

0.
0

0.
5

1.
0

1.
5

N = 2500 Bandwidth = 0.0426

D
en

si
ty

2 4 6 8

1

2

3

4

5

6

7

test data

m
ed

ia
n

pr
ed

ic
tio

ns
 r

jM
C

M
C

The left figure show the posterior distribution of a prediction to a single new data point. The right figure
compares the test data and the rjMCMC-predictions.
boxplot(t(testpredsrjMCMC), at=truth, ylab="median predictions rjMCMC", xlab="test data",
las=1, pch=16, outline=F, names=rep("", length(truth)))
abline(0,1, col="grey")

7

0

2

4

6

8

test data

m
ed

ia
n

pr
ed

ic
tio

ns
 r

jM
C

M
C

The ticks on the x-axis indicate the position of values, while scaling is the same on both (line indicates 1:1).
cor(apply(testpredsrjMCMC, 1, median), truth)

[1] 0.7738438
(RMSErjMCMCmedian <- sqrt(mean((apply(testpredsrjMCMC, 1, median) - truth)^2)))

[1] 1.115324

7 Bayes Factor-based weights

first set up an indicator matrix for all models:
varIndMatrix <- ifelse(is.na(mytab[, 1:5]), 0, 1)
varIndMatrix <- varIndMatrix[order(as.numeric(rownames(varIndMatrix))),]
sort sequence, same as for model.list!

X <- cbind(1, train[1:N, -1]) # only the predictors, plus intercept as first column
Y <- train[1:N, 1]
library(BayesianTools)
likelihood <- function(x, option = 1){

a function to switch between the four models and compute the respective likelihood
x is a vector with betas, plus a parameter for sd, i.e. NCOL(X)+1
res = as.matrix(X) %*% (x[-(NCOL(X)+1)] * varIndMatrix[option,])
sets all parameters to 0 that are not in the model
ll = sum(dnorm(res - Y), sd = x[NCOL(X)+1], log = T)
return(ll)

}

prior <- function(x){
double-exponential/Laplace prior, with lambda set to 10
this is a lasso-shrinkage prior

8

ll = sum(dexp(abs(10*x)), log = T)
return(ll)

}

For illustration only: setting up two models to be fitted (for
details see package BayesianTools):
#setup1 = createBayesianSetup(likelihood = function(x) likelihood(x, option = 1),
prior=createPrior(density = prior, lower = c(rep(-5, NCOL(X)), 0.0001), upper =
c(rep(5, NCOL(X)),5)))
#setup2 = createBayesianSetup(likelihood = function(x) likelihood(x, option = 2),
prior=createPrior(density = prior, lower = c(rep(-5, NCOL(X)), 0.0001), upper =
c(rep(5, NCOL(X)),5)))
For illustration only: fitting the two models:
#res1 <- runMCMC(setup1, sampler = "Metropolis", settings = list(iterations = 30000,
startValue = c(rep(0, NCOL(X)), 0.01)))
#res2 <- runMCMC(setup2, sampler = "Metropolis", settings = list(iterations = 30000,
startValue = c(rep(0, NCOL(X)),0.01)))

Instead, we loop the setup, and lapply the run:
setups <- list()
for (m in 1:M){

setups[[m]] <- createBayesianSetup(likelihood = function(x) likelihood(x, option = m),
prior=createPrior(density = prior, lower =
c(rep(-5, NCOL(X)), 0.0001), upper = c(rep(5, NCOL(X)),5)))

}
system.time({
resBayesFits <- lapply(setups, runMCMC, sampler = "Metropolis", settings = list(iterations =

40000, startValue = c(rep(0, NCOL(X)), 0.01)))
})
extract the marginal likelihoods:
ML <- unlist(sapply(resBayesFits, function(x) marginalLikelihood(x)[1]))
names(ML) <- paste0("m", 1:16)
compute Bayes Factor weights:

(weightsBF <- exp(ML) / sum(exp(ML)))

ln.m ln.m ln.m ln.m ln.m ln.m ln.m ln.m
0.05665825 0.05189973 0.06428040 0.05348265 0.06070942 0.06195644 0.06002052 0.05209902

ln.m ln.m ln.m ln.m ln.m ln.m ln.m ln.m
0.06515604 0.06299156 0.06399811 0.06663114 0.07230987 0.07167333 0.07641655 0.05971697

Although we may in a typical setup use the MCMC-samples to derive an averaged model prediction, we here
use Bayes factors solely to derive Bayesian model weights, and compute predictions from them for comparison
with the other methods. The code above is a good starting place for computing any other posterior parameter
of interest.
#weightsBF
weightedPredsBF <- preds %*% weightsBF
(RMSEBF <- sqrt(mean((weightedPredsBF - truth)^2)))

[1] 1.129579

Note that rmMCMC and Bayes factor approximate the thing: the probability of model i. That these two
approaches do not converge here to the same values is a consequence of different priors and different ways
to compute model weights. It is beyond the scope of this study to provide a detailed discussion of how to
implement different Bayesian fitting procedures and prior-choices.

9

8 AIC-based model weights

When we can compute an AIC for each model, κ = −0.5AICm, yielding what has been informally called
“Akaike weights”. Because our data set is rather small, we use the sample-size corrected AIC (although it is
not clear that this is always a good idea: Richards 2007).
library(MuMIn)
(AICs <- unlist(sapply(model.list, AICc)))

1 2 3 4 5 6 7 8 9 10
285.3700 230.1108 277.3720 215.4013 250.9702 222.1333 220.5231 217.6579 261.3150 215.1921

11 12 13 14 15 16
241.0757 217.3530 218.5901 217.4694 220.8954 219.7211
#weights:
(weightsAIC <- exp(-0.5*(AICs-min(AICs)))/sum(exp(-0.5*(AICs-min(AICs)))))

1 2 3 4 5 6
1.749322e-16 1.746835e-04 9.541528e-15 2.731395e-01 5.160458e-09 9.430672e-03

7 8 9 10 11 12
2.109563e-02 8.838091e-02 2.926458e-11 3.032517e-01 7.265200e-07 1.029373e-01

13 14 15 16
5.545535e-02 9.711856e-02 1.751236e-02 3.150260e-02
weightedPredsAIC <- preds %*% weightsAIC
(RMSEAIC <- sqrt(mean((weightedPredsAIC - truth)^2)))

[1] 1.111273

9 BIC-based model weights

BIC-weights are fully analogous to AIC-weights, replacing the AIC with the BIC: κ = −0.5BICm. This
measure has been proposed as approximating the Bayes factor for large data sets (albeit with an error). It
aims at identifying the “truest” model in the set, rather than providing best prediction.
(BICs <- unlist(sapply(model.list, BIC)))

1 2 3 4 5 6 7 8 9 10
289.6879 236.4926 283.7538 223.7799 257.3520 230.5119 228.9017 227.9629 267.6968 223.5707

11 12 13 14 15 16
249.4543 227.6580 226.9687 227.7743 231.2004 231.8787
#weights:
(weightsBIC <- exp(-0.5*(BICs-min(BICs)))/sum(exp(-0.5*(BICs-min(BICs)))))

1 2 3 4 5 6
1.698690e-15 6.043835e-04 3.301251e-14 3.482227e-01 1.785455e-08 1.202306e-02

7 8 9 10 11 12
2.689459e-02 4.300539e-02 1.012519e-10 3.866124e-01 9.262326e-07 5.008840e-02

13 14 15 16
7.069944e-02 4.725706e-02 8.521363e-03 6.070303e-03

Note that the sequence of weights has reversed, simply because the BIC gives a higher penalty to each
parameter (log(50)) than the AIC (2).
weightedPredsBIC <- preds %*% weightsBIC
(RMSEBIC <- sqrt(mean((weightedPredsBIC - truth)^2)))

10

[1] 1.110979

10 Mallows’ Cp weights

Model avearging based on Mallows’ Cp has been shown to be “optimal” for linear models with known weights
(see main text). We compute it as follows:
(Cps <- sapply(model.list, Cp))

1 2 3 4 5 6 7 8 9
234.20670 106.07691 208.37181 85.66710 142.90156 94.31505 92.17030 88.07399 165.66024

10 11 12 13 14 15 16
85.41151 123.62426 87.69116 89.65987 87.83707 92.24308 90.20776

#weights:
(weightsCp <- exp(-0.5*(Cps-min(Cps)))/sum(exp(-0.5*(Cps-min(Cps)))))

1 2 3 4 5 6
1.603877e-33 1.067091e-05 6.533489e-28 2.884923e-01 1.076046e-13 3.821701e-03

7 8 9 10 11 12
1.116820e-02 8.659354e-02 1.229834e-18 3.278200e-01 1.651361e-09 1.048613e-01

13 14 15 16
3.918461e-02 9.748361e-02 1.076911e-02 2.979500e-02

Apparently Mallow’s Cp is very similar to AIC.
weightedPredsCp <- preds %*% weightsCp
(RMSECp <- sqrt(mean((weightedPredsCp - truth)^2)))

[1] 1.11157

11 Widely applicable information criterion (WAIC)

library(blmeco)
waics <- sapply(model.list, function(x) WAIC(glm(x))$WAIC2)
requires reformulation as glm due to a small programming bug in WAIC
waics

1 2 3 4 5 6 7 8 9 10
283.3087 227.5151 275.3416 211.3727 249.0777 219.8672 217.6136 214.3379 258.8516 212.6249

11 12 13 14 15 16
238.2994 214.1848 216.3114 215.0513 218.6907 217.3689
(weightsWAIC <- exp(-0.5*(waics-min(waics)))/sum(exp(-0.5*(waics-min(waics)))))

1 2 3 4 5 6
1.004280e-16 1.310029e-04 5.393698e-15 4.193255e-01 2.722796e-09 5.997926e-03

7 8 9 10 11 12
1.850809e-02 9.520609e-02 2.054141e-11 2.241980e-01 5.963469e-07 1.027821e-01

13 14 15 16
3.549130e-02 6.664236e-02 1.080079e-02 2.091624e-02
weightedPredsWAIC <- preds %*% weightsWAIC
(RMSEWAIC <- sqrt(mean((weightedPredsWAIC - truth)^2)))

11

[1] 1.109224

(Note that there are two slightly different ways WAIC computes the number of parameters in the model,
pwaic1 and pwaic2, and neither yields the actual rank of the model. We chose the one closer to the model’s
actual number of parameters, its rank (pwaic2, and accordingly WAIC2). Until WAIC is implemented
independently, these values should be taken with a note of caution, as also stated by the authors! Also note
that Watanabe’s widely applicable Bayesian information criterion is identical to BIC for regular statistical
model: Watanabe 2013, page 869.)

12 Leave-one-out cross-validation (LOOCV)

AIC supposedly approximates Kullback-Leibler-divergence, as does LOO. The latter has the charm of being
applicable also for likelihood-free methods and thus we shall briefly introduce here how to implement it.
looAll <- matrix(NA, nrow=N, ncol=M)
for (i in 1:N){

fm.loo <- lapply(model.list, function(x) update(x, .~., data=train[-i,]))
looAll[i,] <- suppressWarnings(sapply(fm.loo, function(x) predict(x,

newdata=train[i, ,drop=F])))
}
head(looAll)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 4.369896 2.867223 4.093642 2.680111 3.040154 3.001784 2.516781 2.692114 3.944494
[2,] 4.352126 5.053333 3.626831 4.424828 5.042496 4.898578 4.198724 4.441183 3.417073
[3,] 4.357351 6.126385 4.057798 5.814249 5.982125 5.892730 5.774946 5.809187 4.471281
[4,] 4.393922 3.300018 5.377329 4.154461 3.001437 3.985675 4.071504 4.179632 5.294302
[5,] 4.387133 2.461055 4.649265 2.749684 3.105246 2.106607 3.297954 2.673890 4.493909
[6,] 4.357326 5.131482 4.831542 5.509323 4.595625 5.633266 5.240173 5.544744 5.005612

[,10] [,11] [,12] [,13] [,14] [,15] [,16]
[1,] 2.852231 3.993450 2.745515 2.793554 2.860879 2.725044 2.750470
[2,] 4.375784 3.866720 4.385477 4.161481 4.387795 4.160988 4.392709
[3,] 5.910643 5.709681 5.875621 5.922954 5.902205 5.916586 5.870561
[4,] 4.032534 4.095168 4.108838 3.934500 4.066638 3.964398 4.133193
[5,] 2.840006 3.859905 2.806714 3.327252 2.770312 3.325680 2.749380
[6,] 5.394579 4.747374 5.448082 5.135737 5.432106 5.147216 5.476698
now choose a criterion for evaluation, e.g. RMSE, compared to omitted data point(s):
RMSE <- apply(looAll, 2, function(x) sqrt(mean((x-Y)^2)))
or R2:
R2 <- apply(looAll, 2, function(x) cor(x, Y)^2)
turn into weights:
(weightsRMSE <- (exp(-1*(RMSE-min(RMSE))))/sum(exp(-1*(RMSE-min(RMSE)))))

[1] 0.03501430 0.06380730 0.03885629 0.07224235 0.05225455 0.06832852 0.06931172
[8] 0.07072270 0.04707533 0.07249342 0.05803859 0.07135032 0.07050630 0.07094007

[15] 0.06930340 0.06975484

Note that for R2 a higher value is better, while for RMSE it is worse. Hence, the “−1” in the previous
formula turns into a “+1” here:
(weightsR2 <- (exp((R2-min(R2))))/sum(exp((R2-min(R2)))))

[1] 0.09621947 0.06047523 0.03870896 0.06612104 0.05139685 0.06361219 0.06425790
[8] 0.06519629 0.04673279 0.06627436 0.05617601 0.06558445 0.06502667 0.06533298

[15] 0.06427552 0.06460931

12

Now compute weighted prediction RMSE-loo:
weightedPredslooRMSE <- preds %*% weightsRMSE
(RMSEloormse <- sqrt(mean((weightedPredslooRMSE - truth)^2)))

[1] 1.117005
Now compute weighted prediction R2-loo:
weightedPredslooR2 <- preds %*% weightsR2
(RMSElooR2 <- sqrt(mean((weightedPredslooR2 - truth)^2)))

[1] 1.127831

Using LOO is apparently not difficult, and RMSE and R2 in this simple and non-representative case were
good options.

13 Bayesian Model Averaging using Expectation Maximisation
(BMA-EM)

BMA-EM is implemented as “ensemble Bayesian model averaging” (EBMA) in the package EBMAforecast.
It requires setting up a test-train data set first to avoid giving all weight to the most overfitting approach.
library(EBMAforecast)
set.seed(1)
trainsplit <- sample(rep(c(T, F), N/2))
trainsub1 <- train[trainsplit,]
trainsub2 <- train[!trainsplit,]
trainsub1fits <- lapply(model.list, update, .~. , data=trainsub1) # re-fit models on trainsub1
bmafits <- sapply(trainsub1fits, predict, newdata=trainsub2) # predict them to trainsub2
bmaY <- trainsub2$y # to train the EMA-algorithm
EBMAdata <- makeForecastData(.predCalibration=bmafits, .outcomeCalibration=bmaY,

.modelNames=paste0("m", 1:M)) # make dataset
EBMAfit <- calibrateEnsemble(EBMAdata, model="normal") # compute weights
EBMAfit@modelWeights

m1 m2 m3 m4 m5 m6 m7 m8
0.00000000 0.52851014 0.00000000 0.02880101 0.00000000 0.08378223 0.35890662 0.00000000

m9 m10 m11 m12 m13 m14 m15 m16
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
weightedPredsEBMA <- preds %*% EBMAfit@modelWeights
(RMSEebma <- sqrt(mean((weightedPredsEBMA - truth)^2)))

[1] 1.168728

14 Naive bootstrap

Here we re-run the models on a bootstrap of the data and count how often a model comes out best. “Best” is
quantified by AIC (according to Buckland et al.’s original suggestion).
Nboots <- 1000
bestCounter <- rep(0, M)
for (i in 1:Nboots){

bsfits <- lapply(model.list, update, .~. , data=train[sample(nrow(train), nrow(train),

13

replace=T),]) # re-fit models on train1
bsAICs <- sapply(bsfits, AIC)
bestCounter[which.min(bsAICs)] <- bestCounter[which.min(bsAICs)] + 1

}
(weightsboot <- bestCounter/sum(bestCounter))

[1] 0.000 0.001 0.000 0.310 0.000 0.074 0.057 0.022 0.000 0.334 0.000 0.033 0.098 0.047
[15] 0.006 0.018
weightedPredsBoot <- preds %*% weightsboot
(RMSEboot <- sqrt(mean((weightedPredsBoot - truth)^2)))

[1] 1.111003

Not very convincing result, as already pointed at by Wagenmaker et al. (2004).

15 Stacking

In stacking, we create a train/test data set. The models fitted to the train data then predict to the test,
and their predictions are combined using optimal model weights (minimising RMSE; this optimisation is
not always successful and then a new partitioning is used; the error messages can hence be ignored). The
weights thus derived are stored, and the whole procedure is repeated many times. The average weights of
many replicates are the final stacking model weights.
stacking <- function(test.preds, test.obs){

this function computes the optimal weight for a single train/test split;
from the models fitted to the training data it uses the predictions to the test;
then it optimises the weight vector across the models for combining these
predictions to the observed data in the test;
trick 1: each weight is between 0 and 1: w <- exp(-w)
trick 2: weights sum to 1: w <- w/sum(w)
#
weights are weights for each model, between -infty and +infty!
preds are predictions from each of the models

if (NCOL(test.preds) >= length(test.obs)) stop("Increase the test set! More models
than test points.")

now do an internal splitting into "folds" data sets:
weightsopt <- function(ww){

function to compute RMSE on test data
w <- c(1, exp(ww)); w <- w/sum(w) ## w all in (0,1) SIMON;
set weight1 always to 1, other weights are scaled accordingly
(this leads to a tiny dependence of optimal weights on whether model1 is any
good or utter rubbish;
see by moving the 1 to the end instead -> 3rd digit changes)
pred <- as.vector(test.preds %*% w)
return(sqrt(mean((pred - test.obs)^2)))

}

ops <- optim(par=runif(NCOL(test.preds)-1), weightsopt, method="BFGS")
if (ops$convergence != 0) stop("Optimisation not converged!")
round(c(1, exp(ops$par))/sum(c(1, exp(ops$par))), 4)

}

14

Nstack <- 1000
weightsStack <- matrix(NA, ncol=M, nrow=Nstack)
colnames(weightsStack) <- paste0("m", 1:M)
i = 0
while (i < Nstack){

trainsplit <- sample(rep(c(T, F), floor(N/2)))
trainsub1 <- train[trainsplit,]
trainsub2 <- train[!trainsplit,]
trainsub1fits <- lapply(model.list, update, .~. , data=trainsub1) # re-fit models on train1
stackpreds <- sapply(trainsub1fits, predict, newdata=trainsub2) # predict them to train2
optres <- try(stacking(test.preds=stackpreds, test.obs=trainsub2$y))
if (inherits(optres, "try-error")) next;
i = i + 1
weightsStack[i,] <- optres
rm(trainsplit, trainsub1, trainsub2, trainsub1fits, stackpreds)
#print(i)

}
visualise, if you want:
#plot(density(weightsStack[,1], from=0, to=1), las=1, lwd=2, xlim=c(0,1), col="grey20")
#for (j in 2:M) lines(density(weightsStack[,j], from=0, to=1), lwd=2, col=paste0("grey", j*20))
#legend("topright", col=paste0("grey", (1:M)*5), lwd=3, legend=paste0("m", 1:M), cex=1.5, bty="n")

(weightsStacking <- colSums(weightsStack)/sum(weightsStack))

m1 m2 m3 m4 m5 m6 m7
0.001543727 0.089186343 0.011127893 0.191998122 0.011049691 0.108782582 0.068479085

m8 m9 m10 m11 m12 m13 m14
0.068571486 0.053979234 0.141930255 0.037551350 0.061922971 0.066628453 0.053988834

m15 m16
0.019538738 0.013721237
weightedPredsStack <- preds %*% weightsStacking
(RMSEstack <- sqrt(mean((weightedPredsStack - truth)^2)))

[1] 1.110741

That works rather well!

16 Jackknife

The jackknife model averaging optimises the fit of the prediction onto an omitted data point. It is in a way
similar to stacking, but requires only N steps (N = number of data points).
1. fit the candidate models, omitting one data point at a time:
J <- matrix(NA, N, M) # matrix with jackknifed predictions
for (i in 1:N){

re-fit models on train with one less data point:
jfits <- lapply(model.list, update, .~. , data=train[-i,])
predict them to omitted data point:
J[i,] <- sapply(jfits, predict, newdata=train[i, , drop=F])

rm(jfits)
}
2. compute RMSE for a value of w, given J:
weightsopt <- function(ww, J){

15

function to compute RMSE on test data
at some point to also use likelihood instead of RMSE, but primarily for 0/1 data
w <- c(1, exp(ww)); w <- w/sum(w)
Jpred <- J %*% w
return(sqrt(mean((Jpred - train$y)^2)))

}
ops <- optim(par=runif(NCOL(J)-1), weightsopt, method="BFGS", control=list(maxit=5000), J=J)
if (ops$convergence != 0) stop("Not converged!")
round(weightsJMA <- c(1, exp(ops$par))/sum(c(1, exp(ops$par))),3)

[1] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
weightedPredsJMA <- preds %*% weightsJMA
(RMSEjma <- sqrt(mean((weightedPredsJMA - truth)^2)))

[1] 1.120528

Not exactly glorious, but better than some.

17 Bates-Granger

This proposes to use the prediction error (and the covariance in prediction errors) of the models to estimate
weights. The algebraic procedure is fast, but whether the estimates for the covariance is stable has been
called into question. Again we have to employ a train/test split in order to estimate prediction errors without
giving all weight to overfitted models.
set.seed(1)
trainsplit <- sample(rep(c(T, F), floor(N/2)))
trainsub1 <- train[trainsplit,]
trainsub2 <- train[!trainsplit,]
trainsub1fits <- lapply(model.list, update, .~. , data=trainsub1) # re-fit models on train1
trainsub2preds <- sapply(trainsub1fits, predict, newdata=trainsub2) # predict them to train2
trainsub2resid <- trainsub2$y - trainsub2preds

Sigma <- cov(trainsub2resid[,-c(4,6,7,8,10:16)])
PROBLEM: models are nested; removed models manually.
ones <- rep(1, ncol(Sigma))
(weightsBGsome <- solve(t(ones) %*% solve(Sigma) %*% ones)%*%ones%*%solve(Sigma))

1 2 3 5 9
[1,] -0.5439211 0.8658415 0.489955 0.2614798 -0.07335519
weightsBG <- rep(0, M)
weightsBG[as.numeric(colnames(weightsBGsome))] <- weightsBGsome

weightedPredsBG <- preds %*% weightsBG
(RMSEbg <- sqrt(mean((weightedPredsBG - truth)^2)))

[1] 1.209345

Not bad!

16

18 Cos-squared weights

Works with correlation in predictions, thus no splitting of the train data required.
csweights <- function(R, eps=1E-6, maxit=50, verbose=FALSE){

implements Garthwaite & Mubwandarikwa's cos-square scheme (their appendix)
eps and maxit are chosen without much testing; not converging within 20 iterations
doesn't actually mean that something is wrong; mostly it works much faster,
though, i.e. within only a few iterations.
require(expm)
D1 <- diag(rep(2, NCOL(R)))
D2 <- diag(NCOL(R))
counter = 0
while (any(abs(diag(D1) - diag(D2)) > eps)){

ED <- eigen(D1 %*% R %*% D1)
Q <- ED$vectors
Lambda <- diag(ED$values)
test:
#Q %*% Lambda %*% solve(Q) # fine
Lambda12 <- sqrtm(Lambda)
E <- solve(D1) %*% Q %*% Lambda12 %*% solve(Q)
D2 <- D1
D1 <- diag(diag(Re(E)))
counter <- counter + 1
if (verbose) cat(counter, " ")
if (counter >= maxit){

warning("Maximum number of iterations reached without convergence!")
break

}
}
w <- diag(D2)^2 / sum(diag(D2)^2)
return(w)

}
R <- cor(preds)
R[1:5, 1:8]

1 2 3 4 5 6 7 8
1 1 NA NA NA NA NA NA NA
2 NA 1.00000000 -0.01325623 0.8828473 0.9463922 0.9438419 0.8431865 0.8843464
3 NA -0.01325623 1.00000000 0.4579157 -0.2703518 0.2511825 0.4969853 0.4545609
4 NA 0.88284728 0.45791569 1.0000000 0.7144278 0.9571259 0.9830897 0.9997571
5 NA 0.94639216 -0.27035183 0.7144278 1.0000000 0.7865196 0.7010841 0.7124771

Here we see that the intercept-only model has a constant prediction and hence no correlation can be computed
(yielding NA). We thus drop the intercept-only model from the set of models, i.e. assign a weight of 0.
R <- cor(preds[,-1])
(weightsCS <- c(0, csweights(R, verbose=F, maxit=500)))

[1] 0.000000e+00 4.065223e-15 2.885132e-01 1.707060e-08 2.409820e-01 2.155152e-01
[7] 1.254118e-02 1.229909e-15 1.437033e-14 5.706505e-16 2.424484e-01 1.920697e-15

[13] 1.446313e-15 5.283942e-16 6.913051e-15 1.271160e-15
weightedPredsCS <- preds %*% weightsCS
(RMSEcs <- sqrt(mean((weightedPredsCS - truth)^2)))

17

[1] 1.210089

Clearly, cos-squared is not ideally suited for nested models. The optimisation takes very long to converge,
because the linear combinations of predictions (from nested models) cause problems.

19 Model-based model combinations

In MBMC we use a ‘supra-model’ to combine the predictions of different models. To avoid overfitting, i.e. the
supra-model relying most on the best-fitting, but not necessarily best-predicting model, we again split the
data into train1 and train2 to derive the model combination. This model is then applied to the full data, as
above.
set.seed(1)
trainsplit <- sample(rep(c(T, F), floor(N/2)))
trainsub1 <- train[trainsplit,]
trainsub2 <- train[!trainsplit,]
trainsub1fits <- lapply(model.list, update, .~. , data=trainsub1) # re-fit models on trainsub1
mbmcfits <- sapply(trainsub1fits, predict, newdata=trainsub2) # predict them to train2
colnames(mbmcfits) <- paste0("mbmcfits", 1:M)
summary(mbmc1 <- lm(trainsub2$y ~ ., data=as.data.frame(mbmcfits))) # this is a simple linear model

Call:
lm(formula = trainsub2$y ~ ., data = as.data.frame(mbmcfits))

Residuals:
Min 1Q Median 3Q Max

-2.4928 -0.5698 -0.1120 0.7167 1.8985

Coefficients: (12 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.35737 1.71827 -1.372 0.180
mbmcfits1 NA NA NA NA
mbmcfits2 0.86584 0.77583 1.116 0.273
mbmcfits3 0.48995 0.67522 0.726 0.474
mbmcfits4 NA NA NA NA
mbmcfits5 0.26148 0.80335 0.325 0.747
mbmcfits6 NA NA NA NA
mbmcfits7 NA NA NA NA
mbmcfits8 NA NA NA NA
mbmcfits9 -0.07336 0.64278 -0.114 0.910
mbmcfits10 NA NA NA NA
mbmcfits11 NA NA NA NA
mbmcfits12 NA NA NA NA
mbmcfits13 NA NA NA NA
mbmcfits14 NA NA NA NA
mbmcfits15 NA NA NA NA
mbmcfits16 NA NA NA NA

Residual standard error: 1.103 on 30 degrees of freedom
Multiple R-squared: 0.6569, Adjusted R-squared: 0.6112
F-statistic: 14.36 on 4 and 30 DF, p-value: 1.165e-06

18

alternatively, we can use a machine-learning algorithm, e.g. ANN or randomForest:
library(randomForest)
(mbmc2 <- randomForest(x=mbmcfits, y=trainsub2$y))

Call:
randomForest(x = mbmcfits, y = trainsub2$y)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 5

Mean of squared residuals: 1.172048
% Var explained: 61.42

There simply isn’t much to improve using MBMC in this specific case study: R2s are relatively low.
mbmcpreds <- sapply(trainsub1fits, predict, newdata=test)
colnames(mbmcpreds) <- paste0("mbmcfits", 1:M)
MBMC prediction with the linear model:
weightedPredsMBMC1 <- predict(mbmc1, newdata=as.data.frame(mbmcpreds))
(RMSEmbmc1 <- sqrt(mean((weightedPredsMBMC1 - truth)^2)))

[1] 1.128412
MBMC prediction with the GAM:
#weightedPredsMBMC1b <- predict(mbmc1b, newdata=as.data.frame(mbmcpreds))
#(RMSEmbmc1b <- sqrt(mean((weightedPredsMBMC1b - truth)^2)))
MBMC prediction with randomForest:
weightedPredsMBMC2 <- predict(mbmc2, newdata=as.data.frame(mbmcpreds))
(RMSEmbmc2 <- sqrt(mean((weightedPredsMBMC2 - truth)^2)))

[1] 1.254349

Investing into more complicated ways to combine predictions, as with the randomForest, does not seem to
add benefit over the simple lm. The GAM couldn’t be fitted due to nestedness of parameters across the
models (for the same reason lm has all the NAs, de facto combining only four models).

20 Repeated evaluation and summary

The RMSE on this specific test data set look like this:
RMSEapproaches <- c(RMSEsinglebest, singleRMSEs[16], RMSE1overM, RMSEmedian, RMSErjMCMC,

RMSErjMCMCmedian, RMSEBF, RMSEAIC, RMSEBIC, RMSECp, RMSEWAIC,
RMSEloormse, RMSElooR2,RMSEebma,RMSEboot,RMSEstack, RMSEjma, RMSEbg,
RMSEcs, RMSEmbmc1, RMSEmbmc2)

results <- sapply(RMSEapproaches, round, 3)
names(results) <- c("run's best", "full", "1/M", "median", "rjMCMC", "rjMCMCmedian",

"BayesFactor", "AIC", "BIC", "Cp", "WAIC", "LOO-CV rmse", "LOO-CV R2",
"BMA-EM", "boot", "stacking", "JMA", "Bates-Granger", "cos-squared",
"MBMClm", "MBMCrf")

sort(results, decreasing=F)

run's best median WAIC AIC BIC boot
1.105 1.107 1.109 1.111 1.111 1.111

stacking Cp rjMCMC full rjMCMCmedian LOO-CV rmse

19

1.111 1.112 1.113 1.114 1.115 1.117
JMA 1/M LOO-CV R2 MBMClm BayesFactor BMA-EM

1.121 1.127 1.128 1.128 1.130 1.169
Bates-Granger cos-squared MBMCrf

1.209 1.210 1.254

Now we can repeat all these analyses a few times to see what the overall ranking in a situation like this would
be. This takes quite a few hours, mind you!

In addition to the 16 models and the 19 weighting approaches, we add the following comparisons:

• run’s best: the best-performing model for each specific run (which will differ between replicates);
• all single models (m1 – m16);
• the full model (identical to m16, hence we omit m16 from the analysis);
• the direct rjMCMC computation of the averaged prediction (which is the median of the posterior across

models), in addition to using rjMCMC-derived model weights.
R <- 100 # put this to at least 100
M <- 16 # number of models
weights.arr <- array(NA, dim=c(R, 21+M, M)) # repeats, approaches, models
results.mat <- matrix(NA, nrow=R, ncol=21+M)
colnames(results.mat) <- c("run's best", "full", "1/M", "median", "rjMCMC", "rjMCMC median",

"Bayes Factor", "AIC", "BIC", "Cp", "WAIC", "LOO-CV rmse", "LOO-CV R2",
"BMA-EM", "boot", "stacking", "JMA", "Bates-Granger", "cos-squared",
"MBMC lm", "MBMC rf", paste0("m", 1:M))

"run's best" is the best model for each replicate, so a different model each time.
for (r in 1:R){

set.seed(r)
N <- 70 # number of data points
...
results <- sapply(RMSEapproaches, round, 3)
results.mat[r,] <- results

}

We omit the R-code from the html document here, which is exactly as above.

Let’s have a look how much the weights actually vary, on average, between methods:
weights.mat <- apply(weights.arr, c(2,3), mean, na.rm=T)
weights.mat[22:37,] <- diag(1, 16) # the 16 single models
rownames(weights.mat) <- colnames(results.mat)
colnames(weights.mat) <- paste0("m", 1:16)
round(weights.mat, 3)

Next, we summarise the results and sort by lowest RMSE.
sort(apply(results.mat, 2, median), decreasing=F)

run's best rjMCMC median BIC median m10 rjMCMC
1.063065 1.069285 1.073677 1.075439 1.075833 1.076162

boot WAIC AIC Cp stacking m14
1.076196 1.076510 1.076636 1.077738 1.078791 1.079108

JMA m13 m4 m8 m7 m15
1.079277 1.079653 1.080117 1.080845 1.082479 1.084068

full m16 m12 BMA-EM Bayes Factor 1/M
1.085747 1.085747 1.086834 1.103869 1.105911 1.109704

LOO-CV R2 LOO-CV rmse MBMC lm m6 MBMC rf m2
1.109730 1.122975 1.134644 1.152553 1.181280 1.206159

20

Bates-Granger cos-squared m11 m5 m9 m3
1.206202 1.209085 1.263535 1.360272 1.470197 1.587185

m1
1.677216

sort(apply(results.mat, 2, sd), decreasing=F)

run's best m4 m12 median boot m10
0.08881114 0.08885856 0.08913990 0.09030180 0.09087613 0.09093199

full m16 m8 stacking WAIC Cp
0.09094871 0.09094871 0.09107277 0.09114004 0.09133095 0.09150290

AIC JMA rjMCMC BIC rjMCMC median m14
0.09152372 0.09168529 0.09191871 0.09197703 0.09216574 0.09299313

m7 m15 BMA-EM m6 m13 Bayes Factor
0.09308613 0.09312510 0.09385217 0.09412491 0.09633670 0.09722074

1/M LOO-CV R2 LOO-CV rmse MBMC lm m2 m9
0.09730378 0.09735920 0.09960649 0.10134090 0.10315366 0.10909616

m11 m5 m3 cos-squared MBMC rf m1
0.10924339 0.11190077 0.11377994 0.11429703 0.11788296 0.12726591

Bates-Granger
1.36874598

Note that m16 is the same as the full model, so we remove m16 from further analysis.
library(xtable)
out <- round(apply(weights.arr, c(2,3), mean, na.rm=T), 3)
out[22:37,] <- diag(1, 16) # the single models
oo <- order(apply(results.mat, 2, median))[-c(20)] # rm m16 = full model
out.ordered <- cbind(out, apply(results.mat, 2, median))[oo,]
print(xtable(out.ordered, digits=c(1,rep(2, 16),3)), file="case1weights.txt")

oo <- order(apply(results.mat, 2, median))[-c(20)]
par(mar=c(8,4.5,1,1))
boxplot(results.mat[, oo], las=2, col="grey", border="white", ylab="prediction error (RMSE)",

cex.lab=1.3, ylim=c(1, 1.8), show.names=F, xlim=c(1, 36))
abline(v=25.5, col="grey")
abline(h=c(1,1.2,1.4,1.6,1.8), col="lightgrey", lty=3)
boxplot(results.mat[, oo], las=2, col="grey", border="white", ylab="prediction error (RMSE)",

cex.lab=1.3, ylim=c(1, 1.8), add=T, show.names=F) # to plot on top of grid
text((1:36)+0.2, .95, labels=colnames(results.mat[,oo]), srt=45, xpd=T, adj=1, cex=1.2)

1.0

1.2

1.4

1.6

1.8

pr
ed

ic
tio

n
er

ro
r

(R
M

S
E

)

1.0

1.2

1.4

1.6

1.8

pr
ed

ic
tio

n
er

ro
r

(R
M

S
E

)

ru
n's

 b
es

t

rjM
CM

C m
ed

ian BIC

m
ed

ian m
10

rjM
CM

C
bo

ot

W
AIC AIC Cp

sta
ck

ing m
14

JM
A

m
13 m

4
m

8
m

7
m

15 fu
ll

m
12

BM
A−E

M

Bay
es

 F
ac

to
r

1/
M

LO
O−C

V R
2

LO
O−C

V rm
se

M
BM

C lm m
6

M
BM

C rf m
2

Bat
es

−G
ra

ng
er

co
s−

sq
ua

re
d

m
11 m

5
m

9
m

3
m

1

Methods to the right of the vertical line are very similar in predictive performance. Note that “run’s best”
refers to a different model at each run, while m10 is the best model across all runs. M10 is the model with

21

predictors p1 and p4.

In summary, the above code shows how a variety of model averaging approaches can be implemented for
likelihood-based models (and many of them also for models without a likelihood). It was not the aim of this
appendix to provide an extensive evaluation of the approaches. For example, rjMCMC and Bayes Factor
approximate the same goal and should yield near-identical results. This is not a problem of the method as
such, only of our automatised handling of it.

Similar, methods that require a train-test split (stacking, BMA-EM, Bates-Granger, MBMCs) may perform
better with different splitting regimes than our half-half. Such optimisation has to be explored by simulations
beyond the scope of our review.

22

	Introduction
	Data simulation
	The general form of model weights
	Equal weights: 1/M
	Median of predictions
	Reversible-jump MCMC
	Bayes Factor-based weights
	AIC-based model weights
	BIC-based model weights
	Mallows' Cp weights
	Widely applicable information criterion (WAIC)
	Leave-one-out cross-validation (LOOCV)
	Bayesian Model Averaging using Expectation Maximisation (BMA-EM)
	Naive bootstrap
	Stacking
	Jackknife
	Bates-Granger
	Cos-squared weights
	Model-based model combinations
	Repeated evaluation and summary

