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A B S T R A C T

Dynamic global vegetation models (DGVMs) are of crucial importance for understanding and predicting vege-
tation, carbon, nitrogen and water dynamics of ecosystems in response to climate change. Their complexity,
however, creates challenges for model analysis and data integration. A solution is to interface DGVMs with
established statistical computing environments. Here we introduce rLPJGUESS, an R-package that couples the
widely used DGVM LPJ-GUESS with the R environment for statistical computing, making existing R-packages
and functions readily available to perform complex analyses with this model.
We demonstrate the advantages of this framework by using rLPJGUESS to perform several otherwise la-

borious tasks: first, a set of single simulations, followed by global and local sensitivity analyses, a Bayesian
calibration with a Markov-Chain Monte Carlo (MCMC) algorithm, and a predictive simulation with multiple
climate scenarios. Our example highlights the opportunities of interfacing existing models in earth and en-
vironmental sciences with state-of-the-art computing environments such as R.

Data availability

Climatic data used in the simulations have been obtained from the
Biodiversity Exploratories Database (https://www.bexis.uni-jena.de).

The data used for the simulations are available at https://drive.
google.com/uc?id=1JE7H0duYxoWfxYwb_kVUxOLrfOujaNx0&
export=download.

Software availability

The rLPJGUESS source code is publically available at https://
github.com/biometry/rLPJGUESS. rLPJGUESS requires R v.>=
3.1.0, and depends on R-packages snow and zoo, both available on
CRAN. rLPJGUESS requires a compiled version of LPJ-GUESS v.3.1
(Smith et al., 2014), the source code of which is available upon request
athttp://web.nateko.lu.se/lpj-guess. NOTE: rLPJGUESS is not compa-
tible with the Educational Version of LPJ-GUESS publically available on
the LPJ-GUESS website.

1. Introduction

The complexity of terrestrial ecosystems, with many interactions
between the various drivers and compartments, limits our ability to
understand and predict system responses based on simple statistical
relationships. Therefore, the most widely used tools to describe tran-
sient vegetation dynamics in response to changes in climate and at-
mospheric CO2 concentration are dynamic, process-based vegetation
models (Hartig et al., 2012). These models include detailed process-
based representations of productivity, competition, population dy-
namics and forest succession, either for particular tree species (e.g.
Bugmann, 2001), or in the so-called dynamic (global) vegetation
models (D(G)VMs) usually for plant functional types (PFTs e.g. Prentice
et al., 2007).

Most D(G)VMs are fairly complex (Dietze et al., 2014). Working
with such complex system models creates distinct challenges:

1. Simulations are often slow, necessitating the use of parallel
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computing when many model evaluations are necessary.
2. The complexity of process interactions often leads to unpredictable
model behaviour from its structural properties – simulations need to
be run to understand how the model responds to changes in inputs
or parameters. Algorithms to perform such local or global sensitivity
analysis (Saltelli et al., 2000) often require a considerable number of
model evaluations (Table 1).

3. Even more evaluations are needed for model inversion (Table 1).
Model inversion, or inverse calibration, means that we search for the
model parameters and inputs most likely to produce the observed
outputs (Voosen, 2016). In recent years, Bayesian approaches to
model calibration have become increasingly popular, because they
allow quantifying model parameters and predictions as well as their
uncertainties (Bagnara et al., 2015; Hartig et al., 2012; van Oijen
et al., 2005). As posterior densities usually cannot be derived ana-
lytically, Monte-Carlo algorithms such as importance sampling,
Markov-Chain Monte Carlo (MCMC) and sequential Monte Carlo are
commonly used (Hartig et al., 2011).

4. Finally, decision makers demand model predictions, together with
their uncertainties. This is often achieved via Monte-Carlo simula-
tions or ensemble runs. In this context, Bayesian methods provide a
particularly comprehensive, if computer-intensive, way to propa-
gate uncertainty in different parts of the model to the output.

Although all these techniques are well known and readily available
in scientific computing environment such as R, MATLAB and Python,
they are still rarely applied for complex DGVMs (e.g. Luo et al., 2009).
In our experience, an important reason is the amount of work asso-
ciated with interfacing established DGVMs, which are usually pro-
grammed in lower-level languages such as C/C++ or Fortran, with
existing statistical frameworks and algorithms that are available in the
mentioned higher-level languages.

For the LPJ-GUESS model (Lund-Potsdam-Jena General Ecosystem
Simulator, Smith et al., 2014), we address this problem through a new
interface with the statistical tools provided in R (R Core Team, 2015).
LPJ-GUESS is a process-based model of vegetation dynamics and bio-
geochemistry designed for regional to global applications. It combines
eco-physiological features of the widely-used Lund-Potsdam-Jena Dy-
namic Global Vegetation Model (LPJ-DGVM; Sitch et al., 2003) with
detailed representations of vegetation dynamics and canopy structure
as used in forest gap models. LPJ-GUESS, developed by a community of
scientists from different institutions (http://iis4.nateko.lu.se/lpj-guess/
index.html) is one of the most widely applied DGVMs to investigate
vegetation dynamics, so far resulting in more than 200 international
peer-reviewed articles in ISI-listed journals (http://iis4.nateko.lu.se/
lpj-guess/LPJ-GUESS_bibliography.pdf). The model has also been
parameterized regionally (e.g. its “European” version represents main
tree species instead of global PFTs, Hickler et al., 2012). Recently,
Smith et al. (2014) incorporated nitrogen cycling and limitation,
making LPJ-GUESS one of the most complete vegetation models cur-
rently available.

Despite, or maybe because of this complexity, however, most ap-
plications of LPJ-GUESS concentrate on predicting or understanding
present and past patterns and dynamics (Ahlström et al., 2015), while
few studies present advanced analysis of the model itself, such as sen-
sitivity analyses or model calibration (but see Pappas et al., 2013;
Wramneby et al., 2008; Zaehle et al., 2005). In this paper, we present
rLPJGUESS, a newly developed R-package that couples LPJ-GUESS
with R: this more convenient interface to the many methods available
in R will create new research possibilities for vegetation modellers, and
thereby help to advance the field's capabilities to run complicated
analyses and tests.

2. The rLPJGUESS package

With rLPJGUESS, every step necessary to run LPJ-GUESS can beTa
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carried out from within R, facilitating model setup, output analysis and
complex tasks such as sensitivity analysis and model calibrations, for
which R provides many dedicated packages.

A basic use example of rLPJGUESS would be to run LPJ-GUESS for
a single site with the default parameter values. rLPJGUESS allows to
run LPJ-GUESS both in PFT or species-specific mode, and it supports the
default climate data supplied by the LPJ-GUESS developers as well as
user-defined climate input files. The standard run settings of LPJ-GUESS
(e.g. presence/absence/length of the spin-up, species or PFTs simu-
lated, nitrogen limitation etc.) can be changed through the rLPJGUESS
functions getDesign() and getParameterList() (Fig. 1). After
the model run has terminated, user-selected outputs are returned for
further analyses, together with the settings of the model run (Fig. 1).

This basic use can be extended by:

1. changing model parameters, for example to carry out calibrations
and sensitivity analysis; and

2. running the model on multiple locations, or with multiple climate
scenarios.

For both options, rLPJGUESS supports parallelization for personal
computers, servers and High-Performance Computing (HPC) clusters,
including the Message Passing Interface (MPI) protocols for parallel
computing typically available on HPC clusters. rLPJGUESS is fully
operational on macOS, Windows and Linux operating systems.

3. Case study

To demonstrate the functionality of rLPJGUESS, we present a case
study comprised of four tasks, carried out from within R:

1. a set of single model runs;
2. a global and local sensitivity analysis (using parallelization);
3. a Bayesian model calibration;
4. a parallel prediction run using multiple climate scenarios.

Installation instructions and code for every task are provided as
Appendices to this paper.

3.1. Single model runs

To demonstrate the basic communication of the rLPJGUESS
package with LPJ-GUESS, we performed three single model runs
(Appendix B), using 62 years of weather data (1950–2012) obtained
from the German Weather Service's station in Erfurt, Germany. For all
the simulations, we estimated the vegetation biomass carbon (C-bio-
mass) and the leaf area index (LAI), with the settings given in Table 2.

In the first run (Fig. 2a), we simulated vegetation dynamics with the
PFT parameterization for a single forest stand, including only temperate
PFTs that would be able to grow at the study site according to their
bioclimatic limits (Smith et al., 2014). In the second run (Fig. 2b), we
simulated the same stand with the species-specific parameterization
including only temperate species (Hickler et al., 2012). In the third run,
we simulated only Fagus sylvatica (Fig. 2c), which is the dominant
species in the area (Fischer et al., 2010). The results are generally in
line with expectations about the natural regeneration of a pure beech
stand in a similar climate (4–7 Kg C m-2, Granier et al., 2008). The
calculation time was ∼2.5 s for each simulation.

Fig. 1. rLPJGUESS workflow. The runLPJ() function is the core of the package, with functions on its left referring to model setup, and functions on its right relating
to collating of output. Grey boxes represent user-available functions. Dashed boxes represent material provided within the package for model setup. Dotted boxes
represent outputs from the previous function.

Table 2
Simulation settings that were modified from the LPJ-GUESS default values
following Hickler et al. (2012), simplifying the model setup for the purpose of
this study.
Setting Value Description

ifcentury 0 use CENTURY SOM dynamics (1) or not (0)
ifnlim 0 plant growth limited by available N (1) or not (0)
iffire 0 implement fire (1) or not (0)
ifstochestab 0 establishment stochastic (1) or not (0)
ifstochmort 0 mortality stochastic (1) or not (0)
patcharea 252 patch area (m2)
npatch 1 number of replicate patches to simulate
ifdisturb 0 generic patch-destroying disturbances enabled (1) or not

(0)
nyear_spinup 1 number of years to spin up the simulation for
freenyears 0 number of years to spin up without N limitation
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3.2. Parallelized sensitivity analyses

For the next analysis step, we used the simulated LAI and C-biomass
for F. sylvatica as reference data, and created a goodness-of-fit function
(specifically, a likelihood based on normal error assumptions for LAI
and C-biomass) to measure how well results from subsequent simula-
tions match these simulated data. We subsequently ran two sensitivity
analyses to test for the influence (sensitivity) of 55 LPJ-GUESS para-
meters (plus two additional parameters for the standard deviations of
the normal errors) on the model fit, expressed by the likelihood.
Minimum and maximum values for each parameter were derived from
the literature (Pappas et al., 2013; Wramneby et al., 2008; Zaehle et al.,
2005).

The first analysis performed was a local One-at-A-Time (OAT) sen-
sitivity analysis, which we programmed by hand, using the parallel

option of rLPJGUESS with 13 cores (Appendix C, Fig. C1). As a second
analysis, we ran a global Morris sensitivity analysis (Campolongo et al.,
2007) (Appendix C, Figs. C2 and C3), implemented in the R package
sensitivity (Pujol et al., 2016). As rLPJGUESS allows paralleliza-
tion of most of the implemented sensitivity functions, we made use of
this option. This allowed us to screen a large number of species-specific
parameters, while other studies focused on a lower number of para-
meters at the PFT level, in a relatively short amount of time (∼5min for
the OAT analysis, ∼15min for the Morris analysis). The results from
our local and global sensitivity analyses (Fig. 3) were in agreement with
findings of previous studies, in the sense that the parameters that we
identified as particularly important were highlighted (when tested) in
previous studies as well (Pappas et al., 2013; Wramneby et al., 2008;
Zaehle et al., 2005).

Fig. 3. Results from the Morris sensitivity analysis. The 57 parameters are listed on the x-axis. A high μ* indicates a factor with an important overall influence on
model output; a high σ indicates either a factor interacting with other factors or a factor whose effects are non-linear.

Fig. 2. Simulations of total carbon (solid line) and leaf area index (dashed) of model runs for a) temperate PFTs, b) temperate species, and c) monospecific F. sylvatica
stand. Abbreviations follow the LPJ-GUESS standard (see Appendix B, Fig. B1).
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3.3. Bayesian calibration

Based on the sensitivity analysis, we selected the 16 most influential
parameters and ran a full Bayesian calibration using the differential
evolution (DEzs, ter Braak, 2006) MCMC algorithm from the Baye-
sianTools R package (Hartig et al., 2017), with 3 chains and 105
iterations (Appendix D). The total runtime for this full calibration
(unparallelized) was ∼118 h (∼5 days). As expected for a successful
calibration, the model converged on parameter values close to the va-
lues used to generate the reference data (Gelman-Rubin's test of con-
vergence: 1.05), with well-defined posterior distributions (Fig. 4a).
Predictions from the calibrated model matched the reference data well
with small uncertainties (Fig. 4b and c).

3.4. Multiple climate scenarios

As a fourth and last analysis step, we set up a simulation with
multiple climate scenarios (Appendix E, note that multiple locations
could be simulated in the same way). We created 10 time-series, based
on the original weather data, with increasing temperature (from
+0.5 °C to +5 °C) and precipitations (from +5% to +70%), using the

HoltWinter() and predict.HoltWinter() functions (included in
the R base package stats) to construct hypothetical climate forcing
data for the period 2013–2062. Using the calibrated model version from
the previous step, we simulated the 10 scenarios in parallel on 10 cores
(Fig. 5), with a total runtime of ∼5 s. The trends of productivity re-
sulting from these simulations are in accordance with Ahlström et al.
(2012), who studied productivity in response to climate change with
LPJ-GUESS at this latitude for the time period 1950–2005.

4. Conclusions

While complex system models are widely used in ecology and earth
system sciences, they are so far rarely coupled to advanced statistical

algorithms for model analysis. rLPJGUESS addresses this issue for the
LPJ-GUESS model, allowing users to access many important LPJ-GUESS
features from R, with a minimum amount of coding, and advanced
parallelization options. In our case study, we highlighted four possible
analyses that could be run through rLPJGUESS, but there are many
further options. A particular interesting application would be to ex-
periment with model emulations (Fer et al., 2018).

Fig. 4. Results from the calibrated LPJ-GUESS model. a) Marginal posterior distributions of the calibrated parameters, scaled to minimum and maximum values of
the prior. White dots indicate the median of the distribution. b) Model/reference data comparison for LAI. c) Model/reference data comparison for C biomass. For b)
and c), the best model results were calculated from the Maximum A-Posteriori probability (MAP) parameter estimate.

Fig. 5. Model simulations for beech, showing a) carbon biomass, and b) LAI, for multiple climate scenarios. The dotted vertical line is drawn at year 2012, separating
past and future projections.
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By allowing to investigate LPJ-GUESS in a more systematic and
automatized way, rLPJGUESS will facilitate new insights about vege-
tation dynamics as well as a much-needed better integration between
the model and the various data streams (see also parallel efforts, e.g.
Dietze, 2017). As such, we believe that our package adds significant
value to LPJ-GUESS as a tool to investigate the vegetation, carbon,
nitrogen and water dynamics of ecosystems over time and to identify
new possible threats, especially related to climate change. Moreover,
rLPJGUESS could be easily extended or adopted to other DGVMs or
even other model classes (i.e. climatic or hydrological), in order to
improve their comparability and their coupling with unifying existing
statistical frameworks (LeBauer et al., 2013; Voosen, 2016).
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